Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rethinking the metastatic cascade as a therapeutic target

Abstract

Metastasis is the leading cause of cancer death. The metastatic cascade is a complex yet inefficient process that we have only begun to understand in recent years. Several of the early steps of this cascade are not readily targetable in the clinic. Past therapeutic developmental strategies have not distinguished between micrometastases and overt metastases. This lack of understanding is apparent in therapies that have been developed for patients with metastatic disease that are not efficacious in patients with micrometastatic disease; that is, in the adjuvant setting. Moreover, drugs that target distant metastases often do not work in the adjuvant setting. This Review will discuss our current understanding of the metastatic cascade as it relates to therapy, emerging therapeutic targets in the metastatic process, and how novel antimetastatic therapies might be developed for clinical use.

Key Points

  • Targeting the right steps of the metastatic cascade is vital for successful clinical development in cancer

  • Metastatic colonization is the pivotal transition between micrometastases and macrometastases; it constitutes the major target in the metastatic cascade

  • Targetable processes and cells of the metastatic cascade include: the tumor microenvironment, the genetic background, angiogenesis, the immune axis, dormancy, and cancer-stem cells

  • Metastases inhibitor trials should go beyond testing efficacy and safety, and include monitoring micrometastatic burden as well as assessing the ideal duration for the suppression of a specific target

  • The basic assumption that what works in macrometastases will work for micrometastases needs to be revisited

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Giantonio, B. J. et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 25, 1539–1544 (2007).

    CAS  PubMed  Google Scholar 

  2. Allegra, C. J. et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J. Clin. Oncol. 29, 11–16 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Van Cutsem, E., Lambrechts, D., Prenen, H., Jain, R. K. & Carmeliet, P. Lessons from the adjuvant bevacizumab trial on colon cancer: what next? J. Clin. Oncol. 29, 1–4 (2011).

    CAS  PubMed  Google Scholar 

  4. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  5. Kerbel, R. S. Tumor angiogenesis: past, present and the near future. Carcinogenesis 21, 505–515 (2000).

    CAS  PubMed  Google Scholar 

  6. Leenders, W. P., Kusters, B. & de Waal, R. M. Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. Endothelium 9, 83–87 (2002).

    PubMed  Google Scholar 

  7. Van Cutsem, E. et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360, 1408–1417 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Ebos, J. M. & Kerbel, R. S. Antiangiogenic therapy: impact on invasion, disease progression and metastasis. Nat. Rev. Clin. Oncol. 8, 210–221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Berger, J. C., Vander Griend, D. J., Robinson, V. L., Hickson, J. A. & Rinker-Schaeffer, C. W. Metastasis suppressor genes: from gene identification to protein function and regulation. Cancer Biol. Ther. 4, 805–812 (2005).

    CAS  PubMed  Google Scholar 

  10. Ma, L. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat. Biotechnol. 28, 341–347 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Palmieri, D. et al. Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin. Cancer Res. 15, 6148–6157 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chambers, A. F., MacDonald, I. C., Schmidt, E. E., Morris, V. L. & Groom, A. C. Clinical targets for anti-metastasis therapy. Adv. Cancer Res. 79, 91–121 (2000).

    CAS  PubMed  Google Scholar 

  13. Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006).

    CAS  PubMed  Google Scholar 

  14. Weiss, L., Ward, P. M. & Holmes, J. C. Liver-to-lung traffic of cancer cells. Int. J. Cancer 32, 79–83 (1983).

    CAS  PubMed  Google Scholar 

  15. Weiss, L., Voit, A. & Lane, W. W. Metastatic patterns in patients with carcinomas of the lower esophagus and upper rectum. Invasion Metastasis 4, 47–60 (1984).

    CAS  PubMed  Google Scholar 

  16. Weiss, L. et al. Haematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies. J. Pathol. 150, 195–203 (1986).

    CAS  PubMed  Google Scholar 

  17. Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    CAS  PubMed  Google Scholar 

  18. Palmieri, D. et al. Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J. Natl Cancer Inst. 97, 632–642 (2005).

    CAS  PubMed  Google Scholar 

  19. Nguyen, D. X., Bos, P. D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–284 (2009).

    CAS  PubMed  Google Scholar 

  20. Taylor, J. L. et al. New paradigms for the function of JNKK1/MKK4 in controlling growth of disseminated cancer cells. Cancer Lett. 272, 12–22 (2008).

    CAS  PubMed  Google Scholar 

  21. Guise, T. A. et al. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin. Cancer Res. 12, 6213s–6216s (2006).

    CAS  PubMed  Google Scholar 

  22. Mundy, G. R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584–593 (2002).

    CAS  PubMed  Google Scholar 

  23. Gnant, M. et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N. Engl. J. Med. 360, 679–691 (2009).

    CAS  PubMed  Google Scholar 

  24. Coleman, R. E. et al. Adjuvant treatment with zoledronic acid in stage II/III breast cancer. The AZURE Trial (BIG 01/04) [abstract S4-5]. 70 (24 Suppl.), 86s (2010).

  25. Fizazi, K. et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J. Clin. Oncol. 27, 1564–1571 (2009).

    CAS  PubMed  Google Scholar 

  26. Lipton, A. et al. Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J. Clin. Oncol. 25, 4431–4437 (2007).

    CAS  PubMed  Google Scholar 

  27. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  28. Sossey-Alaoui, K. et al. Down-regulation of WAVE3, a metastasis promoter gene, inhibits invasion and metastasis of breast cancer cells. Am. J. Pathol. 170, 2112–2121 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Steeg, P. S., Bevilacqua, G., Pozzatti, R., Liotta, L. A. & Sobel, M. E. Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res. 48, 6550–6554 (1988).

    CAS  PubMed  Google Scholar 

  30. Smith, S. C. & Theodorescu, D. Learning therapeutic lessons from metastasis suppressor proteins. Nat. Rev. Cancer 9, 253–264 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Marshall, J. C., Lee, J. H. & Steeg, P. S. Clinical–translational strategies for the elevation of Nm23-H1 metastasis suppressor gene expression. Mol. Cell Biochem. 329, 115–120 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  33. Titus, B. et al. Endothelin axis is a target of the lung metastasis suppressor gene RhoGDI2. Cancer Res. 65, 7320–7327 (2005).

    CAS  PubMed  Google Scholar 

  34. Said, N., Smith, S., Sanchez-Carbayo, M. & Theodorescu, D. Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer. J. Clin. Invest. 121, 132–147 (2011).

    CAS  PubMed  Google Scholar 

  35. Dykxhoorn, D. M. MicroRNAs and metastasis: little RNAs go a long way. Cancer Res. 70, 6401–6406 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gumireddy, K. et al. In vivo selection for metastasis promoting genes in the mouse. Proc. Natl Acad. Sci. USA 104, 6696–6701 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Armeanu-Ebinger, S. et al. Differential expression of invasion promoting genes in childhood rhabdomyosarcoma. Int. J. Oncol. 38, 993–1000 (2011).

    CAS  PubMed  Google Scholar 

  38. Folkman, J. & Klagsbrun, M. Angiogenic factors. Science 235, 442–447 (1987).

    CAS  PubMed  Google Scholar 

  39. Bishop, G. A. & Hostager, B. S. Molecular mechanisms of CD40 signaling. Arch. Immunol. Ther. Exp. (Warsz.) 49, 129–137 (2001).

    CAS  Google Scholar 

  40. Conway, E. M., Collen, D. & Carmeliet, P. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49, 507–521 (2001).

    CAS  PubMed  Google Scholar 

  41. Gale, N. W. & Yancopoulos, G. D. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev. 13, 1055–1066 (1999).

    CAS  PubMed  Google Scholar 

  42. Nelson, A. R., Fingleton, B., Rothenberg, M. L. & Matrisian, L. M. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol. 18, 1135–1149 (2000).

    CAS  PubMed  Google Scholar 

  43. Carmeliet, P. Fibroblast growth factor-1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? Circ. Res. 87, 176–178 (2000).

    CAS  PubMed  Google Scholar 

  44. Lindahl, P. et al. Role of platelet-derived growth factors in angiogenesis and alveogenesis. Curr. Top. Pathol. 93, 27–33 (1999).

    CAS  PubMed  Google Scholar 

  45. Loges, S., Mazzone, M., Hohensinner, P. & Carmeliet, P. Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15, 167–170 (2009).

    CAS  PubMed  Google Scholar 

  46. Ellis, L. M. Mechanisms of action of bevacizumab as a component of therapy for metastatic colorectal cancer. Semin. Oncol. 33, S1–S7 (2006).

    CAS  PubMed  Google Scholar 

  47. Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pàez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. Schneider, B. P. & Sledge, G. W. Jr. Anti-VEGF therapy as adjuvant therapy: clouds on the horizon? Breast Cancer Res. 11, 303 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Kim, D. W., Lu, B. & Hallahan, D. E. Receptor tyrosine kinase inhibitors as anti-angiogenic agents. Curr. Opin. Investig. Drugs 5, 597–604 (2004).

    CAS  PubMed  Google Scholar 

  51. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    CAS  PubMed  Google Scholar 

  52. Karin, M., Yamamoto, Y. & Wang, Q. M. The IKK NF-κB system: a treasure trove for drug development. Nat. Rev. Drug Discov. 3, 17–26 (2004).

    CAS  PubMed  Google Scholar 

  53. Rosenberg, S. A. et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271, 907–913 (1994).

    CAS  PubMed  Google Scholar 

  54. Coppin, C. et al. Immunotherapy for advanced renal cell cancer. Cochrane Database Syst. Rev. (1):CD001425 (2005).

  55. Liu, B., DeFilippo, A. M. & Li, Z. Overcoming immune tolerance to cancer by heat shock protein vaccines. Mol. Cancer Ther. 1, 1147–1151 (2002).

    CAS  PubMed  Google Scholar 

  56. Seavey, M. M. et al. A novel human Her-2/neu chimeric molecule expressed by Listeria monocytogenes can elicit potent HLA-A2 restricted CD8-positive T cell responses and impact the growth and spread of Her-2/neu-positive breast tumors. Clin. Cancer Res. 15, 924–932 (2009).

    CAS  PubMed  Google Scholar 

  57. Holmes, J. P. et al. Results of the first phase I clinical trial of the novel II-key hybrid preventive HER-2/neu peptide (AE37) vaccine. J. Clin. Oncol. 26, 3426–3433 (2008).

    CAS  PubMed  Google Scholar 

  58. Pichichero, M. E. Improving vaccine delivery using novel adjuvant systems. Hum. Vaccin. 4, 262–270 (2008).

    CAS  PubMed  Google Scholar 

  59. Hodi, F. S. Cytotoxic T-lymphocyte-associated antigen-4. Clin. Cancer Res. 13, 5238–5242 (2007).

    CAS  PubMed  Google Scholar 

  60. Demicheli, R., Abbattista, A., Miceli, R., Valagussa, P. & Bonadonna, G. Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res. Treat. 41, 177–185 (1996).

    CAS  PubMed  Google Scholar 

  61. Karrison, T. G., Ferguson, D. J. & Meier, P. Dormancy of mammary carcinoma after mastectomy. J. Natl Cancer Inst. 91, 80–85 (1999).

    CAS  PubMed  Google Scholar 

  62. Vessella, R. L., Pantel, K. & Mohla, S. Tumor cell dormancy: an NCI workshop report. Cancer Biol. Ther. 6, 1496–1504 (2007).

    PubMed  Google Scholar 

  63. Stearns, A. T., Hole, D., George, W. D. & Kingsmore, D. B. Comparison of breast cancer mortality rates with those of ovarian and colorectal carcinoma. Br. J. Surg. 94, 957–965 (2007).

    CAS  PubMed  Google Scholar 

  64. Saphner, T., Tormey, D. C. & Gray, R. Annual hazard rates of recurrence for breast cancer after primary therapy. J. Clin. Oncol. 14, 2738–2746 (1996).

    CAS  PubMed  Google Scholar 

  65. Willis, L. et al. Breast cancer dormancy can be maintained by small numbers of micrometastases. Cancer Res. 70, 4310–4317 (2010).

    CAS  PubMed  Google Scholar 

  66. Townson, J. L. & Chambers, A. F. Dormancy of solitary metastatic cells. Cell Cycle 5, 1744–1750 (2006).

    CAS  PubMed  Google Scholar 

  67. Naumov, G. N. et al. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat. 82, 199–206 (2003).

    CAS  PubMed  Google Scholar 

  68. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    CAS  PubMed  Google Scholar 

  69. Aguirre-Ghiso, J. A., Estrada, Y., Liu, D. & Ossowski, L. ERK (MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38 (SAPK). Cancer Res. 63, 1684–1695 (2003).

    CAS  PubMed  Google Scholar 

  70. Aguirre-Ghiso, J. A., Ossowski, L. & Rosenbaum, S. K. Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res. 64, 7336–7345 (2004).

    CAS  PubMed  Google Scholar 

  71. Barkan, D. et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68, 6241–6250 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Goss, P. E. & Chambers, A. F. Does tumour dormancy offer a therapeutic target? Nat. Rev. Cancer 10, 871–877 (2010).

    CAS  PubMed  Google Scholar 

  73. Maitland, N. J. & Collins, A. T. Cancer stem cells—a therapeutic target? Curr. Opin. Mol. Ther. 12, 662–673 (2010).

    CAS  PubMed  Google Scholar 

  74. Patel, S. A., Ndabahaliye, A., Lim, P. K., Milton, R. & Rameshwar, P. Challenges in the development of future treatments for breast cancer stem cells. Breast Cancer (London) 2, 1–11 (2010).

    Google Scholar 

  75. Takebe, N., Harris, P. J., Warren, R. Q. & Ivy, S. P. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 8, 97–106 (2011).

    CAS  PubMed  Google Scholar 

  76. Von Hoff, D. D. et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med. 361, 1164–1172 (2009).

    CAS  PubMed  Google Scholar 

  77. Rudin, C. M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  79. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  80. US National Library of Medicine. ClinicalTrials.gov [online], (2009).

  81. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  82. US National Library of Medicine. ClinicalTrials.gov [online], (2008).

  83. Miller, K. D. et al. A randomized phase II pilot trial of adjuvant marimastat in patients with early-stage breast cancer. Ann. Oncol. 13, 1220–1224 (2002).

    CAS  PubMed  Google Scholar 

  84. Miller, K. D. et al. A randomized phase II feasibility trial of BMS-275291 in patients with early stage breast cancer. Clin. Cancer Res. 10, 1971–1975 (2004).

    CAS  PubMed  Google Scholar 

  85. Pegram, M. D., Pietras, R., Bajamonde, A., Klein, P. & Fyfe, G. Targeted therapy: wave of the future. J. Clin. Oncol. 23, 1776–1781 (2005).

    CAS  PubMed  Google Scholar 

  86. Kobayashi, H. et al. Dynamic micro-magnetic resonance imaging of liver micrometastasis in mice with a novel liver macromolecular magnetic resonance contrast agent DAB-Am64-(1B4M-Gd)64 . Cancer Res. 61, 4966–4970 (2001).

    CAS  PubMed  Google Scholar 

  87. Branca, R. T. et al. Molecular MRI for sensitive and specific detection of lung metastases. Proc. Natl Acad. Sci. USA 107, 3693–3697 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Maitland, M. L., Hudoba, C., Snider, K. L. & Ratain, M. J. Analysis of the yield of phase II combination therapy trials in medical oncology. Clin. Cancer Res. 16, 5296–5302 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Pantel, K., Alix-Panabieres, C. & Riethdorf, S. Cancer micrometastases. Nat. Rev. Clin. Oncol. 6, 339–351 (2009).

    CAS  PubMed  Google Scholar 

  90. Pantel, K. & Riethdorf, S. Pathology: are circulating tumor cells predictive of overall survival? Nat. Rev. Clin. Oncol. 6, 190–191 (2009).

    PubMed  Google Scholar 

  91. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    CAS  PubMed  Google Scholar 

  92. Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004).

    PubMed  Google Scholar 

  93. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  94. De Gramont, A. et al. AVANT: Results from randomized, three-arm multinational phase III study to investigate bevacizumab with either XELOX or FOLFOX4 versus FOLFOX4 alone as adjuvant treatment for colon cancer [abstract]. J. Clin. Oncol. 29 (Suppl. 4), a362 (2011).

    Google Scholar 

  95. Goss, P. E. et al. Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J. Natl Cancer Inst. 97, 1262–1271 (2005).

    CAS  PubMed  Google Scholar 

  96. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  97. US National Library of Medicine. ClinicalTrials.gov [online], (2009).

  98. Ciuleanu, T. et al. Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: a randomised, double-blind, phase 3 study. Lancet 374, 1432–1440 (2009).

    CAS  PubMed  Google Scholar 

  99. Sargent, D. J. & Hayes, D. F. Assessing the measure of a new drug: is survival the only thing that matters? J. Clin. Oncol. 26, 1922–1923 (2008).

    PubMed  Google Scholar 

  100. Cortazar, P., Johnson, R., Justice, R. et al. Adjuvant breast cancer: FDA approval overview [abstract]. J. Clin. Oncol. 27 (Suppl.), e11529 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L. A. Mina and G. W. Sledge Jr contributed equally to researching the data for this article, discussion of the content and writing of the manuscript. Both authors also reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Lida A. Mina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mina, L., Sledge, G. Rethinking the metastatic cascade as a therapeutic target. Nat Rev Clin Oncol 8, 325–332 (2011). https://doi.org/10.1038/nrclinonc.2011.59

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.59

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer