Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gamma-delta T-cell lymphomas

Abstract

Peripheral T-cell lymphomas (TCLs) are uncommon neoplasms, accounting for about 12% of all lymphoid tumors worldwide. TCLs in which γδ T-cell receptors are expressed (γδ TCLs) are extremely aggressive and rare (<1% of lymphoid neoplasms). γδ TCLs originate from γδ T cells, a small subset of peripheral T cells with direct antigen recognition capability acting at the interface between innate and adaptive immunity. Two distinct γδ TCL entities are recognized: hepatosplenic T-cell lymphoma (HSTL) and primary cutaneous γδ T-cell lymphoma (PCGD-TCL). HSTL is a well-characterized extranodal lymphoma that has a disguised onset, secondary to intrasinusoidal infiltration of the spleen, liver and bone marrow, has a rapidly progressive course that is poorly responsive to chemotherapy, and often ensues in the setting of immune system suppression. PCGD-TCL can present with prominent epidermal involvement or with a panniculitis-like clinical picture that can be complicated by a concurrent hemophagocytic syndrome; the disease shows biological and phenotypic overlap with other extranodal γδ TCLs that involve the respiratory or gastrointestinal tract mucosa. The regular application of phenotypic and molecular techniques is crucial for the diagnosis of γδ TCLs. In this Review, we discuss the clinical and biological features, the diagnostic challenges and the therapeutic perspectives of HSTL and PCGD-TCL.

Key Points

  • T-cell lymphomas that bear γδ T-cell receptors are heterogeneous biological entities that share a very poor prognosis irrespective of their site of origin

  • The actual incidence of γδ lymphomas is probably underestimated because of difficulties in the identification of γδ T-cell receptors in routine biopsy specimens

  • In young patients who present with hepatosplenomegaly, jaundice, altered liver function parameters, thrombocytopenia, and fever, hepatosplenic T-cell lymphoma should be included in the differential diagnosis

  • The response of γδ T-cell lymphomas to standard chemotherapy regimens is poor

  • Cytarabine combined with platinum-containing chemotherapies consolidated with stem cell transplantation seems to be the best available therapeutic strategy for eligible patients on diagnosis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the TCR.
Figure 2: A schematic overview of the presumptive pathogenesis of HSTL and PCGD-TCL, the two main γδ T-cell lymphoma entities.
Figure 3: Histological and immunophenotypical features of HSTL.
Figure 4: Histological and immunophenotypic features of PCGD-TCL.

Similar content being viewed by others

References

  1. Armitage, J., Vose, J. & Weisenburger, D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J. Clin. Oncol. 26, 4124–4130 (2008).

    Article  PubMed  Google Scholar 

  2. Swerdlow, S. H et al. (eds) World Health Organization Classification of Tumors of Hematopoietic and Lymphoid Tissues (IARC, Lyon, 2008).

    Google Scholar 

  3. Piccaluga, P. P. et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J. Clin. Invest. 117, 823–834 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agostinelli, C. et al. Peripheral T cell lymphoma, not otherwise specified: the stuff of genes, dreams and therapies. J. Clin. Pathol. 61, 1160–1167 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Ciofani, M., Knowles, G. C., Wiest, D. L., von Boehmer, H. & Zúñiga-Pflücker, J. C. Stage-specific and differential Notch dependency at the αβ and γδ T lineage bifurcation. Immunity 25, 105–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Denning, S. M. & Haynes, B. F. Differentiation of human T cells. Clin. Lab. Med. 8, 1–14 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Havran, W. L. & Boismenu, R. Activation and function of γδ T cells. Curr. Opin. Immunol. 6, 442–446 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Sayers, T. J. et al. The restricted expression of granzyme M in human lymphocytes. J. Immunol. 166, 765–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Chattopadhyay, P. K. et al. The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. J. Leukoc. Biol. 85, 88–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Inghirami, G., Zhu, B. Y., Chess, L. & Knowles, D. M. Flow cytometric and immunohistochemical characterization of the γ/δ T-lymphocyte population in normal human lymphoid tissue and peripheral blood. Am. J. Pathol. 136, 357–367 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Falini, B. et al. Distribution of T cells bearing different forms of the T cell receptor γ/δ in normal and pathological human tissues. J. Immunol. 143, 2480–2488 (1989).

    CAS  PubMed  Google Scholar 

  12. Moser, B. & Eberl, M. γδ T cells: novel initiators of adaptive immunity. Immunol. Rev. 215, 89–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Groh, V., Steinle, A., Bauer S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T cells. Science 309, 264–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Schild, H. et al. The nature of major histocompatibility complex recognition by γδ T cells. Cell 76, 29–37 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Chien, Y. H. & Konigshofer, Y. Antigen recognition by γδ T cells. Immunol. Rev. 215, 46–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Gong, G. et al. Phosphoantigen-activated Vγ 2Vδ 2 T cells antagonize IL-2-induced CD4+CD25+Foxp3+ T regulatory cells in mycobacterial infection. Blood 113, 837–845 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shibata, K., Yamada, H., Hara, H., Kishihara, K. & Yoshikai, Y. Resident Vδ1+ γδ T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 178, 4466–4472 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Toth, B. et al. The role of γδ T cells in the regulation of neutrophil-mediated tissue damage after thermal injury. J. Leukoc. Biol. 76, 545–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Jensen, K. D. Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon γ. Immunity 29, 90–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Przybylski, G. K. et al. Hepatosplenic and subcutaneous panniculitis-like γ/δ T cell lymphomas are derived from different Vδ subsets of γ/δ T lymphocytes. J. Mol. Diagn. 2, 11–19 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tey, S. K., Marlton, P. V., Hawley, C. M., Norris, D. & Gill, D. S. Post-transplant hepatosplenic T-cell lymphoma successfully treated with HyperCVAD regimen. Am. J. Hematol. 83, 330–333 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Khan, W. A. et al. Hepatosplenic γ/δ T-cell lymphoma in immunocompromised patients. Report of two cases and review of literature. Am. J. Clin. Pathol. 116, 41–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Knowles, D. M. et al. Correlative morphologic and molecular genetic analysis demonstrates three distinct categories of posttransplantation lymphoproliferative disorders. Blood 85, 552–565 (1995).

    CAS  PubMed  Google Scholar 

  25. Vilmer, E. et al. Prominent expansion of circulating lymphocytes bearing γ T-cell receptors, with preferential expression of variable γ genes after allogeneic bone marrow transplantation. Blood 72, 841–849 (1988).

    CAS  PubMed  Google Scholar 

  26. Kronenberg, M. & Havran, W. L. Frontline T cells: γδ T cells and intraepithelial lymphocytes. Immunol. Rev. 215, 5–7 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Ross, C. W., Schnitzer, B., Sheldon, S., Braun, D. K. & Hanson, C. A. γ/δ T-cell posttransplantation lymphoproliferative disorder primarily in the spleen. Am. J. Clin. Pathol. 102, 310–315 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Belhadj, K. et al. Hepatosplenic γδ T-cell lymphoma is a rare clinicopathologic entity with poor outcome: report on a series of 21 patients. Blood 102, 4261–4269 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Mackey, A. C., Green, L., Liang, L. C., Dinndorf, P. & Avigan, M. Hepatosplenic T cell lymphoma associated with infliximab use in young patients treated for inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 44, 265–267 (2007).

    Article  PubMed  Google Scholar 

  30. Shale, M., Kanfer, E., Panaccione, R. & Ghosh, S. Hepatosplenic T cell lymphoma in inflammatory bowel disease. Gut 57, 1639–1641 (2008).

    Article  PubMed  Google Scholar 

  31. US Food and Drug Administration The Adverse Event Reporting System (AERS): Latest Quarterly Data Files [online], (2009).

  32. Toro, J. R. et al. γ δ T-cell lymphoma of the skin: a clinical, microscopic, and molecular study. Arch. Dermatol. 136, 1024–1032 (2000).

    CAS  PubMed  Google Scholar 

  33. Arnulf, B. et al. Nonhepatosplenic γδ T-cell lymphoma: a subset of cytotoxic lymphomas with mucosal or skin localization. Blood 91, 1723–1731 (1998).

    CAS  PubMed  Google Scholar 

  34. Farcet, J. P. et al. Hepatosplenic T-cell lymphoma: sinusal/sinusoidal localization of malignant cells expressing the T-cell receptor γ δ. Blood 75, 2213–2219 (1990).

    CAS  PubMed  Google Scholar 

  35. Gaulard, P., Belhadj, K. & Reyes, F. γδ T-cell lymphomas. Semin. Hematol. 40, 233–243 (2003).

    Article  PubMed  Google Scholar 

  36. Falchook, G. S. et al. Hepatosplenic γ-δ T-cell lymphoma: clinicopathological features and treatment. Ann. Oncol. 20, 1080–1085 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weidmann, E. Hepatosplenic T cell lymphoma. A review on 45 cases since the first report describing the disease as a distinct lymphoma entity in 1990. Leukemia 14, 991–997 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Florena, A. M., Iannitto, E., Quintini, G. & Franco, V. Bone marrow biopsy in hemophagocytic syndrome. Virchows Arch. 441, 335–344 (2002).

    Article  PubMed  Google Scholar 

  39. Burg, G. et al. A subcutaneous δ-positive T-cell lymphoma that produces interferon γ. N. Engl. J. Med. 325, 1078–1081 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Nosari, A. et al. Hepato-splenic γδ T-cell lymphoma: a rare entity mimicking the hemophagocytic syndrome. Am. J. Hematol. 60, 61–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Mazodier, K. et al. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome. Blood 106, 3483–3489 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, C. Y., Su, W. P. & Kurtin, P. J. Subcutaneous panniculitic T-cell lymphoma. Int. J. Dermatol. 35, 1–8 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Kumar, S. et al. Subcutaneous panniculitic T-cell lymphoma is a tumor of cytotoxic T lymphocytes. Hum. Pathol. 29, 397–403 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Toro, J. R. et al. γ-δ T-cell phenotype is associated with significantly decreased survival in cutaneous T-cell lymphoma. Blood 101, 3407–3412 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Willemze, R. et al. EORTC Cutaneous Lymphoma Group. Subcutaneous panniculitis-like T-cell lymphoma: definition, classification, and prognostic factors: an EORTC Cutaneous Lymphoma Group Study of 83 cases. Blood 111, 838–845 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Vega, F., Medeiros, L. J. & Gaulard, P. Hepatosplenic and other γδ T-cell lymphomas. Am. J. Clin. Pathol. 127, 869–880 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Salhany, K. E. et al. Hepatosplenic γδ T-cell lymphoma: ultrastructural, immunophenotypic, and functional evidence for cytotoxic T lymphocyte differentiation. Hum. Pathol. 28, 674–685 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Sallah, S. et al. γ/δ T-cell hepatosplenic lymphoma: review of the literature, diagnosis by flow cytometry and concomitant autoimmune hemolytic anemia. Ann. Hematol. 74, 139–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Falini, B. et al. T-lymphoblastic lymphomas expressing the non-disulfide-linked form of the T-cell receptor γ/δ: characterization with monoclonal antibodies and genotypic analysis. Blood 74, 2501–2507 (1989).

    CAS  PubMed  Google Scholar 

  50. Ascani, S. et al. T-cell prolymphocytic leukaemia: does the expression of CD8+ phenotype justify the identification of a new subtype? Description of two cases and review of the literature. Ann. Oncol. 10, 649–653 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Massone, C. et al. Subcutaneous, blastic natural killer (NK), NK/T-cell, and other cytotoxic lymphomas of the skin: a morphologic, immunophenotypic, and molecular study of 50 patients. Am. J. Surg. Pathol. 28, 719–735 (2004).

    Article  PubMed  Google Scholar 

  52. Go, R. S. & Wester, S. M. Immunophenotypic and molecular features, clinical outcomes, treatments, and prognostic factors associated with subcutaneous panniculitis-like T-cell lymphoma: a systematic analysis of 156 patients reported in the literature. Cancer 101, 1404–1413 (2004).

    Article  PubMed  Google Scholar 

  53. Gaulard, P. et al. Expression of the α/β and γ/δ T-cell receptors in 57 cases of peripheral T-cell lymphomas. Identification of a subset of γ/δ T-cell lymphomas. Am. J. Pathol. 137, 617–628 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cooke, C. B. et al. Hepatosplenic T-cell lymphoma: a distinct clinicopathologic entity of cytotoxic γ δ T-cell origin. Blood 88, 4265–4274 (1996).

    CAS  PubMed  Google Scholar 

  55. de Wolf-Peeters, C. & Achten, R. γδ T-cell lymphomas: a homogeneous entity? Histopathology 36, 294–305 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Allory, Y. et al. Bone marrow involvement in lymphomas with hemophagocytic syndrome at presentation: a clinicopathologic study of 11 patients in a Western institution. Am. J. Surg. Pathol. 25, 865–874 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Gaulard, P. et al. Peripheral T-cell lymphoma presenting as predominant liver disease: a report of three cases. Hepatology 6, 864–868 (1986).

    Article  CAS  PubMed  Google Scholar 

  58. Florena, A. M. et al. Immunophenotypic profile and role of adhesion molecules in splenic marginal zone lymphoma with bone marrow involvement. Leuk. Lymphoma 47, 49–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Mastovich, S., Ratech, H., Ware, R. E., Moore, J. O. & Borowitz, M. J. Hepatosplenic T-cell lymphoma: an unusual case of a γ δ T-cell lymphoma with a blast-like terminal transformation. Hum. Pathol. 25, 102–108 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Vega, F. et al. Hepatosplenic γ/δ T-cell lymphoma in bone marrow. A sinusoidal neoplasm with blastic cytologic features. Am. J. Clin. Pathol. 116, 410–419 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Boulland, M. L., Kanavaros, P., Wechsler, J., Casiraghi, O. & Gaulard, P. Cytotoxic protein expression in natural killer cell lymphomas and in α β and γ δ peripheral T-cell lymphomas. J. Pathol. 183, 432–439 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Suarez, F. et al. Hepatosplenic αβ T-cell lymphoma: an unusual case with clinical, histologic, and cytogenetic features of γδ hepatosplenic T-cell lymphoma. Am. J. Surg. Pathol. 24, 1027–1032 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Macon, W. R. Hepatosplenic αβ T-cell lymphomas: a report of 14 cases and comparison with hepatosplenic γδ T-cell lymphomas. Am. J. Surg. Pathol. 25, 285–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, C. C. et al. Consistent presence of isochromosome 7q in hepatosplenic T γ/δ lymphoma: a new cytogenetic-clinicopathologic entity. Genes Chromosomes Cancer 12, 161–164 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Wlodarska. I. Fluorescence in situ hybridization study of chromosome 7 aberrations in hepatosplenic T-cell lymphoma: isochromosome 7q as a common abnormality accumulating in forms with features of cytologic progression. Genes Chromosomes Cancer 33, 243–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Jonveaux, P., Daniel, M. T., Martel, V., Maarek, O. & Berger, R. Isochromosome 7q and trisomy 8 are consistent primary, non-random chromosomal abnormalities associated with hepatosplenic T γ/δ lymphoma. Leukemia 10, 1453–1455 (1996).

    CAS  PubMed  Google Scholar 

  67. Tamaska, J. et al. Hepatosplenic γδ T-cell lymphoma with ring chromosome 7, an isochromosome 7q equivalent clonal chromosomal aberration. Virchows Arch. 449, 479–483 (2006).

    Article  PubMed  Google Scholar 

  68. Alonsozana, E. L. et al. Isochromosome 7q: the primary cytogenetic abnormality in hepatosplenic γδ T cell lymphoma. Leukemia 11, 1367–1372 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Miyazaki, K. et al. Gene expression profiling of peripheral T-cell lymphoma including γδ T-cell lymphoma. Blood 113, 1071–1074 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Aldinucci, D. et al. In vitro and in vivo effects of 2′-deoxycoformycin (Pentostatin) on tumour cells from human γδ+ T-cell malignancies. Br. J. Haematol. 110, 188–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Iannitto, E., Barbera, V., Quintini, G., Cirrincione, S. & Leone, M. Hepatosplenic γδ T-cell lymphoma: complete response induced by treatment with pentostatin. Br. J. Haematol. 117, 995–996 (2002).

    Article  PubMed  Google Scholar 

  72. Corazzelli, G. et al. Pentostatin (2′-deoxycoformycin) for the treatment of hepatosplenic γδ T-cell lymphomas. Haematologica 90, ECR14 (2005).

    PubMed  Google Scholar 

  73. Macor, P. & Tedesco, F. Complement as effector system in cancer immunotherapy. Immunol. Lett. 111, 6–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Macor, P. et al. In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab. Cancer Res. 67, 10556–10563 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Gallamini, A. et al. Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma: results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial. Blood 110, 2316–2323 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Mittal, S., Milner, B. J., Johnston, P. W. & Culligan, D. J. A case of hepatosplenic γ-δ T-cell lymphoma with a transient response to fludarabine and alemtuzumab. Eur. J. Haematol. 76, 531–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Jaeger, G. et al. Hepatosplenic γδ T-cell lymphoma successfully treated with a combination of alemtuzumab and cladribine. Ann. Oncol. 19, 1025–1026 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Ferrarini, M. et al. NF-κB modulates sensitivity to apoptosis, proinflammatory and migratory potential in short- versus long-term cultured human γ δ lymphocytes. J. Immunol. 181, 5857–5864 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Koenecke, C. et al. In vivo application of mAb directed against the γδ TCR does not deplete but generates “invisible” γδ T cells. Eur. J. Immunol. 39, 372–379 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Hathaway, T., Subtil, A., Kuo, P. & Foss, F. Efficacy of denileukin diftitox in subcutaneous panniculitis-like T-cell lymphoma. Clin. Lymphoma Myeloma 7, 541–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Vidulich, K., Jones, D. & Duvic, M. Cutaneous γ/δ T-cell lymphoma treated with radiation and denileukin diftitox. Clin. Lymphoma Myeloma 8, 55–58 (2008).

    Article  PubMed  Google Scholar 

  82. Bonder, C. S., Clark, S. R., Norman, M. U., Johnson, P & Kubes, P. Use of CD44 by CD4+ TH1 and TH2 lymphocytes to roll and adhere. Blood 107, 4798–4806 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Bonneville, M. & Scotet, E. Human Vγ9Vδ2 T cells: promising new leads for immunotherapy of infections and tumors. Curr. Opin. Immunol. 18, 539–546 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Alexander, A. A. et al. Isopentenyl pyrophosphate-activated CD56+ γδ T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin. Cancer Res. 14, 4232–4240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thedrez, A. et al. IL-21-mediated potentiation of antitumor cytolytic and proinflammatory responses of human Vγ 9V δ2 T cells for adoptive immunotherapy. J. Immunol. 182, 3423–3431 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Martinet, L. et al. A regulatory cross-talk between Vγ9Vδ2 T lymphocytes and mesenchymal stem cells. Eur. J. Immunol. 39, 752–762 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Henter, J. I., Elinder, G. & Ost, A. Diagnostic guidelines for hemophagocytic lymphohistiocytosis. The FHL Study Group of the Histiocyte Society. Semin. Oncol. 18, 29–33 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr. Mario Colombo of the IRCSS Istituto Nazionale dei Tumori, Milan, for helpful discussions. This manuscript was supported by grants from the Gruppo Italiano Studio Linfomi, Associazione Italiana per la Ricerca sul Cancro (Milan), BolognAIL (Bologna), Centro Interdipartimentale di Ricerca sul Cancro “G. Prodi” (Bologna), Fondazione Cassa di Risparmio in Bologna (Bologna).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Tripodo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripodo, C., Iannitto, E., Florena, A. et al. Gamma-delta T-cell lymphomas. Nat Rev Clin Oncol 6, 707–717 (2009). https://doi.org/10.1038/nrclinonc.2009.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing