Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organ-sparing radiation therapy for head and neck cancer

Abstract

To improve locoregional tumor control and survival in patients with locally advanced head and neck cancer (HNC), therapy is intensified using altered fractionation radiation therapy or concomitant chemotherapy. However, intensification of therapy has been associated with increased acute and late toxic effects. The application of advanced radiation techniques, such as 3D conformal radiation therapy and intensity-modulated radiation therapy, is expected to improve the therapeutic index of radiation therapy for HNC by limiting the dose to critical organs and possibly increasing locoregional tumor control. To date, Review articles have covered the prevention and treatment of radiation-induced xerostomia and dysphagia, but few articles have discussed the prevention of hearing loss, brain necrosis, cranial nerve palsy and osteoradionecrosis of the mandible, which are all potential complications of radiation therapy for HNC. This Review describes the efforts to prevent therapy-related complications by presenting the state of the art evidence regarding advanced radiation therapy technology as an organ-sparing approach.

Key Points

  • Xerostomia can be reduced by limiting the mean dose to 26 Gy for one parotid gland, ≤39 Gy to the noninvolved submandibular glands and ≤30 Gy to the oral cavity

  • Late dysphagia can be reduced by keeping the mean dose ≤50 Gy to the non-involved pharyngeal constrictor muscles and the larynx

  • Hearing loss might be reduced by limiting the dose to the inner ear to <45–54 Gy

  • Late temporal lobe radiation necrosis could decline if the temporal lobes are treated with a maximum dose of <60 Gy, or if 1% of the temporal lobe volume receives <65 Gy

  • By limiting the maximum dose to the optic nerve and chiasm to 54 Gy, the risk of late radiation-induced optic neuropathy can be minimized

  • Reductions in dose to the salivary glands and mandible are likely to translate into reduced incidence of xerostomia and osteoradionecrosis for patients with HNC

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A parotid-sparing intensity-modulated radiation therapy plan for a patient with T2N0 nasopharyngeal cancer.
Figure 2: A clinical example of an intensity-modulated radiation therapy plan aiming to reduce dysphagia for a patient with T2N0 nasopharyngeal cancer.

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010).

    Article  PubMed  Google Scholar 

  2. Argiris, A., Karamouzis, M. V., Raben, D. & Ferris, R. L. Head and neck cancer. Lancet 371, 1695–1709 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pignon, J. P., le Maître, A., Maillard, E. & Bourhis, J. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother. Oncol. 92, 4–14 (2009).

    Article  PubMed  Google Scholar 

  4. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Cohen, E. E. et al. Epidermal growth factor receptor inhibitor gefitinib added to chemoradiotherapy in locally advanced head and neck cancer. J. Clin. Oncol. 28, 3336–3343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brizel, D. M. & Esclamado, R. Concurrent chemoradiotherapy for locally advanced, nonmetastatic, squamous carcinoma of the head and neck: consensus, controversy, and conundrum. J. Clin. Oncol. 24, 2612–2617 (2006).

    Article  PubMed  Google Scholar 

  7. Posner, M. R. et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N. Engl. J. Med. 357, 1705–1715 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Nuyts, S. et al. Impact of adding concomitant chemotherapy to hyperfractionated accelerated radiotherapy for advanced head and neck squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 73, 1088–1095 (2009).

    Article  PubMed  Google Scholar 

  9. Garden, A. S. et al. Long-term results of concomitant boost radiation plus concurrent cisplatin for advanced head and neck carcinomas: a phase II trial of the radiation therapy oncology group (RTOG 99–14). Int. J. Radiat. Oncol. Biol. Phys. 71, 1351–1355 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Manikantan, K. et al. Dysphagia in head and neck cancer. Cancer Treat. Rev. 35, 724–732 (2009).

    Article  PubMed  Google Scholar 

  11. Pow, E. H. et al. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 66, 981–991 (2006).

    Article  PubMed  Google Scholar 

  12. Sultanem, K. et al. Three-dimensional intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: the University of California-San Francisco experience. Int. J. Radiat. Oncol. Biol. Phys. 48, 711–722 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Harari, P. M. Beware the swing and a miss: baseball precautions for conformal radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 70, 657–659 (2008).

    Article  PubMed  Google Scholar 

  14. Cannon, D. M. & Lee, N. Y. Recurrence in region of spared parotid gland after definitive intensity-modulated radiotherapy for head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 660–665 (2008).

    Article  PubMed  Google Scholar 

  15. Chao, K. S., Wippold, F. J., Ozyigit, G., Tran, B. N. & Dempsey, J. F. Determination and delineation of nodal target volumes for head-and-neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT. Int. J. Radiat. Oncol. Biol. Phys. 53, 1174–1184 (2002).

    Article  PubMed  Google Scholar 

  16. Eisbruch, A. et al. Recurrences near base of skull after IMRT for head-and-neck cancer: implications for target delineation in high neck and for parotid gland sparing. Int. J. Radiat. Oncol. Biol. Phys. 59, 28–42 (2004).

    Article  PubMed  Google Scholar 

  17. Eisbruch, A., Foote, R. L., O'Sullivan, B., Beitler, J. J. & Vikram, B. Intensity-modulated radiation therapy for head and neck cancer: emphasis on the selection and delineation of the targets. Semin. Radiat. Oncol. 12, 238–249 (2002).

    Article  PubMed  Google Scholar 

  18. Grégoire, V. et al. CT-based delineation of lymph node levels and related CTVs in the node negative neck: AHANCA, EORTC, GORTEC, RTOG consensus guidelines. Radiother. Oncol. 69, 227–236 (2003).

    Article  PubMed  Google Scholar 

  19. Marks, L. B. et al. Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys. 76 (3 Suppl.), S10–S19 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Emami, B. et al. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 21, 109–122 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Dirix, P., Nuyts, S. & Van den Bogaert, W. Radiation-induced xerostomia in patients with head and neck cancer: a literature review. Cancer 107, 2525–2534 (2006).

    Article  PubMed  Google Scholar 

  22. Dirix, P. & Nuyts, S. Evidence-based organ-sparing radiotherapy in head and neck cancer. Lancet Oncol. 11, 85–91 (2010).

    Article  PubMed  Google Scholar 

  23. Eisbruch, A. et al. Xerostomia and its predictors following parotid-sparing irradiation of head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 50, 695–704 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Eisbruch, A. et al. Parotid gland sparing in patients undergoing bilateral head and neck irradiation: techniques and early results. Int. J. Radiat. Oncol. Biol. Phys. 36, 469–480 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y., Taylor, J. M., Ten Haken, R. K. & Eisbruch, A. The impact of dose on parotid salivary recovery in head and neck cancer patients treated with radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 67, 660–669 (2007).

    Article  PubMed  Google Scholar 

  26. Chao, K. S. et al. A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: initial results. Int. J. Radiat. Oncol. Biol. Phys. 49, 907–916 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Henson, B. S., Inglehart, M. R., Eisbruch, A. & Ship, J. A. Preserved salivary output and xerostomia-related quality of life in head and neck cancer patients receiving parotid-sparing radiotherapy. Oral Oncol. 37, 84–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Maes, A. et al. Preservation of parotid function with uncomplicated conformal radiotherapy. Radiother. Oncol. 63, 203–211 (2002).

    Article  PubMed  Google Scholar 

  29. Münter, M. W. et al. Evaluation of salivary gland function after treatment of head-and-neck tumors with intensity-modulated radiotherapy by quantitative pertechnetate scintigraphy. Int. J. Radiat. Oncol. Biol. Phys. 58, 175–184 (2004).

    Article  PubMed  Google Scholar 

  30. Parliament, M. B. et al. Preservation of oral health-related quality of life and salivary flow rates after inverse-planned intensity-modulated radiotherapy (IMRT) for head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 58, 663–673 (2004).

    Article  PubMed  Google Scholar 

  31. Saarilahti, K. et al. Intensity modulated radiotherapy for head and neck cancer: evidence for preserved salivary gland function. Radiother. Oncol. 74, 251–258 (2005).

    Article  PubMed  Google Scholar 

  32. Blanco, A. I. et al. Dose-volume modeling of salivary function in patients with head-and-neck cancer receiving radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 62, 1055–1069 (2005).

    Article  PubMed  Google Scholar 

  33. Scrimger, R. et al. Correlation between saliva production and quality of life measurements in head and neck cancer patients treated with intensity-modulated radiotherapy. Am. J. Clin. Oncol. 30, 271–277 (2007).

    Article  PubMed  Google Scholar 

  34. Eisbruch, A. et al. Multi-institutional trial of accelerated hypofractionated intensity-modulated radiation therapy for early-stage oropharyngeal cancer (RTOG 00–22). Int. J. Radiat. Oncol. Biol. Phys. 76, 1333–1338 (2010).

    Article  PubMed  Google Scholar 

  35. Eisbruch, A., Ten Haken, R. K., Kim, H. M., Marsh, L. H. & Ship, J. A. Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 45, 577–587 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, N. et al. Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the USCF experience. Int. J. Radiat. Oncol. Biol. Phys. 53, 12–22 (2002).

    Article  PubMed  Google Scholar 

  37. Kam, M. K. et al. Treatment of nasopharyngeal carcinoma with intensity-modulated radiotherapy: the Hong Kong experience. Int. J. Radiat. Oncol. Biol. Phys. 60, 1440–1450 (2004).

    Article  PubMed  Google Scholar 

  38. Wu, S., Xie, C. Y., Jin, X. & Zhang, P. Simultaneous modulated accelerated radiation therapy in the treatment of nasopharyngeal cancer: a local center's experience. Int. J. Radiat. Oncol. Biol. Phys. 66 (Suppl. 1), S40–S46 (2006).

    Article  Google Scholar 

  39. Wolden, S. L. et al. Intensity-modulated radiation therapy (IMRT) for nasopharyngeal cancer: update of the Memorial Sloan-Kettering experience. Int. J. Radiat. Oncol. Biol. Phys. 64, 57–62 (2006).

    Article  PubMed  Google Scholar 

  40. Lee, N. et al. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J. Clin. Oncol. 27, 3684–3690 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tham, I. W. et al. Treatment of nasopharyngeal carcinoma using intensity-modulated radiotherapy-the national cancer centre singapore experience. Int. J. Radiat. Oncol. Biol. Phys. 75, 1481–1486 (2009).

    Article  PubMed  Google Scholar 

  42. Lin, S. et al. Nasopharyngeal carcinoma treated with reduced-volume intensity-modulated radiation therapy: report on the 3-year outcome of a prospective series. Int. J. Radiat. Oncol. Biol. Phys. 75, 1071–1078 (2009).

    Article  PubMed  Google Scholar 

  43. Lin, S., Lu, J. J., Han, L., Chen, Q. & Pan, J. Sequential chemotherapy and intensity-modulated radiation therapy in the management of locoregionally advanced nasopharyngeal carcinoma: experience of 370 consecutive cases. BMC Cancer 10, 39 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pow, E. H. et al. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 66, 981–991 (2006).

    Article  PubMed  Google Scholar 

  45. Kam, M. K. et al. Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients. J. Clin. Oncol. 25, 4873–4879 (2007).

    Article  PubMed  Google Scholar 

  46. Braam, P. M., Terhaard, C. H., Roesink, J. M. & Raaijmakers, C. P. Intensity-modulated radiotherapy significantly reduces xerostomia compared with conventional radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 66, 975–980 (2006).

    Article  PubMed  Google Scholar 

  47. Nutting, C. M. et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 12, 127–136 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Feng, M. et al. Predictive factors of local-regional recurrences following parotid sparing intensity modulated or 3D conformal radiotherapy for head and neck cancer. Radiother. Oncol. 77, 32–38 (2005).

    Article  PubMed  Google Scholar 

  49. Daly, M. E. et al. Evaluation of patterns of failure and subjective salivary function in patients treated with intensity modulated radiotherapy for head and neck squamous cell carcinoma. Head Neck 29, 211–220 (2007).

    Article  PubMed  Google Scholar 

  50. David, M. B. & Eisbruch, A. Delineating neck targets for intensity-modulated radiation therapy of head and neck cancer. What have we learned from marginal recurrences? Front. Radiat. Ther. Oncol. 40, 193–207 (2007).

    Article  PubMed  Google Scholar 

  51. Astreinidou, E., Dehnad, H., Terhaard, C. H. & Raaijmakers, C. P. Level II lymph nodes and radiation-induced xerostomia. Int. J. Radiat. Oncol. Biol. Phys. 58, 124–131 (2004).

    Article  PubMed  Google Scholar 

  52. Grégoire, V., Eisbruch, A., Hamoir, M. & Levendag, P. Proposal for the delineation of the nodal CTV in the node-positive and the post-operative neck. Radiother. Oncol. 79, 15–20 (2006).

    Article  PubMed  Google Scholar 

  53. Chambers, M. S. Intensity-modulated radiotherapy: is xerostomia still prevalent? Curr. Oncol. Rep. 7, 131–136 (2005).

    Article  PubMed  Google Scholar 

  54. Meirovitz, A., Murdoch-Kinch, C. A., Schipper, M., Pan, C. & Eisbruch, A. Grading xerostomia by physicians or by patients after intensity-modulated radiotherapy of head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 66, 445–453 (2006).

    Article  PubMed  Google Scholar 

  55. Eisbruch, A. et al. How should we measure and report radiotherapy-induced xerostomia? Semin. Radiat. Oncol. 13, 226–234 (2003).

    Article  PubMed  Google Scholar 

  56. Jha, N., Seikaly, H., McGaw, T. & Coulter, L. Submandibular salivary gland transfer prevents radiation-induced xerostomia. Int. J. Radiat. Oncol. Biol. Phys. 46, 7–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Saarilahti, K. et al. Sparing of the submandibular glands by intensity modulated radiotherapy in the treatment of head and neck cancer. Radiother. Oncol. 78, 270–275 (2006).

    Article  PubMed  Google Scholar 

  58. Tsujii, H. Quantitative dose-response analysis of salivary function following radiotherapy using sequential RI-sialography. Int. J. Radiat. Oncol. Biol. Phys. 11, 1603–1612 (1985).

    Article  CAS  PubMed  Google Scholar 

  59. Murdoch-Kinch, C. A., Kim, H. M., Vineberg, K. A., Ship, J. A. & Eisbruch, A. Dose-effect relationships for the submandibular glands and implications for their sparing by intensity modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 72, 373–382 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sciubba, J. J. & Goldenberg, D. Oral complications of radiotherapy. Lancet Oncol. 7, 175–183 (2006).

    Article  PubMed  Google Scholar 

  61. Ben-David, M. A. et al. Lack of osteoradionecrosis of the mandible after intensity-modulated radiotherapy for head and neck cancer: likely contributions of both dental care and improved dose distributions. Int. J. Radiat. Oncol. Biol. Phys. 68, 396–402 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Eisbruch, A. et al. Objective assessment of swallowing dysfunction and aspiration after radiation concurrent with chemotherapy for head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 53, 23–28 (2002).

    Article  PubMed  Google Scholar 

  63. Jensen, K., Lambertsen, K. & Grau, C. Late swallowing dysfunction and dysphagia after radiotherapy for pharynx cancer: frequency, intensity and correlation with dose and volume parameters. Radiother. Oncol. 85, 74–82 (2007).

    Article  PubMed  Google Scholar 

  64. Feng, F. Y. et al. Intensity-modulated radiotherapy of head and neck cancer aiming to reduce dysphagia: early-dose effect relationships for the swallowing structures. Int. J. Radiat. Oncol. Biol. Phys. 68, 1289–1298 (2007).

    Article  PubMed  Google Scholar 

  65. Levendag, P. C. et al. Dysphagia disorders in patients with cancer of the oropharynx are significantly affected by the radiation therapy dose to the superior and middle constrictor muscle: a dose-effect relationship. Radiother. Oncol. 85, 64–73 (2007).

    Article  PubMed  Google Scholar 

  66. Teguh, D. N. et al. Treatment techniques and site considerations regarding dysphagia-related quality of life in cancer of the oropharynx and nasopharynx. Int. J. Radiat. Oncol. Biol. Phys. 72, 1119–1127 (2008).

    Article  PubMed  Google Scholar 

  67. Teguh, D. N. et al. Results of fiberoptic endoscopic evaluation of swallowing vs. radiation dose in the swallowing muscles after radiotherapy of cancer in the oropharynx. Radiother. Oncol. 89, 57–64 (2008).

    Article  PubMed  Google Scholar 

  68. Caglar, H. B. et al. Dose to larynx predicts for swallowing complications after intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 72, 1110–1118 (2008).

    Article  PubMed  Google Scholar 

  69. Caudell, J. J. et al. Dosimetric factors associated with long-term dysphagia after radiotherapy for squamous cell carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 76, 403–409 (2010).

    Article  PubMed  Google Scholar 

  70. Dirix, P., Abbeel, S., Vanstraelen, B., Hermans, R. & Nuyts, S. Dysphagia after chemoradiotherapy for head-and-neck squamous cell carcinoma: dose-effect relationships for the swallowing structures. Int. J. Radiat. Oncol. Biol. Phys. 75, 385–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Feng, F. Y. et al. Intensity-modulated chemoradiotherapy aiming to reduce dysphagia in patients with oropharyngeal cancer: clinical and functional results. J. Clin. Oncol. 28, 2732–2738 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Eisbruch, A. et al. Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT? Int. J. Radiat. Oncol. Biol. Phys. 60, 1425–1439 (2004).

    Article  PubMed  Google Scholar 

  73. Li, B. et al. Clinical-dosimetric analysis of measures of dysphagia including gastrostomy-tube dependence among head and neck cancer patients treated definitively by intensity-modulated radiotherapy with concurrent chemotherapy. Radiat. Oncol. 4, 52 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bonner, J. A. et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 11, 21–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Studer, G. et al. Grade 3/4 dermatitis in head and neck cancer patients treated with concurrent cetuximab and IMRT. Int. J. Radiat. Oncol. Biol. Phys. doi:10.1016/j.ijrobp.2010.05.018.

  76. Marks, J. E. & Wong, J. The risk of cerebral radiation necrosis in relation to dose, time, and fractionation. Prog. Exp. Tumor Res. 29, 210–218 (1985).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, A. W. et al. Clinical diagnosis of late temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma. Cancer 61, 1535–1542 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Leung, S. F., Kreel, L. & Tsao, S. Y. Asymptomatic temporal lobe injury after radiotherapy for nasopharyngeal carcinoma: incidence and determinants. Br. J. Radiol. 65, 710–714 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, A. W. et al. Effect of time, dose, and fractionation on temporal lobe necrosis following radiotherapy for nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 40, 35–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Ng, W. T. et al. Clinical outcomes and patterns of failure after intensity-modulated radiotherapy for nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 79, 420–428 (2011).

    Article  PubMed  Google Scholar 

  81. Lai, S. Z. et al. How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? Int. J. Radiat. Oncol. Biol. Phys. 80, 661–668 (2011).

    Article  PubMed  Google Scholar 

  82. Hunt, M. A. et al. Treatment planning and delivery of intensity-modulated radiation therapy for primary nasopharynx cancer. Int. J. Radiat. Oncol. Biol. Phys. 49, 623–632 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Ho, W. K. et al. Long-term sensorineural hearing deficit following radiotherapy in patients suffering from nasopharyngeal carcinoma: a prospective study. Head Neck 21, 547–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Kwong, D. L. et al. Sensorineural hearing loss in patients treated for nasopharyngeal carcinoma: a prospective study of the effect of radiation and cisplatin treatment. Int. J. Radiat. Oncol. Biol. Phys. 36, 281–289 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Raaijmakers, E. & Engelen, A. M. Is sensori-neural hearing-loss a possible side effect of nasopharyngeal and parotid irradiation? A systematic review of the literature. Radiother. Oncol. 65, 1–7 (2002).

    Article  PubMed  Google Scholar 

  86. Yeh, S. A., Tang, Y., Lui, C. C., Huang, Y. J. & Huang, E. Y. Treatment outcomes and late complications of 849 patients with nasopharyngeal carcinoma treated with radiotherapy alone. Int. J. Radiat. Oncol. Biol. Phys. 62, 672–679 (2005).

    Article  PubMed  Google Scholar 

  87. Hitchcock, Y. J., Tward, J. D., Szabo, A., Bentz, B. G. & Shrieve, D. C. Relative contributions of radiation and cisplatin-based chemotherapy to sensorineural hearing loss in head-and-neck cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 73, 779–788 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Pan, C. C. et al. Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 61, 1393–1402 (2005).

    Article  PubMed  Google Scholar 

  89. Merchant, T. E. et al. Early neuro-otologic effects of three-dimensional irradiation in children with primary brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 58, 1194–1207 (2004).

    Article  PubMed  Google Scholar 

  90. Johannesen, T. B., Rasmussen, K., Winther, F. Ø., Halvorsen, U. & Lote, K. Late radiation effects on hearing, vestibular function, and taste in brain tumor patients. Int. J. Radiat. Oncol. Biol. Phys. 53, 86–90 (2002).

    Article  PubMed  Google Scholar 

  91. Grau, C., Møller, K., Overgaard, M., Overgaard, J. & Elbrønd, O. Sensorineural hearing loss in patients treated with irradiation for nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 21, 723–728 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Oh, Y. T., Kim, C. H., Choi, J. H., Kang, S. H. & Chun, M. Sensory neural hearing loss after concurrent cisplatin and radiation therapy for nasopharyngeal carcinoma. Radiother. Oncol. 72, 79–82 (2004).

    Article  PubMed  Google Scholar 

  93. Honoré, H. B., Bentzen, S. M., Møller, K. & Grau, C. Sensori-neural hearing loss after radiotherapy for nasopharyngeal carcinoma: individualized risk estimation. Radiother. Oncol. 65, 9–16 (2002).

    Article  PubMed  Google Scholar 

  94. Anteunis, L. J. et al. A prospective longitudinal study on radiation-induced hearing loss. Am. J. Surg. 168, 408–411 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Herrmann, F., Dörr, W., Müller, R. & Herrmann, T. A prospective study on radiation-induced changes in hearing function. Int. J. Radiat. Oncol. Biol. Phys. 65, 1338–1344 (2006).

    Article  PubMed  Google Scholar 

  96. Chen, W. C. et al. Sensorineural hearing loss in combined modality treatment of nasopharyngeal carcinoma. Cancer 106, 820–829 (2006).

    Article  PubMed  Google Scholar 

  97. Huang, E. et al. Intensity-modulated radiation therapy for pediatric medulloblastoma: early report on the reduction of ototoxicity. Int. J. Radiat. Oncol. Biol. Phys. 52, 599–605 (2002).

    Article  PubMed  Google Scholar 

  98. Pacholke, H. D., Amdur, R. J., Schmalfuss, I. M., Louis, D. & Mendenhall, W. M. Contouring the middle and inner ear on radiotherapy planning scans. Am. J. Clin. Oncol. 28, 143–147 (2005).

    Article  PubMed  Google Scholar 

  99. Lee, A. W. et al. Retrospective analysis of nasopharyngeal carcinoma treated during 1976–1985: late complications following megavoltage irradiation. Br. J. Radiol. 65, 918–928 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Qin, D. X. et al. Analysis of 1379 patients with nasopharyngeal carcinoma treated by radiation. Cancer 61, 1117–1124 (1988).

    Article  CAS  PubMed  Google Scholar 

  101. Kong, L. et al. Radiation-induced cranial nerve palsy: a cross-sectional study of nasopharyngeal cancer patients after definitive radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 79, 1421–1427 (2011).

    Article  PubMed  Google Scholar 

  102. van den Bergh, A. C. et al. Lack of radiation optic neuropathy in 72 patients treated for pituitary adenoma. J. Neuroophthalmol. 24, 200–205 (2004).

    Article  PubMed  Google Scholar 

  103. Borruat, F.-X., Schatz, N. J., Glaser, J. S., Matos, L. & Feuer, W. Radiation optic neuropathy: report of cases, role of hyperbaric oxygen therapy, and literature review. Neuroophthalmology 16, 255–266 (1996).

    Article  Google Scholar 

  104. Parsons, J. T. et al. The effects of irradiation on the eye and optic nerve. Int. J. Radiat. Oncol. Biol. Phys. 9, 609–622 (1983).

    Article  CAS  PubMed  Google Scholar 

  105. Mayo, C. et al. Radiation dose-volume effects of optic nerves and chiasm. Int. J. Radiat. Oncol. Biol. Phys. 76 (3 Suppl.), S28–S35 (2010).

    Article  PubMed  Google Scholar 

  106. Lessell, S. Friendly fire: neurogenic visual loss from radiation therapy. J. Neuroophthalmol. 24, 243–250 (2004).

    Article  PubMed  Google Scholar 

  107. Jiang, G. L. et al. Radiation-induced injury to the visual pathway. Radiother. Oncol. 30, 17–25 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Mock, U., Georg, D., Bogner, J., Auberger, T. & Pötter, R. Treatment planning comparison of conventional, 3D conformal, and intensity-modulated photon (IMRT) and proton therapy for paranasal sinus carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 58, 147–154 (2004).

    Article  PubMed  Google Scholar 

  109. Kam, M. K., Chau, R. M., Suen, J., Choi, P. H. & Teo, P. M. Intensity-modulated radiotherapy in nasopharyngeal carcinoma: Dosimetric advantage over conventional plans and feasibility of dose escalation. Int. J. Radiat. Oncol. Biol. Phys. 56, 145–157 (2003).

    Article  PubMed  Google Scholar 

  110. Madani, I., Bonte, K., Vakaet, L., Boterberg, T. & De Neve, W. Intensity-modulated radiotherapy for sinonasal tumors: Ghent University Hospital update. Int. J. Radiat. Oncol. Biol. Phys. 73, 424–432 (2009).

    Article  PubMed  Google Scholar 

  111. Dirix, P., Vanstraelen, B., Jorissen, M., Vander Poorten, V. & Nuyts, S. Intensity-modulated radiotherapy for sinonasal cancer: improved outcome compared to conventional radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 78, 998–1004 (2010).

    Article  PubMed  Google Scholar 

  112. Hoppe, B. S. et al. Postoperative intensity-modulated radiation therapy for cancers of the paranasal sinuses, nasal cavity, and lacrimal glands: technique, early outcomes, and toxicity. Head Neck 30, 925–932 (2008).

    Article  PubMed  Google Scholar 

  113. Powell, S., Cooke, J. & Parsons, C. Radiation-induced brachial plexus injury: follow-up of two different fractionation schedules. Radiother. Oncol. 18, 213–220 (1990).

    Article  CAS  PubMed  Google Scholar 

  114. Bowen, B. C., Verma, A., Brandon, A. H. & Fiedler, J. A. Radiation-induced brachial plexopathy: MR and clinical findings. AJNR Am. J. Neuroradiol. 17, 1932–1936 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Johansson, S., Svensson, H. & Denekamp, J. Dose response and latency for radiation-induced fibrosis, edema, and neuropathy in breast cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 52, 1207–1219 (2002).

    Article  PubMed  Google Scholar 

  116. McGary, J. E., Grant, W. H., Teh, B. S., Paulino, E. & Butler, E. Dosimetric evaluation of the brachial plexus in the treatment of head and neck cancer [abstract 2473]. Int. J. Radiat. Oncol. Biol. Phys. 69, S464–S465 (2007).

    Article  Google Scholar 

  117. Gosk, J., Rutowski, R., Reichert, P. & Rabczy´nski, J. Radiation-induced brachial plexus neuropathy—aetiopathogenesis, risk factors, differential diagnostics, symptoms and treatment. Folia Neuropathol. 45, 26–30 (2007).

    PubMed  Google Scholar 

  118. Hall, W. H. et al. Development and validation of a standardized method for contouring the brachial plexus: preliminary dosimetric analysis among patients treated with IMRT for head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 72, 1362–1367 (2008).

    Article  PubMed  Google Scholar 

  119. Truong, M. T. et al. Brachial plexus contouring with CT and MR imaging in radiation therapy planning for head and neck cancer. Radiographics 30, 1095–1103 (2010).

    Article  PubMed  Google Scholar 

  120. Platteaux, N., Dirix, P., Hermans, R. & Nuyts, S. Brachial plexopathy after chemoradiotherapy for head and neck squamous cell carcinoma. Strahlenther. Onkol. 186, 517–520 (2010).

    Article  PubMed  Google Scholar 

  121. Mendenhall, W. M. Mandibular osteoradionecrosis. J. Clin. Oncol. 22, 4867–4868 (2004).

    Article  PubMed  Google Scholar 

  122. Sciubba, J. J. & Goldenberg, D. Oral complications of radiotherapy. Lancet Oncol. 7, 175–183 (2006).

    Article  PubMed  Google Scholar 

  123. Parliament, M. et al. Implications of radiation dosimetry of the mandible in patients with carcinomas of the oral cavity and nasopharynx treated with intensity modulated radiation therapy. Int. J. Oral Maxillofac. Surg. 34, 114–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Kielbassa, A. M., Hinkelbein, W., Hellwig, E. & Meyer-Lückel, H. Radiation-related damage to dentition. Lancet Oncol. 7, 326–335 (2006).

    Article  PubMed  Google Scholar 

  125. Studer, G. et al. Osteoradionecrosis of the mandible: minimized risk profile following intensity-modulated radiation therapy (IMRT). Strahlenther. Onkol. 182, 283–288 (2006).

    Article  PubMed  Google Scholar 

  126. de Arruda, F. F. et al. Intensity-modulated radiation therapy for the treatment of oropharyngeal carcinoma: the Memorial Sloan–Kettering Cancer Center experience. Int. J. Radiat. Oncol. Biol. Phys. 64, 363–373 (2006).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research of data, the discussion of content and the revision of the manuscript. X. Wang and A. Eisbruch contributed significantly to the writing of the original submission.

Corresponding author

Correspondence to ChaoSu Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Hu, C. & Eisbruch, A. Organ-sparing radiation therapy for head and neck cancer. Nat Rev Clin Oncol 8, 639–648 (2011). https://doi.org/10.1038/nrclinonc.2011.106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.106

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer