Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An update on PARP inhibitors—moving to the adjuvant setting

Key Points

  • The poly(ADP-ribose) polymerases (PARPs) are a large family of multifunctional enzymes that have a role in the repair of single-strand breaks in DNA

  • BRCA1 or BRCA2 mutation, resulting in a lack of homologous recombination, sensitizes cells to inhibition of PARP activity, which in turn leads to chromosomal instability, cell-cycle arrest, and subsequent apoptosis

  • The most-compelling evidence of the efficacy of PARP inhibitors in the treatment of cancer comes from studies that involved patients with BRCA1 or BRCA2 mutations

  • Approximately 70% of BRCA1-mutant and 20% of BRCA2-mutant breast tumours present as triple-negative breast cancer, a disease with poor prognosis; no targeted treatments have been approved specifically in this setting

  • In the adjuvant setting, a positive therapeutic effect of PARP inhibitors is anticipated in the well-defined population of patients with high-risk BRCA-mutated primary breast cancer

Abstract

Inhibition of poly(ADP-ribose) polymerase (PARP) enzymes is a potential synthetic lethal therapeutic strategy in cancers harbouring specific DNA-repair defects, including those arising in carriers of BRCA1 or BRCA2 mutations. Since the development of first-generation PARP inhibitors more than a decade ago, numerous clinical trials have been performed to validate their safety and efficacy, bringing us to the stage at which adjuvant therapy with PARP inhibitors is now being considered as a viable treatment option for patients with breast cancer. Nevertheless, the available data do not provide clear proof that these drugs are efficacious in the setting of metastatic disease. Advancement of a therapy to the neoadjuvant and adjuvant settings without such evidence is exceptional, but seems reasonable in the case of PARP inhibitors because the target population that might benefit from this class of drugs is small and well defined. This Review describes the evolution of PARP inhibitors from bench to bedside, and provides an up-to-date description of the key published or otherwise reported clinical trials of these agents. The specific considerations and challenges that might be encountered when implementing these compounds in the adjuvant treatment of breast cancer in the clinic are also highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of PARP inhibitors in synthetic lethality.
Figure 2: The different biological PARP functions relevant to cancer.
Figure 3: Mechanisms of resistance to PARP inhibitor therapy.

Similar content being viewed by others

References

  1. Amé, J.-C., Spenlehauer, C. & de Murcia, G. The PARP superfamily. Bioessays 26, 882–893 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Metzger-Filho, O. et al. Dissecting the heterogeneity of triple-negative breast cancer. J. Clin. Oncol. 30, 1879–1887 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Anders, C. K. et al. Poly(ADP-ribose) polymerase inhibition: 'targeted' therapy for triple-negative breast cancer. Clin. Cancer Res. 16, 4702–4710 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Virág, L. & Szabó, C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429 (2002).

    Article  PubMed  Google Scholar 

  8. Malanga, M. & Althaus, F. R. The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem. Cell Biol. 83, 354–364 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Shall, S. & de Murcia, G. Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat. Res. 460, 1–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Tucker, C. L. & Fields, S. Lethal combinations. Nat. Genet. 35, 204–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nat. Rev. Cancer 4, 814–819 (2004).

    CAS  PubMed  Google Scholar 

  12. Lee, J.-M., Ledermann, J. A. & Kohn, E. C. PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann. Oncol. 25, 32–40 (2014).

    Article  PubMed  Google Scholar 

  13. Alli, E., Sharma, V. B., Sunderesakumar, P. & Ford, J. M. Defective repair of oxidative DNA damage in triple-negative breast cancer confers sensitivity to inhibition of poly(ADP-ribose) polymerase. Cancer Res. 69, 3589–3596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hastak, K., Alli, E. & Ford, J. M. Synergistic chemosensitivity of triple-negative breast cancer cell lines to poly(ADP-ribose) polymerase inhibition, gemcitabine, and cisplatin. Cancer Res. 70, 7970–7980 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O'Shaughnessy, J. et al. A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC) [abstract]. J. Clin. Oncol. 29 (Suppl.), a1007 (2011).

    Article  Google Scholar 

  16. O'Shaughnessy, J. et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N. Engl. J. Med. 364, 205–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Guarini, A. et al. ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. Haematologica 97, 47–55 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McCabe, N. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66, 8109–8115 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  20. Mendes-Pereira, A. M. et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Helleday, T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol. Oncol. 5, 387–393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schreiber, V., Dantzer, F., Amé, J.-C. & de Murcia, G. Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7, 517–528 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Ekblad, T., Camaioni, E., Schüler, H. & Macchiarulo, A. PARP inhibitors: polypharmacology versus selective inhibition. FEBS J. 280, 3563–3575 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. d'Adda di Fagagna, F. et al. Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat. Genet. 23, 76–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Shi, L. et al. Loss of androgen receptor in aging and oxidative stress through Myb protooncoprotein-regulated reciprocal chromatin dynamics of p53 and poly(ADP-ribose) polymerase PARP-1. J. Biol. Chem. 283, 36474–36485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rulten, S. L. et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol. Cell 41, 33–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Boehler, C. et al. Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc. Natl Acad. Sci. USA 108, 2783–2788 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Riffell, J. L., Lord, C. J. & Ashworth, A. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat. Rev. Drug Discov. 11, 923–936 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Patel, A. G., Sarkaria, J. N. & Kaufmann, S. H. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc. Natl Acad. Sci. USA 108, 3406–3411 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Murai, J. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, 5588–5599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robson, M. E. et al. A combined analysis of outcome following breast cancer: differences in survival based on BRCA1/BRCA2 mutation status and administration of adjuvant treatment. Breast Cancer Res. 6, R8–R17 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Rennert, G. et al. Clinical outcomes of breast cancer in carriers of BRCA1 and BRCA2 mutations. N. Engl. J. Med. 357, 115–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Mavaddat, N. et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol. Biomarkers Prev. 21, 134–147 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cameron, D. et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. 14, 933–942 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Liedtke, C. et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 26, 1275–1281 (2008).

    Article  PubMed  Google Scholar 

  36. Von Minckwitz, G. et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 30, 1796–1804 (2012).

    Article  PubMed  Google Scholar 

  37. Neri, P. et al. Phase I study of the PARP1–2 Inhibitor Veliparib in Combination with Bortezomib in Patients with Relapsed or Refractory Multiple Myeloma. Presented at the 54th ASH© Annual Meeting and Exposition (2012).

  38. Samol, J. et al. Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a phase I study. Invest. New Drugs 30, 1493–1500 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Khan, O. A. et al. A phase I study of the safety and tolerability of olaparib (AZD2281, KU0059436) and dacarbazine in patients with advanced solid tumours. Br. J. Cancer 104, 750–755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Penson, R. T. et al. A phase II trial of iniparib (BSI-201) in combination with gemcitabine/carboplatin (GC) in patients with platinum-sensitive recurrent ovarian cancer [abstract]. J. Clin. Oncol. 29 (Suppl.), a5004 (2011).

    Article  Google Scholar 

  41. Ledermann, J. et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med. 366, 1382–1392 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Campone, M. et al. Phase I dose-escalation study to evaluate the safety, pharmacokinetics, and pharmacodynamics of CEP-9722 (a PARP1–2 inhibitor) as single-agent and in combination with temozolomide in patients with advanced solid tumors (NCT00920595) [abstract]. J. Clin. Oncol. 30 (Suppl.), a3052 (2012).

    Google Scholar 

  43. Patel, A. G., De Lorenzo, S. B., Flatten, K. S., Poirier, G. G. & Kaufmann, S. H. Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro. Clin. Cancer Res. 18, 1655–1662 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Gelmon, K. A. et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12, 852–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Schelman, W. R. et al. First-in-human trial of a poly(ADP)-ribose polymerase (PARP) inhibitor MK-4827 in advanced cancer patients (pts) with antitumor activity in BRCA-deficient tumors and sporadic ovarian cancers [abstract]. J. Clin. Oncol. 28 (Suppl.), a3001 (2010).

    Google Scholar 

  46. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Drew, Y. et al. Phase II trial of the poly(ADP-ribose) polymerase (PARP) inhibitor AG-014699 in BRCA 1 and 2–mutated, advanced ovarian and/or locally advanced or metastatic breast cancer [abstract]. J. Clin. Oncol. 29 (Suppl.), a3104 (2011).

    Article  Google Scholar 

  48. De Bono, J. S. First-in-human trial of novel oral PARP inhibitor BMN 673 in patients with solid tumors [abstract] J. Clin. Oncol. 31 (Suppl.), a2580 (2013).

    Google Scholar 

  49. Sandhu, S. K. et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 14, 882–892 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Tutt, A. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376, 235–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Kaufman, B. Olaparib monotherapy in patients with advanced cancer and a germ-line BRCA1/2 mutation: an open-label phase II study [abstract]. J. Clin. Oncol. 31 (Suppl.), a11024 (2013).

    Google Scholar 

  53. Ledermann, J. et al. Randomized trial of olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis by BRCA mutation status. Lancet Oncol. 15, 852–861 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Kaye, S. B. et al. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J. Clin. Oncol. 30, 372–379 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Konstantinopoulos, P. A. & Cannistra, S. A. Comparing poly (ADP-ribose) polymerase inhibitors with standard chemotherapy in BRCA-mutated, recurrent ovarian cancer: lessons learned from a negative trial. J. Clin. Oncol. 30, 347–350 (2012).

    Article  PubMed  Google Scholar 

  56. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Lowndes, N. F. & Toh, G. W.-L. DNA repair: the importance of phosphorylating histone H2AX. Curr. Biol. 15, R99–R102 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Bonner, W. M. et al. γH2AX and cancer. Nat. Rev. Cancer 8, 957–967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bouwman, P. & Jonkers, J. Molecular pathways: how can BRCA-mutated tumors become resistant to PARP inhibitors? Clin. Cancer Res. 20, 540–547 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Lord, C. J. & Ashworth, A. Targeted therapy for cancer using PARP inhibitors. Curr. Opin. Pharmacol. 8, 363–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Edwards, S. L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451, 1111–1115 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Oddoux, C. et al. The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1%. Nat. Genet. 14, 188–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Swisher, E. M. et al. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 68, 2581–2586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Norquist, B. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol. 29, 3008–3015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barber, L. J. et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J. Pathol. 229, 422–429 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Jaspers, J. E. et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 3, 68–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Fojo, T. & Bates, S. Mechanisms of resistance to PARP inhibitors—three and counting. Cancer Discov. 3, 20–23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rottenberg, S. et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl Acad. Sci. USA 105, 17079–17084 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  71. Huggins-Puhalla, S. L. et al. A phase I study of chronically dosed, single-agent veliparib (ABT-888) in patients (pts) with either BRCA 1/2-mutated cancer (BRCA+), platinum-refractory ovarian cancer, or basal-like breast cancer (BRCA-wt) [abstract]. J. Clin. Oncol. 30 (Suppl.), a3054 (2012).

    Google Scholar 

  72. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  73. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  74. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  75. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  76. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  77. Miknyoczki, S. et al. The selective poly(ADP-ribose) polymerase-1(2) inhibitor, CEP-8983, increases the sensitivity of chemoresistant tumor cells to temozolomide and irinotecan but does not potentiate myelotoxicity. Mol. Cancer Ther. 6, 2290–2302 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  79. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  80. Yamamoto, N. et al. A phase I, dose-finding and pharmacokinetic study of olaparib (AZD2281) in Japanese patients with advanced solid tumors. Cancer Sci. 103, 504–509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dean, E. et al. Phase I study to assess the safety and tolerability of olaparib in combination with bevacizumab in patients with advanced solid tumours. Br. J. Cancer 106, 468–474 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oza, A. M. et al. Olaparib plus paclitaxel plus carboplatin (P/C) followed by olaparib maintenance treatment in patients (pts) with platinum-sensitive recurrent serous ovarian cancer (PSR SOC): a randomized, open-label phase II study [abstract]. J. Clin. Oncol. 30 (Suppl.), a5001 (2012).

    Google Scholar 

  83. Bang, Y.-J. et al. Olaparib plus paclitaxel in patients with recurrent or metastatic gastric cancer: a randomized, double-blind phase II study [abstract]. J. Clin. Oncol. 31 (Suppl.), a4013 (2013).

    Google Scholar 

  84. Rajan, A. et al. A phase I combination study of olaparib with cisplatin and gemcitabine in adults with solid tumors. Clin. Cancer Res. 18, 2344–2351 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kummar, S. et al. Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J. Clin. Oncol. 27, 2705–2711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kummar, S. et al. Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res. 71, 5626–5634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bell-McGuinn, K. M. et al. Phase I study of ABT-888 in combination with carboplatin and gemcitabine in subjects with advanced solid tumors [abstract]. J. Clin. Oncol. 31 (Suppl.), a2584 (2013).

    Google Scholar 

  88. Pishvaian, M. J. et al. A phase II study of the PARP inhibitor ABT-888 plus temozolomide in patients with heavily pretreated, metastatic colorectal cancer [abstract]. J. Clin. Oncol. 29 (Suppl.), a3502 (2011).

    Article  Google Scholar 

  89. Hussain, M. Pilot study of veliparib (ABT-888) with temozolomide (TMZ) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) [abstract]. J. Clin. Oncol. 30 (Suppl.), a224 (2012).

    Article  Google Scholar 

  90. He, A. R. et al. Phase II trial of temozolomide and veliparib combination therapy for sorafenib-refractory advanced hepatocellular carcinoma (HCC) [abstract]. J. Clin. Oncol. 32 (Suppl.), a240 (2014).

    Article  Google Scholar 

  91. Kummar, S. et al. A phase I study of veliparib in combination with metronomic cyclophosphamide in adults with refractory solid tumors and lymphomas. Clin. Cancer Res. 18, 1726–1734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rhoda Molife, L. et al. A phase 1 study of oral rucaparib in combination with carboplatin [abstract]. J. Clin. Oncol. 31 (Suppl.), a2586 (2013).

    Google Scholar 

  93. Kristeleit, R. S. et al. A phase I dose-escalation and PK study of continuous oral rucaparib in patients with advanced solid tumors [abstract]. J. Clin. Oncol. 31 (Suppl.), a2585 (2013).

    Google Scholar 

  94. Plummer, R. et al. A phase II study of the potent PARP inhibitor, rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemother. Pharmacol. 71, 1191–1199 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, J. F. et al. A phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. Eur. J. Cancer 49, 2972–2978 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dent, R. A. et al. Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res. 15, R88 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bundred, N. et al. Evaluation of the pharmacodynamics and pharmacokinetics of the PARP inhibitor olaparib: a phase I multicentre trial in patients scheduled for elective breast cancer surgery. Invest. New Drugs 31, 949–958 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Isakoff, S. J. et al. A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer [abstract]. J. Clin. Oncol. 28 (Suppl.), a1019 (2010).

    Article  Google Scholar 

  99. Lee, J.-M. et al. Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J. Natl Cancer Inst. 106, dju089 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  101. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.S. researched the data for the article, and all authors contributed substantially to discussion of content, writing, and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Martine Piccart.

Ethics declarations

Competing interests

E.d.A. holds an advisory role for and has received research funding from GlaxoSmithKline. H.A.A. is a consultant for Celgene, Nanostring and Novartis, and has received honouraria from Celgene, GlaxoSmithKline, Nanostring and Novartis. M.P. is a consultant to, and has received honouraria and grant support from, Amgen, Bayer, Boehringer, Bristol-Myers Squibb, Roche and Sanofi; M.P. has also received grant support from Pfizer and honouraria from AstraZeneca. A.S. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonnenblick, A., de Azambuja, E., Azim, H. et al. An update on PARP inhibitors—moving to the adjuvant setting. Nat Rev Clin Oncol 12, 27–41 (2015). https://doi.org/10.1038/nrclinonc.2014.163

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.163

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer