Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circulating tumour cells—monitoring treatment response in prostate cancer

Key Points

  • Reliable biomarkers that can guide the treatment of metastatic prostate cancer in the clinic remain an unmet need

  • Circulating tumour cells (CTCs) are rare cells shed by tumours into the peripheral circulation, and might represent a means of noninvasive tumour sampling

  • Technological advances have improved the isolation and analysis of rare CTCs from patients with cancer

  • CTC enumeration has been shown to be predictive of prognosis in patients with metastatic castration-resistant prostate cancer

  • Molecular analyses of CTCs have the potential to enable real-time monitoring and predictions of response to therapy in patients with metastatic prostate cancer

Abstract

The availability of new therapeutic options for the treatment of metastatic castration-resistant prostate cancer (mCRPC) has heightened the importance of monitoring and assessing treatment response. Accordingly, there is an unmet clinical need for reliable biomarkers that can be used to guide therapy. Circulating tumour cells (CTCs) are rare cells that are shed from primary and metastatic tumour deposits into the peripheral circulation, and represent a means of performing noninvasive tumour sampling. Indeed, enumeration of CTCs before and after therapy has shown that CTC burden correlates with prognosis in patients with mCRPC. Moreover, studies have demonstrated the potential of molecular analysis of CTCs in monitoring and predicting response to therapy in patients. This Review describes the challenges associated with monitoring treatment response in mCRPC, and the advancements in CTC-analysis technologies applied to such assessments and, ultimately, guiding prostate cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approaches to detection of CTC.
Figure 2: Molecular markers used to detect prostate CTCs undergoing epithelial–mesenchymal transition.
Figure 3: Assay for measuring signalling activity of the AR in prostate CTCs.70

Similar content being viewed by others

References

  1. Siegel, R., Ma, J., Zou, Z. & Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 64, 9–29 (2014).

    Article  PubMed  Google Scholar 

  2. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    CAS  PubMed  Google Scholar 

  3. de Bono, J. S. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147–1154 (2010).

    CAS  PubMed  Google Scholar 

  4. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    CAS  PubMed  Google Scholar 

  6. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Scher, H. I., Morris, M. J., Larson, S. & Heller, G. Validation and clinical utility of prostate cancer biomarkers. Nat. Rev. Clin. Oncol. 10, 225–234 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Halabi, S. et al. Prostate-specific antigen changes as surrogate for overall survival in men with metastatic castration-resistant prostate cancer treated with second-line chemotherapy. J. Clin. Oncol. 31, 3944–3950 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pantel, K., Alix-Panabieres, C. & Riethdorf, S. Cancer micrometastases. Nat. Rev. Clin. Oncol. 6, 339–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, M., Stott, S., Toner, M., Maheswaran, S. & Haber, D. A. Circulating tumor cells: approaches to isolation and characterization. J. Cell. Biol. 192, 373–382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fehm, T. et al. Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin. Cancer Res. 8, 2073–2084 (2002).

    CAS  PubMed  Google Scholar 

  13. Heitzer, E. et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 73, 2965–2975 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Alix-Panabieres, C. & Pantel, K. Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59, 110–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Heitzer, E., Auer, M., Ulz, P., Geigl, J. B. & Speicher, M. R. Circulating tumor cells and DNA as liquid biopsies. Genome Med. 5, 73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saylor, P. J., Lee, R. J. & Smith, M. R. Emerging therapies to prevent skeletal morbidity in men with prostate cancer. J. Clin. Oncol. 29, 3705–3714 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Scher, H. I., Morris, M. J., Kelly, W. K., Schwartz, L. H. & Heller, G. Prostate cancer clinical trial end points: “RECIST”ing a step backwards. Clin. Cancer Res. 11, 5223–5232 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scher, H. I. et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 26, 1148–1159 (2008).

    Article  PubMed  Google Scholar 

  19. Jadvar, H. et al. Baseline 18F-FDG PET/CT parameters as imaging biomarkers of overall survival in castrate-resistant metastatic prostate cancer. J. Nucl. Med. 54, 1195–1201 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Jadvar, H. et al. Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin. Nucl. Med. 37, 637–643 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mosavi, F. et al. Whole-body diffusion-weighted MRI compared with 18F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. AJR Am. J. Roentgenol. 199, 1114–1120 (2012).

    Article  PubMed  Google Scholar 

  22. Yu, E. Y. et al. C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin. Nucl. Med. 36, 192–198 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brown, M. S. et al. Computer-aided quantitative bone scan assessment of prostate cancer treatment response. Nucl. Med. Commun. 33, 384–394 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee, R. J. et al. A dose-ranging study of cabozantinib in men with castration-resistant prostate cancer and bone metastases. Clin. Cancer Res. 19, 3088–3094 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fleming, M. T., Morris, M. J., Heller, G. & Scher, H. I. Post-therapy changes in PSA as an outcome measure in prostate cancer clinical trials. Nat. Clin. Pract. Oncol. 3, 658–667 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Smith, D. C. et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J. Clin. Oncol. 31, 412–419 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Ellinger, J. et al. The role of cell-free circulating DNA in the diagnosis and prognosis of prostate cancer. Urol. Oncol. 29, 124–129 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Schwarzenbach, H. et al. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin. Cancer Res. 15, 1032–1038 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Dawson, S. J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Ashworth, T. R. A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aust. Med. J. 14, 146–149 (1869).

    Google Scholar 

  31. Parkinson, D. R. et al. Considerations in the development of circulating tumor cell technology for clinical use. J. Transl. Med. 10, 138 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ni, J. et al. Role of the EpCAM (CD326) in prostate cancer metastasis and progression. Cancer Metastasis Rev. 31, 779–791 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Gorges, T. M. et al. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 12, 178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bitting, R. L. et al. Development of a method to isolate circulating tumor cells using mesenchymal-based capture. Methods 64, 129–136 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Ozkumur, E. et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl. Med. 5, 179ra47 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Veridex, LLC CellSearch Circulating Tumor Cell Kit. Premarket notification—expanded indications for use—metastatic prostate cancer [online], (2008).

  38. Danila, D. C. et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin. Cancer Res. 13, 7053–7058 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. de Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Scher, H. I. et al. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 10, 233–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goodman, O. B. Jr et al. Circulating tumor cells in patients with castration-resistant prostate cancer baseline values and correlation with prognostic factors. Cancer Epidemiol. Biomarkers Prev. 18, 1904–1913 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Gasch, C. et al. Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clin. Chem. 59, 252–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Kraan, J. et al. External quality assurance of circulating tumor cell enumeration using the CellSearch® system: a feasibility study. Cytometry B Clin. Cytom. 80, 112–118 (2011).

    Article  PubMed  Google Scholar 

  44. Ligthart, S. T. et al. Unbiased and automated identification of a circulating tumour cell definition that associates with overall survival. PLoS ONE 6, e27419 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ligthart, S. T. et al. Circulating tumor cells count and morphological features in breast, colorectal and prostate cancer. PLoS ONE 8, e67148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Todenhofer, T. et al. Preliminary experience on the use of the Adnatest® system for detection of circulating tumor cells in prostate cancer patients. Anticancer Res. 32, 3507–3513 (2012).

    PubMed  Google Scholar 

  47. Talasaz, A. H. et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc. Natl Acad. Sci. USA 106, 3970–3975 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cann, G. M. et al. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer. PLoS ONE 7, e49144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Powell, A. A. et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 7, e33788 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Casavant, B. P. et al. The VerIFAST: an integrated method for cell isolation and extracellular/intracellular staining. Lab Chip 13, 391–396 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stott, S. L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107, 18392–18397 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lu, Y. T. et al. NanoVelcro Chip for CTC enumeration in prostate cancer patients. Methods 64, 144–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Kirby, B. J. et al. Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. PLoS ONE 7, e35976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Casavant, B. P. et al. A negative selection methodology using a microfluidic platform for the isolation and enumeration of circulating tumor cells. Methods 64, 137–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Alix-Panabieres, C. et al. Detection of circulating prostate-specific antigen-secreting cells in prostate cancer patients. Clin. Chem. 51, 1538–1541 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Paris, P. L. et al. Functional phenotyping and genotyping of circulating tumor cells from patients with castration resistant prostate cancer. Cancer Lett. 277, 164–173 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Friedlander, T. W. et al. Detection and characterization of invasive circulating tumor cells derived from men with metastatic castration-resistant prostate cancer. Int. J. Cancer 134, 2284–2293 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Gascoyne, P. R., Noshari, J., Anderson, T. J. & Becker, F. F. Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis 30, 1388–1398 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gupta, V. et al. ApoStream, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics 6, 24133 (2012).

    Article  PubMed  Google Scholar 

  61. Vona, G. et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am. J. Pathol. 156, 57–63 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu, T., Lu, B., Tai, Y. C. & Goldkorn, A. A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on a microfilter. Cancer Res. 70, 6420–6426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin, H. K. et al. Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin. Cancer Res. 16, 5011–5018 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, C. L. et al. Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate 73, 813–826 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Coumans, F. A., van Dalum, G., Beck, M. & Terstappen, L. W. Filter characteristics influencing circulating tumor cell enrichment from whole blood. PLoS ONE 8, e61770 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lazar, D. C. et al. Cytometric comparisons between circulating tumor cells from prostate cancer patients and the prostate-tumor-derived LNCaP cell line. Phys. Biol. 9, 016002 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Farace, F. et al. A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br. J. Cancer 105, 847–853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang, C., Liu, H., Bander, N. H. & Kirby, B. J. Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system. Biomed. Microdevices 15, 941–948 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Danila, D. C. et al. Analytic and clinical validation of a prostate cancer-enhanced messenger RNA detection assay in whole blood as a prognostic biomarker for survival. Eur. Urol. 65, 1191–1197 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Cho, E. H. et al. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys. Biol. 9, 016001 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Marrinucci, D. et al. Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys. Biol. 9, 016003 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pachmann, K. et al. Standardized quantification of circulating peripheral tumor cells from lung and breast cancer. Clin. Chem. Lab. Med. 43, 617–627 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Saucedo-Zeni, N. et al. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int. J. Oncol. 41, 1241–1250 (2012).

    PubMed  PubMed Central  Google Scholar 

  74. Stott, S. L. et al. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci. Transl. Med. 2, 25ra23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Allard, W. J. et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004).

    Article  PubMed  Google Scholar 

  76. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Scher, H. I. et al. Evaluation of circulating tumor cell (CTC) enumeration as an efficacy response biomarker of overall survival (OS) in metastatic castration-resistant prostate cancer (mCRPC): planned final analysis (FA) of COU-AA-301, a randomized, double-blind, placebo-controlled, phase III study of abiraterone acetate (AA) plus low-dose prednisone (P) post docetaxel [abstract]. J. Clin. Oncol. 29 (Suppl.), LBA4517 (2011).

    Google Scholar 

  78. Attard, G. et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 69, 2912–2918 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Danila, D. C. et al. TMPRSS2ERG status in circulating tumor cells as a predictive biomarker of sensitivity in castration-resistant prostate cancer patients treated with abiraterone acetate. Eur. Urol. 60, 897–904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Leversha, M. A. et al. Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin. Cancer Res. 15, 2091–2097 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiang, Y., Palma, J. F., Agus, D. B., Wang, Y. & Gross, M. E. Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin. Chem. 56, 1492–1495 (2010).

    Article  PubMed  Google Scholar 

  82. Magbanua, M. J. et al. Isolation and genomic analysis of circulating tumor cells from castration resistant metastatic prostate cancer. BMC Cancer 12, 78 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Darshan, M. S. et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 71, 6019–6029 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Scher, H. I. & Sawyers, C. L. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J. Clin. Oncol. 23, 8253–8261 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Brown, R. S. et al. Amplification of the androgen receptor gene in bone metastases from hormone-refractory prostate cancer. J. Pathol. 198, 237–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Miyamoto, D. T. et al. Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov. 2, 995–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Evans, M. J. et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc. Natl Acad. Sci. USA 108, 9578–9582 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Noss, K. R., Wolfe, S. A. & Grimes, S. R. Upregulation of prostate specific membrane antigen/folate hydrolase transcription by an enhancer. Gene 285, 247–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Wright, G. L. Jr et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48, 326–334 (1996).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Maheswaran and D. Haber for reading the manuscript and for helpful discussions before submission. The authors acknowledge research support from the Department of Defence Prostate Cancer Research Program (award W81XWH-09-1-0471 to R.J.L.; award W81XWH-12-1-0153 to D.T.M.), the Conquer Cancer Foundation (Career Development Award to R.J.L.), the Prostate Cancer Foundation (Young Investigator Award to R.J.L.), the Mazzone Program/Dana-Farber Harvard Cancer Center (Career Development Award to D.T.M.), and Stand Up To Cancer (L.V.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to all stages of the preparation of the manuscript for submission.

Corresponding author

Correspondence to David T. Miyamoto.

Ethics declarations

Competing interests

R.J.L. has received research funding from Exelixis and Janssen, and has acted as a consultant for Medivation. D.T.M. and L.V.S. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, D., Sequist, L. & Lee, R. Circulating tumour cells—monitoring treatment response in prostate cancer. Nat Rev Clin Oncol 11, 401–412 (2014). https://doi.org/10.1038/nrclinonc.2014.82

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.82

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer