Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Breast cancer assessment tools and optimizing adjuvant therapy

Abstract

Recommendation of systemic adjuvant therapy and choice of optimal agents for early-stage breast cancer remains a challenge. Adjuvant therapy is indicated on the assumption of residual micrometastatic disease. Adjuvant assessment tools for prognosis and prediction of treatment benefit, including Adjuvant! Online, the St Gallen Consensus, Oncotype DX® and MammaPrint®, aid clinical decision making. However, all of these tools have limitations that must be considered in their judicious application. Clinicopathological based tools are critically dependent on accurate, standardized measurement of parameters. Multigene tools are appealing for their objectivity and reproducibility, particularly regarding analysis of proliferation, but these approaches still overlook the biological heterogeneity within tumors evidenced by distinct cell subpopulations with different genomic patterns and function. The greatest treatment challenge remains for patients assessed as intermediate risk of relapse, a problem not overcome by multigene tools. Remarkable diversity in breast cancer dictates that adjuvant management must be biologically driven. Future identification of predictive biomarkers for specific chemotherapy sensitivity may allow targeted use of available agents, including anthracyclines, taxanes and DNA damaging agents. The presence of drug targets and targetable signaling pathways, rather than molecularly defined subgroups, may ultimately drive treatment decisions.

Key Points

  • Early breast cancer assessment tools for prognosis and prediction of treatment benefit may aid clinical decision making; however, their limitations must be considered

  • Adjuvant! Online and the St Gallen Consensus incorporate discriminating clinicopathological factors; critical to these guidelines is accurate, standardized measurement of pathological parameters

  • Multigene signatures, Oncotype DX® and MammaPrint®, offer objective, reproducible analysis, particularly of proliferation but it remains to be seen whether they are more beneficial than accurate, standardized clinicopathological assessment

  • The greatest treatment challenge remains for patients assessed as intermediate risk of relapse

  • Breast cancers show remarkable diversity in biology and treatment efficacy; optimal management must be biologically driven and predictive biomarkers may guide use of systemic therapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  2. Cuzick, J. et al. Prognostic value of a combined, ER, PgR, Ki67, HER2 immunohistochemical (IHC4) score and comparison with the GHI recurrence score – results from TransATAC [abstract]. Cancer Res. 69 (24 Suppl.), a74 (2009).

    Article  Google Scholar 

  3. Carter, C. L., Allen, C. & Henson, D. E. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 63, 181–187 (1989).

    Article  CAS  Google Scholar 

  4. Galea, M. H., Blamey, R. W., Elston, C. E. & Ellis, I. O. The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res. Treat. 22, 207–219 (1992).

    Article  CAS  Google Scholar 

  5. Press, M. F. et al. HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J. Clin. Oncol. 15, 2894–2904 (1997).

    Article  CAS  Google Scholar 

  6. Bonadonna, G. et al. 30 years' follow up of randomised studies of adjuvant CMF in operable breast cancer: cohort study. BMJ 330, 217 (2005).

    Article  Google Scholar 

  7. Ravdin, P. M. et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J. Clin. Oncol. 19, 980–991 (2001).

    Article  CAS  Google Scholar 

  8. Goldhirsch, A. et al. Thresholds for therapies: highlights of the St. Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann. Oncol. 20, 1319–1329 (2009).

    Article  CAS  Google Scholar 

  9. Rhodes, A., Jasani, B., Barnes, D. M., Bobrow, L. G. & Miller, K. D. Reliability of immunohistochemical demonstration of oestrogen receptors in routine practice: interlaboratory variance in the sensitivity of detection and evaluation of scoring systems. J. Clin. Pathol. 53, 125–130 (2000).

    Article  CAS  Google Scholar 

  10. Francis, G. D., Dimech, M., Giles, L. & Hopkins, A. Frequency and reliability of oestrogen receptor, progesterone receptor and HER2 in breast carcinoma determined by immunohistochemistry in Australasia: results of the RCPA Quality Assurance Program. J. Clin. Pathol. 60, 1277–1283 (2007).

    Article  Google Scholar 

  11. Wolff, A. C. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J. Clin. Oncol. 25, 118–145 (2007).

    Article  CAS  Google Scholar 

  12. Bueno-de-Mesquita, J. M. et al. Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol. 8, 1079–1087 (2007).

    Article  CAS  Google Scholar 

  13. Hammond, M. E. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010).

    Article  Google Scholar 

  14. Mook, S. et al. Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study. Lancet Oncol. 10, 1070–1076 (2009).

    Article  Google Scholar 

  15. Olivotto, I. A. et al. Population-based validation of the prognostic model ADJUVANT! for early breast cancer. J. Clin. Oncol. 23, 2716–2725 (2005).

    Article  Google Scholar 

  16. Goldhirsch, A. et al. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann. Oncol. 18, 1133–1144 (2007).

    Article  CAS  Google Scholar 

  17. Hanna, W., Nofech-Mozes, S. & Kahn, H. J. Intratumoral heterogeneity of HER2/neu in breast cancer--a rare event. Breast J. 13, 122–129 (2007).

    Article  CAS  Google Scholar 

  18. Miller, D. V. et al. Focal HER2/neu amplified clones partially account for discordance between immunohistochemistry and fluorescence in-situ hybridization results: data from NCCTG N9831 Intergroup Adjuvant Trial [abstract]. J. Clin. Oncol. 2004 ASCO Annual Meeting Proceedings (Post-Meeting Edition) 22 (July 15 Suppl.), a568 (2004).

    Google Scholar 

  19. Ross, J. S., Symmans, W. F., Pusztai, L. & Hortobagyi, G. N. Standardizing slide-based assays in breast cancer: hormone receptors, HER2, and sentinel lymph nodes. Clin. Cancer Res. 13, 2831–2835 (2007).

    Article  CAS  Google Scholar 

  20. Stuart-Harris, R., Caldas, C., Pinder, S. E. & Pharoah, P. Proliferation markers and survival in early breast cancer: a systematic review and meta-analysis of 85 studies in 32,825 patients. Breast 17, 323–334 (2008).

    Article  CAS  Google Scholar 

  21. Cheang, M. C. et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl Cancer Inst. 101, 736–750 (2009).

    Article  CAS  Google Scholar 

  22. Mengel, M. et al. Inter-laboratory and inter-observer reproducibility of immunohistochemical assessment of the Ki-67 labelling index in a large multi-centre trial. J. Pathol. 198, 292–299 (2002).

    Article  Google Scholar 

  23. Rhodes, A., Jasani, B., Balaton, A. J. & Miller, K. D. Immunohistochemical demonstration of oestrogen and progesterone receptors: correlation of standards achieved on in house tumours with that achieved on external quality assessment material in over 150 laboratories from 26 countries. J. Clin. Pathol. 53, 292–301 (2000).

    Article  CAS  Google Scholar 

  24. Ibrahim, M. et al. Potential for false-positive staining with a rabbit monoclonal antibody to progesterone receptor (SP2): findings of the UK National External Quality Assessment Scheme for Immunocytochemistry and FISH highlight the need for correct validation of antibodies on introduction to the laboratory. Am. J. Clin. Pathol. 129, 398–409 (2008).

    Article  CAS  Google Scholar 

  25. Urruticoechea, A., Smith, I. E. & Dowsett, M. Proliferation marker Ki-67 in early breast cancer. J. Clin. Oncol. 23, 7212–7220 (2005).

    Article  CAS  Google Scholar 

  26. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  27. van de Vijver, M. J. et al. A gene expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  Google Scholar 

  28. Buyse, M. et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl Cancer Inst. 99, 1183–1192 (2006).

    Article  Google Scholar 

  29. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  Google Scholar 

  30. Goldstein, L. J. et al. Prognostic utility of the 21-gene assay in hormone receptor–positive operable breast cancer compared with classical clinicopathologic features. J. Clin. Oncol. 26, 4063–4071 (2008).

    Article  Google Scholar 

  31. Paik, S. et al. Expression of the 21 genes in the Recurrence Score assay and tamoxifen clinical benefit in the NSABP study B-14 of node negative, estrogen receptor positive breast cancer [abstract]. J. Clin. Oncol. 2005 ASCO Annual Meeting Proceedings 23 (June 1 Suppl.), a510 (2005).

    Article  Google Scholar 

  32. Berry, D. A. et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295, 1658–1667 (2006).

    Article  CAS  Google Scholar 

  33. Carey, L. A. et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 13, 2329–2334 (2007).

    Article  CAS  Google Scholar 

  34. Wülfing, P. et al. HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients. Clin. Cancer Res. 12, 1715–1720 (2006).

    Article  Google Scholar 

  35. Simmons, C. et al. Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann. Oncol. 20, 1499–1504 (2009).

    Article  CAS  Google Scholar 

  36. Liedtke, C. et al. Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann. Oncol. 20, 1953–1958 (2009).

    Article  CAS  Google Scholar 

  37. Navin, N. et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 20, 68–80 (2010).

    Article  CAS  Google Scholar 

  38. Di Leo, A. et al. A meta-analysis of phase III trials evaluating the predictive value of HER2 and topoisomerase II alpha in early breast cancer patients treated with CMF or anthracycline-based adjuvant therapy [abstract]. Breast Cancer Res. Treat. 107, a705 (2008).

    Google Scholar 

  39. Egawa, C. et al. Increased expression of BRCA1 mRNA predicts favorable response to anthracycline-containing chemotherapy in breast cancers. Breast Cancer Res. Treat. 78, 45–50 (2003).

    Article  CAS  Google Scholar 

  40. Pusztai, L. et al. Clinical subtype-derived p53 gene signature is predictive of prognosis and response to chemotherapy in ER-positive but not in ER-negative breast cancers [abstract]. Cancer Res. 69 (24 Suppl.), a6122 (2009).

    Article  Google Scholar 

  41. Pusztai, L. et al. Evaluation of microtubule-associated protein-Tau expression as a prognostic and predictive marker in the NSABP-B 28 randomized clinical trial. J. Clin. Oncol. 27, 4287–4292 (2009).

    Article  CAS  Google Scholar 

  42. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  43. Viale, G. & Bottiglieri, L. Pathological definition of triple negative breast cancer. Eur. J. Cancer 45 (Suppl. 1), 5–10 (2009).

    Article  Google Scholar 

  44. Chia, S. et al. Human epidermal growth factor receptor 2 overexpression as a prognostic factor in a large tissue microarray series of node-negative breast cancers. J. Clin. Oncol. 26, 5697–5704 (2008).

    Article  CAS  Google Scholar 

  45. Curigliano, G. et al. Clinical relevance of HER2 overexpression/amplification in patients with small tumor size and node-negative breast cancer. J. Clin. Oncol. 27, 5693–5699 (2009).

    Article  Google Scholar 

  46. Straver, M. E. et al. The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. Treat. 119, 551–558 (2010).

    Article  Google Scholar 

  47. Knauer, M. et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res. Treat. 120, 655–661 (2010).

    Article  CAS  Google Scholar 

  48. Rodenhuis, S. et al. A simple system for grading the response of breast cancer to neoadjuvant chemotherapy. Ann. Oncol. 21, 481–487 (2010).

    Article  CAS  Google Scholar 

  49. Paik, S. et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734 (2006).

    Article  CAS  Google Scholar 

  50. Albain, K. S. et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 11, 55–65 (2010).

    Article  CAS  Google Scholar 

  51. Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).

    Article  Google Scholar 

  52. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    Article  CAS  Google Scholar 

  53. Allard, W. J. et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004).

    Article  Google Scholar 

  54. Hayes, D. F. & Smerage, J. Is there a role for circulating tumor cells in the management of breast cancer? Clin. Cancer Res. 14, 3646–3650 (2008).

    Article  CAS  Google Scholar 

  55. Pachmann, K. et al. Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. J. Clin. Oncol. 26, 1208–1215 (2008).

    Article  Google Scholar 

  56. Stathopoulos, E. N. et al. Detection of CK-19 mRNA-positive cells in the peripheral blood of breast cancer patients with histologically and immunohistochemically negative axillary lymph nodes. Ann. Oncol. 16, 240–246 (2005).

    Article  CAS  Google Scholar 

  57. Xenidis, N. et al. Predictive and prognostic value of peripheral blood cytokeratin-19 mRNA-positive cells detected by real-time polymerase chain reaction in node-negative breast cancer patients. J. Clin. Oncol. 24, 3756–3762 (2006).

    Article  CAS  Google Scholar 

  58. Ignatiadis, M. et al. Prognostic value of the molecular detection of circulating tumor cells using a multimarker reverse transcription-PCR assay for cytokeratin 19, mammaglobin A, and HER2 in early breast cancer. Clin. Cancer Res. 14, 2593–2600 (2008).

    Article  CAS  Google Scholar 

  59. Pierga, J. Y. et al. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin. Cancer Res. 14, 7004–7010 (2008).

    Article  CAS  Google Scholar 

  60. Xenidis, N. et al. Clinical relevance of circulating CK-19 mRNA-positive cells detected during the adjuvant tamoxifen treatment in patients with early breast cancer. Ann. Oncol. 18, 1623–1631 (2007).

    Article  CAS  Google Scholar 

  61. Denkert, C. et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 28, 105–113 (2010).

    Article  CAS  Google Scholar 

  62. Schmidt, M. et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 68, 5405–5413 (2008).

    Article  CAS  Google Scholar 

  63. Desmedt, C. et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin. Cancer Res. 14, 5158–5165 (2008).

    Article  CAS  Google Scholar 

  64. Teschendorff, A. E., Miremadi, A., Pinder, S. E., Ellis, I. O. & Caldas, C. An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol. 8, R157 (2007).

    Article  Google Scholar 

  65. Farmer, P. et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat. Med. 15, 68–74 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L. Santarpia contributed to researching the data for this article and review/editing of the manuscript. A. Di Leo and C. Oakman contributed equally to researching the data for this article, the discussion, writing, and review/editing of the manuscript.

Corresponding author

Correspondence to Angelo Di Leo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oakman, C., Santarpia, L. & Di Leo, A. Breast cancer assessment tools and optimizing adjuvant therapy. Nat Rev Clin Oncol 7, 725–732 (2010). https://doi.org/10.1038/nrclinonc.2010.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.170

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer