Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Determining the optimal dose in the development of anticancer agents

Key Points

  • The approved dose of anticancer drugs is often derived from empirical, small-scale studies rather than rationally conducted trials incorporating appropriate a priori assumptions

  • The pharmacokinetic profiles of an individual taking anticancer drugs are assumed to be associated with anti-tumour effects and toxicity patterns

  • Intra-individual variation in pharmacokinetics can be accounted for by patient-specific variables and environmental factors, but inter-individual variation in pharmacokinetics is also affected by pharmacogenetic factors

  • To personalize anticancer treatment, molecular characteristics of the tumour are important as well as information on environmental factors and germline genetic variability to achieve individualized drug dosing

Abstract

Identification of the optimal dose remains a key challenge in drug development. For cytotoxic drugs, the standard approach is based on identifying the maximum tolerated dose (MTD) in phase I trials and incorporating this to subsequent trials. However, this strategy does not take into account important aspects of clinical pharmacology. For targeted agents, the dose-effect relationships from preclinical studies are less obvious, and it is important to change the way these agents are developed to avoid recommending drug doses for different populations without evidence of differential antitumour effects in different diseases. The use of expanded cohorts in phase I trials to better define MTD and refine dose optimization should be further explored together with a focus on efficacy rather than toxicity-based predictions. Another key consideration in dose optimization is related to interindividual pharmacokinetic variability. High variability in intra-individual pharmacokinetics has been observed for many orally-administered drugs, especially those with low bioavailability, which might complicate identification of dose–effect relationships. End-organ dysfunction, interactions with other prescription drugs, herbal supplements, adherence, and food intake can influence pharmacokinetics. It is important these variables are identified during early clinical trials and considered in the development of further phase II and subsequent large-scale phase III studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic figure describing the therapeutic window (or range, or index).
Figure 2: Simplified summary of the evolution of GIST over time and its relationship to imatinib sensitivity.
Figure 3: Key factors influencing the systemic exposure to an anti-cancer drug.

Similar content being viewed by others

References

  1. Mathijssen, R. H. et al. Flat-fixed dosing versus body surface area based dosing of anti-cancer drugs in adults: does it make a difference? Oncologist 12, 913–923 (2007).

    PubMed  Google Scholar 

  2. Moore, M. J. Clinical pharmacokinetics of cyclophosphamide. Clin. Pharmacokinet. 20, 194–208 (1991).

    CAS  PubMed  Google Scholar 

  3. Hryniuk, W. M., Figueredo, A. & Goodyear M. Applications of dose intensity to problems in chemotherapy of breast and colorectal cancer. Semin. Oncol. 14 (Suppl. 4), 3–11 (1987).

    CAS  PubMed  Google Scholar 

  4. Tannock, I. F. et al. A randomized trial of two dose levels of cyclophosphamide, methotrexate, and fluorouracil chemotherapy for patients with metastatic breast cancer. J. Clin. Oncol. 6, 1377–1387 (1988).

    CAS  PubMed  Google Scholar 

  5. Dent, S. F. & Eisenhauer, E. A. Phase I trial design: are new methodologies being put into practice? Ann. Oncol. 7, 561–566 (1996).

    CAS  PubMed  Google Scholar 

  6. Rini, B. I. et al. Hypothyroidism in patients with metastatic renal cell carcinoma treated with sunitinib. J. Natl Cancer Inst. 99, 81–83 (2007).

    CAS  PubMed  Google Scholar 

  7. Schmidinger, M. et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 26, 5204–5212 (2008).

    PubMed  Google Scholar 

  8. Motzer, R. J. et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N. Engl. J. Med. 369, 722–731 (2013).

    CAS  PubMed  Google Scholar 

  9. Smith, D. B. et al. A phase I and pharmacokinetic study of amphethinile. Br. J. Cancer 57, 623–627 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Penel, N. & Kramar, A. What does a modified-Fibonacci dose-escalation actually correspond to? BMC Med. Res. Methodol. 12, 103 (2012).

    PubMed  PubMed Central  Google Scholar 

  11. Chabner, B. A. & Longo, D. L. (Eds) Cancer Chemotherapy and Biotherapy: Principles and Practice, 5th edn (Lippincott Williams and Wilkins, 2011).

    Google Scholar 

  12. Weiner, G. J. Monoclonal antibody mechanisms of action in cancer. Immunol. Res. 39, 271–278 (2007).

    CAS  PubMed  Google Scholar 

  13. Parulekar, W. R. & Eisenhauer, E. A. Phase I trial design for solid tumor studies of targeted, non-cytotoxic agents: theory and practice. J. Natl Cancer Inst. 96, 990–997 (2004).

    CAS  PubMed  Google Scholar 

  14. Le Tourneau, C., Lee, J. J. & Siu, L. L. Dose escalation methods in phase I clinical trials. J. Natl Cancer Inst. 101, 708–720 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kitzen, J. J., Verweij, J., Wiemer, E. A. & Loos, W. J. The relevance of microdialysis for clinical oncology. Curr. Clin. Pharmacol. 1, 255–263 (2006).

    CAS  PubMed  Google Scholar 

  16. Goulart, B. H. et al. Trends in the use and role of biomarkers in phase I oncology trials. Clin. Cancer Res. 13, 6719–6726 (2007).

    CAS  PubMed  Google Scholar 

  17. Adjei, A. What is the right dose? The elusive optimal biological dose in phase I clinical trials. J. Clin. Oncol. 24, 4054–4055 (2006).

    CAS  PubMed  Google Scholar 

  18. Bergsland, E. & Dickler, M. N. Maximizing the potential of bevacizumab in cancer treatment. Oncologist 9 (Suppl. 1), 36–42 (2004).

    CAS  PubMed  Google Scholar 

  19. Perez-Soler, R. The role of erlotinib (Tarceva, OSI 774) in the treatment of non-small cell lung cancer. Clin. Cancer Res. 10, 4238s–4240s (2004).

    CAS  PubMed  Google Scholar 

  20. Mita, A. C. et al. Erlotinib 'dosing-to-rash': a phase II intrapatient dose escalation and pharmacologic study of erlotinib in previously treated advanced non-small lung cancer. Br. J. Cancer 105, 938–944 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeo, W. L. et al. Erlotinib at a dose of 25 mg daily for non-small cell lung cancers with EGFR mutations. J. Thorac. Oncol. 5, 1048–1053 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Binder, D. et al. Erlotinib in patients with advanced non-small-cell lung cancer: impact of dose reductions and a novel surrogate marker. Med. Oncol. 29, 193–198 (2012).

    CAS  PubMed  Google Scholar 

  23. Van Oosterom, A. T. et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358, 1421–1423 (2001).

    CAS  PubMed  Google Scholar 

  24. Gastrointestinal Stromal Tumor Meta-Analysis Group (MetaGIST). Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors: a meta-analysis of 1,640 patients. J. Clin. Oncol. 28, 1247–1253 (2010).

  25. Verweij, J. et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364, 1127–1134 (2004).

    CAS  PubMed  Google Scholar 

  26. Blanke, C. D. et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J. Clin. Oncol. 26, 626–632 (2008).

    CAS  PubMed  Google Scholar 

  27. Sleijfer, S., Wiemer, E. & Verweij, J. Drug Insight: gastrointestinal stromal tumors (GIST)--the solid tumor model for cancer-specific treatment. Nat. Clin. Pract. Oncol. 5, 102–111 (2008).

    CAS  PubMed  Google Scholar 

  28. Meric-Bernstam, F., Farhangfar, C., Mendelsohn, J. & Mills, G. B. Building a personalized medicine infrastructure at a major cancer center. J. Clin. Oncol. 31, 1849–1857 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Roychowdhury, S. & Chinnaiyan A. M. Advancing precision medicine for prostate cancer through genomics. J. Clin. Oncol. 31, 1866–1873 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Druker, B. J. et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344, 1038–1042 (2001).

    CAS  PubMed  Google Scholar 

  31. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    CAS  PubMed  Google Scholar 

  32. Talpaz, M. et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99, 1928–1937 (2002).

    CAS  PubMed  Google Scholar 

  33. Sawyers, C. L. et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99, 3530–3539 (2002).

    CAS  PubMed  Google Scholar 

  34. Kantarjian, H. M. et al. Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood 101, 473–475 (2003).

    CAS  PubMed  Google Scholar 

  35. Jabbour, E. et al. Imatinib mesylate dose escalation is associated with durable responses in patients with chronic myeloid leukemia after cytogenetic failure on standard-dose imatinib therapy. Blood 113, 2154–2160 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Leyland-Jones, B. et al. Dose scheduling—Herceptin®. Oncology 61 (Suppl. 2), 31–36 (2001).

    CAS  PubMed  Google Scholar 

  37. Baselga, J. Phase I and II clinical trials of trastuzumab. Ann. Oncol. 12 (Suppl. 1), S49–S55 (2001).

    PubMed  Google Scholar 

  38. Tokuda, Y. et al. Dose escalation and pharmacokinetic study of a humanized anti-HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. Br. J. Cancer 81, 1419–1425 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Drugs.com. Trastuzumab Dosage [online], (2014)

  40. Tol, J. et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N. Engl. J. Med. 360, 563–572 (2009).

    CAS  PubMed  Google Scholar 

  41. Rini, B. I. et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J. Clin. Oncol. 28, 2137–2143 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gianni, L. et al. AVEREL: A randomized phase III trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J. Clin. Oncol. 31, 1719–1725 (2013).

    CAS  PubMed  Google Scholar 

  43. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    CAS  PubMed  Google Scholar 

  44. Weber, J. S. et al. Phase I/II study of ipilimumab for patients with metastatic melanoma. J. Clin. Oncol. 26, 5950–5956 (2008).

    CAS  PubMed  Google Scholar 

  45. Wolchok, J. D. et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 11, 155–164 (2010).

    CAS  PubMed  Google Scholar 

  46. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. US National Library of Medicine. Clinicaltrials.gov [online], (2014).

  48. Sleijfer, S. & Verweij, J. The price of success: cost-effectiveness of molecularly targeted agents. Clin. Pharmacol. Ther. 85, 136–138 (2009).

    CAS  PubMed  Google Scholar 

  49. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. US National Library of Medicine. Clinicaltrials.gov[online], (2014).

  51. La-Beck, N. M. et al. Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients. Cancer Chemother. Pharmacol. 69, 43–50 (2012).

    CAS  PubMed  Google Scholar 

  52. Sparreboom, A. et al. Evaluation of alternate size descriptors for dose calculation of anticancer drugs in the obese. J. Clin. Oncol. 25, 4707–4713 (2007).

    CAS  PubMed  Google Scholar 

  53. Lu, J. F. et al. Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin. Pharmacol. Ther. 80, 135–145 (2006).

    Google Scholar 

  54. Evens, W. E. & Pratt, C. B. Effect of pleural effusion on high-dose methotrexate kinetics. Clin. Pharmacol. Ther. 23, 68–72 (1978).

    Google Scholar 

  55. Franke, R. M., Carducci, M. A., Rudek, M. A., Baker, S. D. & Sparreboom, A. Castration-dependent pharmacokinetics of docetaxel in patients with prostate cancer. J. Clin. Oncol. 28, 4562–4567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wheeler, H. E., Maitland, M. L., Dolan, M. E., Cox, N. J. & Ratain, M. J. Cancer pharmacogenomics: strategies and challenges. Nat. Rev. Genet. 14, 23–34 (2013).

    CAS  PubMed  Google Scholar 

  57. Relling, M. V. et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J. Natl Cancer Inst. 91, 2001–2008 (1999).

    CAS  PubMed  Google Scholar 

  58. De Jong, F. A., de Jonge, M. J., Verweij, J. & Mathijssen, R. H. Role of pharmacogenetics in irinotecan therapy. Cancer Lett. 234, 90–106 (2006).

    CAS  PubMed  Google Scholar 

  59. Yap, T. A. et al. Phase I trial of a selective c-MET inhibitor ARQ 197 incorporating proof of mechanism pharmacodynamics studies. J. Clin. Oncol. 29, 1271–1279 (2011).

    CAS  PubMed  Google Scholar 

  60. Yamamoto, N. et al. The effect of CYP2C19 polymorphism on the safety, tolerability, and pharmacokinetics of tivantinib (ARQ 197): results from a phase I trial in advanced solid tumors. Ann. Oncol. 24, 1653–1659 (2013).

    CAS  PubMed  Google Scholar 

  61. Tascilar, M., de Jong, F. A., Verweij, J. & Mathijssen, R. H. J. Complementary and alternative medicine during cancer treatment: Beyond innocence. Oncologist 11, 732–741 (2006).

    PubMed  Google Scholar 

  62. Van Leeuwen, R. W. F., van Gelder, T., Mathijssen, R. H. J. & Jansman, F. G. A. Drug-drug interactions with tyrosine kinase inhibitors: a clinical perspective. Lancet Oncol. (in press).

  63. Fujita, K. Food-drug interactions via human cytochrome P450 3A (CYP3A). Drug Metabol. Drug Interact. 20, 195–217 (2004).

    CAS  PubMed  Google Scholar 

  64. Sparreboom, A. & Baker, S. D. Pharmacokinetic studies in early anticancer drug development in Principles of Anticancer Drug Development, Ch. 8 (eds Hidalgo, M., Garrett-Mayer, E., Clendeninn, N. J. & Eckhardt, S. G.), 189–214 (Humana Press/Springer Science, 2011).

    Google Scholar 

  65. Crews, K. R. et al. Altered irinotecan pharmacokinetics in pediatric high-grade glioma patients receiving enzyme-inducing anticonvulsant therapy. Clin. Cancer Res. 8, 2202–2209 (2002).

    CAS  PubMed  Google Scholar 

  66. Relling, M. V. et al. Adverse effect of anticonvulsants on efficacy of chemotherapy for acute lymphoblastic leukaemia. Lancet 356, 285–290 (2000).

    CAS  PubMed  Google Scholar 

  67. Budha, N. R. et al. Drug absorption interactions between oral targeted anticancer agents and PPIs: Is pH-dependent solubility the Achilles heel of targeted therapy? Clin. Pharmacol. Ther. 92, 203–213 (2012).

    CAS  PubMed  Google Scholar 

  68. Eley, T. et al. Phase I study of the effect of gastric acid pH modulators on the bioavailability of oral dasatinib in healthy subjects. J. Clin. Pharmacol. 49, 700–709 (2009).

    CAS  PubMed  Google Scholar 

  69. Takahashi, N., Miura, M., Niioka, T. & Sawada, K. Influence of H2-receptor antagonists and proton pump inhibitors on dasatinib pharmacokinetics in Japanese leukemia patients. Cancer Chemother. Pharmacol. 69, 999–1004 (2012).

    CAS  PubMed  Google Scholar 

  70. Egorin, M. J. et al. Effect of a proton pump inhibitor on the pharmacokinetics of imatinib. Br. J. Clin. Pharmacol. 68, 370–374 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sparano, B. A. et al. Effect on antacid on imatinib absorption. Cancer Chemother. Pharmacol. 63, 525–528 (2009).

    CAS  PubMed  Google Scholar 

  72. Yin, O. Q. et al. Effect of the proton pump inhibitor esomeprazole on the oral absorption and pharmacokinetics of nilotinib. J. Clin. Pharmacol. 50, 960–967 (2010).

    CAS  PubMed  Google Scholar 

  73. Oostendorp, R. L., Beijnen, J. H. & Schellens, J. H. The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat. Rev. 35, 137–147 (2009).

    CAS  PubMed  Google Scholar 

  74. Sparreboom, A. et al. Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resist. Updat. 6, 71–84 (2003).

    CAS  PubMed  Google Scholar 

  75. Eechoute, K. et al. Drug transporters and imatinib treatment: implications for clinical practice. Clin. Cancer Res. 17, 406–415 (2011).

    CAS  PubMed  Google Scholar 

  76. Ratain, M. J. Flushing oral oncology drugs down the toilet. J. Clin. Oncol. 29, 3958–3959 (2011).

    PubMed  Google Scholar 

  77. Sharma, M. R. et al. Evaluation of food effect on pharmacokinetics of vismodegib in advanced solid tumor patients. Clin. Cancer Res. 19, 3059–3067 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Szmulewitz, R. Z. & Ratain, M. J. Playing Russian roulette with tyrosine kinase inhibitors. Clin. Pharmacol. Ther. 93, 242–244 (2013).

    CAS  PubMed  Google Scholar 

  79. Dy, G. K. et al. Complementary and alternative medicine use by patients enrolled onto phase I clinical trials. J. Clin. Oncol. 22, 4810–4815 (2004).

    PubMed  Google Scholar 

  80. Durr, D. et al. St John's Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin. Pharmacol. Ther. 68, 598–604 (2000).

    CAS  PubMed  Google Scholar 

  81. Perloff, M. D. et al. Saint John's wort: an in vitro analysis of P-glycoprotein induction due to extended exposure. Br. J. Pharmacol. 134, 1601–1608 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sparreboom, A. et al. Herbal remedies in the United States: potential adverse interactions with anticancer agents. J. Clin. Oncol. 22, 2489–2503 (2004).

    CAS  PubMed  Google Scholar 

  83. De Jong, F. A. et al. Lifestyle habits as a contributor to anti-cancer treatment failure. Eur. J. Cancer 44, 374–382 (2008).

    PubMed  Google Scholar 

  84. Mathijssen, R. H. et al. Effects of St John's wort on irinotecan metabolism. J. Natl Cancer Inst. 94, 1247–1249 (2002).

    CAS  PubMed  Google Scholar 

  85. Frye, R. F. et al. Effect of St John's wort on imatinib mesylate pharmacokinetics. Clin. Pharmacol. Ther. 76, 323–329 (2004).

    CAS  PubMed  Google Scholar 

  86. Goey, A. K. et al. The effect of St John's wort on the pharmacokinetics of docetaxel. Clin. Pharmacokinet. 53, 103–110 (2014).

    CAS  PubMed  Google Scholar 

  87. Broxterman, H. J., Lankelma, J. & Hoekman K. Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences. Drug Resist. Updat. 6, 111–127 (2003).

    CAS  PubMed  Google Scholar 

  88. Hamilton, M. et al. Effects of smoking on the pharmacokinetics of erlotinib. Clin. Cancer Res. 12, 2166–2171 (2006).

    CAS  PubMed  Google Scholar 

  89. Hughes, A. N. et al. Overcoming CYP1A1/1A2 mediated induction of metabolism by escalating erlotinib dose in current smokers. J. Clin. Oncol. 27, 1220–1226 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Van der Bol, J. M. et al. Cigarette smoking and irinotecan treatment: pharmacokinetic interaction and effects on neutropenia. J. Clin. Oncol. 25, 2719–2726 (2007).

    CAS  PubMed  Google Scholar 

  91. Van Erp, N. P. et al. Effect of cigarette smoking on imatinib in patients in the soft tissue and bone sarcoma group of the EORTC. Clin. Cancer Res. 14, 8308–8313 (2008).

    CAS  PubMed  Google Scholar 

  92. De Graan, A. J. et al. Influence of smoking on the pharmacokinetics and toxicity profiles of taxane therapy. Clin. Cancer Res. 18, 4425–4432 (2012).

    CAS  PubMed  Google Scholar 

  93. National Cancer Institute. Cancer.gov[online], (2013).

  94. US National Library of Medicine. Clinicaltrials.gov[online], (2014).

  95. Benowitz, N. L. Cigarette smoking and the personalization of irinotecan therapy. J. Clin. Oncol. 25, 2646–2647 (2007).

    CAS  PubMed  Google Scholar 

  96. Eechoute, K. et al. A long-term prospective population pharmacokinetic study on imatinib plasma concentrations in GIST patients. Clin. Cancer Res. 18, 5780–5787 (2012).

    CAS  PubMed  Google Scholar 

  97. Walko, C. M. & McLeod, H. L. Will we ever be ready for blood level-guided therapy? J. Clin. Oncol. 26, 2078–2079 (2008).

    PubMed  Google Scholar 

  98. Klümpen, H. J. et al. Moving towards dose individualization of tyrosine kinase inhibitors. Cancer Treat. Rev. 37, 251–260 (2011).

    PubMed  Google Scholar 

  99. Gamelin, E. et al. Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 2099–2105 (2008).

    CAS  PubMed  Google Scholar 

  100. Park, J. R. et al. Pilot induction regimen incorporating pharmacokinetically guided topotecan for treatment of newly diagnosed high-risk neuroblastoma: a Children's Oncology Group study. J. Clin. Oncol. 29, 4351–4357 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lankheet, N. A. G. et al. Individual PK-guided sunitinib dosing: A feasibility study in patients with advanced solid tumors [abstract]. J. Clin. Oncol. 30 (Suppl.), a2596 (2012).

    Google Scholar 

  102. Guchelaar, H. J. et al. Pharmacogenetics in the cancer clinic: from candidate gene studies to next generation sequencing. Clin. Pharmacol. Ther. http://dx.doi.org/10.1038/clpt.2014.13.

  103. Verweij, J. “No Risk, no fun”: challenges for the oncology phase I clinical trial time-performance. The 2008 Michel Clavel Lecture. Eur. J. Cancer 44, 2600–2607 (2008).

    PubMed  Google Scholar 

  104. Hamberg, P. & Verweij, J. Phase I drug combination trial design: walking the tightrope. J. Clin. Oncol. 27, 4441–4443 (2009).

    PubMed  Google Scholar 

  105. Hamberg, P., Ratain, M. J., Lesaffre, E. & Verweij, J. Dose-escalation models for combination phase I trials in oncology. Eur. J. Cancer 46, 2870–2878 (2010).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the American Lebanese Syrian Associated Charities (ALSAC) and National Institutes of Health grant NCI 5R01CA151633-04 (granted to A.S.)

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, contributed substantially to the discussion of content, wrote the manuscript, and edited the manuscript before submission and revised the article after peer review.

Corresponding author

Correspondence to Jaap Verweij.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathijssen, R., Sparreboom, A. & Verweij, J. Determining the optimal dose in the development of anticancer agents. Nat Rev Clin Oncol 11, 272–281 (2014). https://doi.org/10.1038/nrclinonc.2014.40

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.40

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing