Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer

Key Points

  • Over the past 18 months, recurrent activating mutations within the oestrogen receptor α (ER) LBD have been detected in 15–20% of patients with metastatic ER-positive endocrine-resistant breast cancer

  • The ER LBD mutations confer constitutive ligand-independent activity and are relatively resistant to tamoxifen and fulvestrant treatment

  • These mutations in the gene encoding the ER, ESR1, are detected mainly in metastatic tumours, implicating the clonal selection of these mutations as the mechanism of resistance to therapy

  • Structural studies have shown that the ER LBD mutations lead to ligand-independent stabilization of the LBD in the agonistic conformation

  • To study the clonal evolution and discern the full genetic complexity and clinical significance of the ESR1 mutations, new sensitive sequencing technologies will need to be applied

  • Potential strategies to overcome ER-related endocrine resistance include high-dose fulvestrant and tamoxifen, inhibitors of ER co-activator proteins, novel SERDs and SERMs, and other agents targeting the ER signalling axis

Abstract

Approximately 70% of breast cancers are oestrogen receptor α (ER) positive, and are, therefore, treated with endocrine therapies. However, about 25% of patients with primary disease and almost all patients with metastases will present with or eventually develop endocrine resistance. Despite the magnitude of this clinical challenge, the mechanisms underlying the development of resistance remain largely unknown. In the past 2 years, several studies unveiled gain-of-function mutations in ESR1, the gene encoding the ER, in approximately 20% of patients with metastatic ER-positive disease who received endocrine therapies, such as tamoxifen and aromatase inhibitors. These mutations are clustered in a 'hotspot' within the ligand-binding domain (LBD) of the ER and lead to ligand-independent ER activity that promotes tumour growth, partial resistance to endocrine therapy, and potentially enhanced metastatic capacity; thus, ER LBD mutations might account for a mechanism of acquired endocrine resistance in a substantial fraction of patients with metastatic disease. In general, the absence of detectable ESR1 mutations in patients with treatment-naive disease, and the correlation between the frequency of patients with tumours harbouring these mutations and the number of endocrine treatments received suggest that, under selective treatment pressure, clonal expansion of rare mutant clones occurs, leading to resistance. Preclinical and clinical development of rationale-based novel therapeutic strategies that inhibit these ER mutants has the potential to substantially improve treatment outcomes. We discuss the contribution of ESR1 mutations to the development of acquired resistance to endocrine therapy, and evaluate how mutated ER can be detected and targeted to overcome resistance and improve patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the sequencing studies of ER+ metastatic breast cancer.
Figure 2: Structural diagram of the ERα protein encoded by the ESR1 gene.
Figure 3: Genomic classic and nonclassic transcriptional activities of ER.
Figure 4: Clonal selection of rare ESR1 mutations.
Figure 5: Future clinical directions.

Similar content being viewed by others

References

  1. Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).

    PubMed  PubMed Central  Google Scholar 

  2. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumour subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Creighton, C. J. The molecular profile of luminal B breast cancer. Biologics 6, 289–297 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Higa, G. M. & Fell, R. G. Sex hormone receptor repertoire in breast cancer. Int. J. Breast Cancer 2013, 284036 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. Burns, K. A. & Korach, K. S. Oestrogen receptors and human disease: an update. Arch. Toxicol. 86, 1491–1504 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schiff, R., Osborne, C. K. & Fuqua, S. A. in Diseases of the Breast 4th edn (eds Harris, J. R., Lippman, M. E., Morrow, M. & Osborne, C. K.) 408–430 (Wolters Kluwer/Lippincott Williams & Wilkins, 2009).

    Google Scholar 

  8. Huang, B., Warner, M. & Gustafsson, J. A. Oestrogen receptors in breast carcinogenesis and endocrine therapy. Mol. Cell. Endocrinol. http://dx.doi.org/10.1016/j.mce.2014.11.015 (2014).

  9. Olefsky, J. M. Nuclear receptor minireview series. J. Biol. Chem. 276, 36863–36864 (2001).

    CAS  PubMed  Google Scholar 

  10. Klinge, C. M. Oestrogen receptor interaction with oestrogen response elements. Nucleic Acids Res. 29, 2905–2919 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kushner, P. J. et al. Oestrogen receptor pathways to AP-1. J. Steroid Biochem. Mol. Biol. 74, 311–317 (2000).

    CAS  PubMed  Google Scholar 

  12. Schiff, R. et al. Advanced concepts in oestrogen receptor biology and breast cancer endocrine resistance: implicated role of growth factor signalling and oestrogen receptor coregulators. Cancer Chemother. Pharmacol. 56 (Suppl. 1), 10–20 (2005).

    PubMed  Google Scholar 

  13. Lupien, M. et al. Growth factor stimulation induces a distinct ERα cistrome underlying breast cancer endocrine resistance. Genes Dev. 24, 2219–2227 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Levin, E. R. Elusive extranuclear oestrogen receptors in breast cancer. Clin. Cancer Res. 18, 6–8 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnston, S. R. & Yeo, B. The optimal duration of adjuvant endocrine therapy for early stage breast cancer—with what drugs and for how long? Curr. Oncol. Rep. 16, 358 (2014).

    PubMed  Google Scholar 

  16. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  17. Gluck, S. Extending the clinical benefit of endocrine therapy for women with hormone receptor-positive metastatic breast cancer: differentiating mechanisms of action. Clin. Breast Cancer 14, 75–84 (2014).

    CAS  PubMed  Google Scholar 

  18. Obiorah, I. & Jordan, V. C. Progress in endocrine approaches to the treatment and prevention of breast cancer. Maturitas 70, 315–321 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Williams, N. & Harris, L. N. The renaissance of endocrine therapy in breast cancer. Curr. Opin. Obstet. Gynecol. 26, 41–47 (2014).

    PubMed  Google Scholar 

  20. Peng, J., Sengupta, S. & Jordan, V. C. Potential of selective oestrogen receptor modulators as treatments and preventives of breast cancer. Anticancer Agents Med. Chem. 9, 481–499 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Howell, A. Pure oestrogen antagonists for the treatment of advanced breast cancer. Endocr. Relat. Cancer 13, 689–706 (2006).

    CAS  PubMed  Google Scholar 

  22. Cigler, T. & Goss, P. E. Breast cancer adjuvant endocrine therapy. Cancer J. 13, 148–155 (2007).

    CAS  PubMed  Google Scholar 

  23. Francis, P. A. et al. Adjuvant ovarian suppression in premenopausal breast cancer. N. Engl. J. Med. 372, 436–446 (2015).

    PubMed  Google Scholar 

  24. Musgrove, E. A. & Sutherland, R. L. Biological determinants of endocrine resistance in breast cancer. Nat. Rev. Cancer 9, 631–643 (2009).

    CAS  PubMed  Google Scholar 

  25. Osborne, C. K. & Schiff, R. Mechanisms of endocrine resistance in breast cancer. Annu. Rev. Med. 62, 233–247 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoefnagel, L. D. et al. Prognostic value of oestrogen receptor alpha and progesterone receptor conversion in distant breast cancer metastases. Cancer 118, 4929–4935 (2012).

    CAS  PubMed  Google Scholar 

  27. Drury, S. C. et al. Changes in breast cancer biomarkers in the IGF1R/PI3K pathway in recurrent breast cancer after tamoxifen treatment. Endocr. Relat. Cancer 18, 565–577 (2011).

    CAS  PubMed  Google Scholar 

  28. Dodwell, D., Wardley, A. & Johnston, S. Postmenopausal advanced breast cancer: options for therapy after tamoxifen and aromatase inhibitors. Breast 15, 584–594 (2006).

    CAS  PubMed  Google Scholar 

  29. Robertson, J. F. et al. Fulvestrant versus anastrozole for the treatment of advanced breast carcinoma in postmenopausal women: a prospective combined analysis of two multicentre trials. Cancer 98, 229–238 (2003).

    CAS  PubMed  Google Scholar 

  30. Fowler, A. M. et al. Increases in oestrogen receptor-alpha concentration in breast cancer cells promote serine 118/104/106-independent AF-1 transactivation and growth in the absence of oestrogen. FASEB J. 18, 81–93 (2004).

    CAS  PubMed  Google Scholar 

  31. Schiff, R., Massarweh, S., Shou, J. & Osborne, C. K. Breast cancer endocrine resistance: how growth factor signalling and oestrogen receptor coregulators modulate response. Clin. Cancer Res. 9, 447S–454S (2003).

    CAS  PubMed  Google Scholar 

  32. Johnston, S. R. New strategies in oestrogen receptor-positive breast cancer. Clin. Cancer Res. 16, 1979–1987 (2010).

    CAS  PubMed  Google Scholar 

  33. Spears, M. & Bartlett, J. The potential role of oestrogen receptors and the SRC family as targets for the treatment of breast cancer. Expert Opin. Ther. Targets 13, 665–674 (2009).

    CAS  PubMed  Google Scholar 

  34. Cancer Genome Atlas, Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  35. Memorial Sloan Kettering Cancer Centre. The cBioPortal for Cancer Genomics [online], (2015).

  36. Karnik, P. S., Kulkarni, S., Liu, X. P., Budd, G. T. & Bukowski, R. M. Oestrogen receptor mutations in tamoxifen-resistant breast cancer. Cancer Res. 54, 349–353 (1994).

    CAS  PubMed  Google Scholar 

  37. Roodi, N. et al. Oestrogen receptor gene analysis in oestrogen receptor-positive and receptor-negative primary breast cancer. J. Natl Cancer Inst. 87, 446–451 (1995).

    CAS  PubMed  Google Scholar 

  38. Li, S. et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 4, 1116–1130 (2013).

    CAS  PubMed  Google Scholar 

  39. Toy, W. et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45, 1439–1445 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Robinson, D. R. et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45, 1446–1451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Merenbakh-Lamin, K. et al. D538G mutation in oestrogen receptor-alpha: a novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res. 73, 856–864 (2013).

    Google Scholar 

  42. Jeselsohn, R. et al. Emergence of constitutively active oestrogen receptor-alpha mutations in pretreated advanced oestrogen receptor-positive breast cancer. Clin. Cancer Res. 20, 1757–1767 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu, H. A., Riely, G. J. & Lovly, C. M. Therapeutic strategies utilized in the setting of acquired resistance to EGFR tyrosine kinase inhibitors. Clin. Cancer Res 20, 5898–5907 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rosenzweig, S. A. Acquired resistance to drugs targeting receptor tyrosine kinases. Biochem. Pharmacol. 83, 1041–1048 (2012).

    CAS  PubMed  Google Scholar 

  45. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signalling. Science 316, 1039–1043 (2007).

    CAS  PubMed  Google Scholar 

  46. Brady, S. W., Zhang, J., Seok, D., Wang, H. & Yu, D. Enhanced PI3K p110alpha signalling confers acquired lapatinib resistance that can be effectively reversed by a p110alpha-selective PI3K inhibitor. Mol. Cancer Ther. 13, 60–70 (2014).

    CAS  PubMed  Google Scholar 

  47. Bertino, J. R. Cancer research: from folate antagonism to molecular targets. Best Pract. Res. Clin. Haematol. 22, 577–582 (2009).

    PubMed  Google Scholar 

  48. Huw, L. Y. et al. Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer. Oncogenesis 2, e83 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Takezawa, K. et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov. 2, 922–933 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Visakorpi, T. et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. 9, 401–406 (1995).

    CAS  PubMed  Google Scholar 

  51. Holst, F. et al. Oestrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat. Genet. 39, 655–660 (2007).

    CAS  PubMed  Google Scholar 

  52. Tomita, S. et al. Oestrogen receptor alpha gene ESR1 amplification may predict endocrine therapy responsiveness in breast cancer patients. Cancer Sci. 100, 1012–1017 (2009).

    CAS  PubMed  Google Scholar 

  53. Reis-Filho, J. S. et al. ESR1 gene amplification in breast cancer: a common phenomenon? Nat. Genet. 40, 809–810 (2008).

    CAS  PubMed  Google Scholar 

  54. Adelaide, J. et al. Absence of ESR1 amplification in a series of breast cancers. Int. J. Cancer 123, 2970–2972 (2008).

    CAS  PubMed  Google Scholar 

  55. Moelans, C. B. et al. ESR1 amplification is rare in breast cancer and is associated with high grade and high proliferation: a multiplex ligation-dependent probe amplification study. Anal. Cell. Pathol. (Amst.) 33, 13–18 (2010).

    CAS  Google Scholar 

  56. Albertson, D. G. ESR1 amplification in breast cancer: controversy resolved? J. Pathol. 227, 1–3 (2012).

    CAS  PubMed  Google Scholar 

  57. Ooi, A. et al. Gene amplification of ESR1 in breast cancers—fact or fiction? A fluorescence in situ hybridization and multiplex ligation-dependent probe amplification study. J. Pathol. 227, 8–16 (2012).

    CAS  PubMed  Google Scholar 

  58. Iggo, R. D. et al. Next generation sequencing shows clonal selection after treatment with anastrozole or fulvestrant in a randomized trial of postmenopausal patients with large operable or locally-advanced hormone-receptor-positive breast cancer [abstract]. 36th CTRC-AACR San Antonio Breast Cancer Symposium. PD3–03 (2013).

  59. Piscuoglio, S. et al. Integrative genomic and transcriptomic characterization of papillary carcinomas of the breast. Mol. Oncol. 8, 1588–1602 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Veeraraghavan, J. et al. Recurrent ESR1–CCDC170 rearrangements in an aggressive subset of oestrogen receptor-positive breast cancers. Nat. Commun. 5, 4577 (2014).

    CAS  PubMed  Google Scholar 

  61. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fuqua, S. A. et al. A hypersensitive oestrogen receptor-alpha mutation in premalignant breast lesions. Cancer Res. 60, 4026–4029 (2000).

    CAS  PubMed  Google Scholar 

  63. Fuqua, S. A., Gu, G. & Rechoum, Y. Oestrogen receptor (ER) alpha mutations in breast cancer: hidden in plain sight. Breast Cancer Res. Treat. 144, 11–19 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Giordano, C. et al. Growth factor-induced resistance to tamoxifen is associated with a mutation of oestrogen receptor alpha and its phosphorylation at serine 305. Breast Cancer Res. Treat. 119, 71–85 (2010).

    CAS  PubMed  Google Scholar 

  65. Barone, I. et al. Expression of the K303R oestrogen receptor-alpha breast cancer mutation induces resistance to an aromatase inhibitor via addiction to the PI3K/Akt kinase pathway. Cancer Res. 69, 724–732 (2009).

    Google Scholar 

  66. Barone, I. et al. Phosphorylation of the mutant K303R oestrogen receptor alpha at serine 305 affects aromatase inhibitor sensitivity. Oncogene 29, 2404–2414 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Herynk, M. H. et al. Association between the oestrogen receptor alpha A908G mutation and outcomes in invasive breast cancer. Clin. Cancer Res. 13, 235–243 (2007).

    Google Scholar 

  68. Abbasi, S., Rasouli, M., Nouri, M. & Kalbasi, S. Association of oestrogen receptor-alpha A908G (K303R) mutation with breast cancer risk. Int. J. Clin. Exp. Med. 6, 39–49 (2013).

    CAS  PubMed  Google Scholar 

  69. Conway, K. et al. The oestrogen receptor-alpha A908G (K303R) mutation occurs at a low frequency in invasive breast tumours: results from a population-based study. Breast Cancer Res. 7, R871–R880 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ghimenti, C., Mello-Grand, M., Regolo, L., Zambelli, A. & Chiorino, G. Absence of the K303R oestrogen receptor alpha mutation in breast cancer patients exhibiting different responses to aromatase inhibitor anastrozole neoadjuvant treatment. Exp. Ther. Med. 1, 939–942 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Davies, M. P., O'Neill, P. A., Innes, H. & Sibson, D. R. Hypersensitive K303R oestrogen receptor-alpha variant not found in invasive carcinomas. Breast Cancer Res. 7, R113–R118 (2005).

    CAS  PubMed  Google Scholar 

  72. Tokunaga, E., Kimura, Y. & Maehara, Y. No hypersensitive oestrogen receptor-alpha mutation (K303R) in Japanese breast carcinomas. Breast Cancer Res. Treat. 84, 289–292 (2004).

    CAS  PubMed  Google Scholar 

  73. Baselga, J. et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012).

    CAS  PubMed  Google Scholar 

  74. Zhang, Q. X., Borg, A., Wolf, D. M., Oesterreich, S. & Fuqua, S. A. An oestrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res. 57, 1244–1249 (1997).

    CAS  PubMed  Google Scholar 

  75. Carlson, K. E., Choi, I., Gee, A., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. Altered ligand binding properties and enhanced stability of a constitutively active oestrogen receptor: evidence that an open pocket conformation is required for ligand interaction. Biochemistry 36, 897–905 (1997).

    Google Scholar 

  76. Lazennec, G., Ediger, T. R., Petz, L. N., Nardulli, A. M. & Katzenellenbogen, B. S. Mechanistic aspects of oestrogen receptor activation probed with constitutively active oestrogen receptors: correlations with DNA and coregulator interactions and receptor conformational changes. Mol. Endocrinol. 11, 1375–1386 (1997).

    CAS  PubMed  Google Scholar 

  77. Dwyer, M. A. et al. WNT11 expression is induced by oestrogen-related receptor alpha and beta-catenin and acts in an autocrine manner to increase cancer cell migration. Cancer Res. 70, 298–308 (2010).

    Google Scholar 

  78. Masson, R. et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J. Cell. Biol. 140, 1535–1541 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Esseghir, S. et al. A role for glial cell derived neurotrophic factor induced expression by inflammatory cytokines and RET/GFR alpha 1 receptor upregulation in breast cancer. Cancer Res. 67, 11732–11741 (2007).

    CAS  PubMed  Google Scholar 

  80. Gattelli, A. et al. Ret inhibition decreases growth and metastatic potential of oestrogen receptor positive breast cancer cells. EMBO Mol. Med. 5, 1335–1350 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nettles, K. W. et al. NFkappaB selectivity of oestrogen receptor ligands revealed by comparative crystallographic analyses. Nat. Chem. Biol. 4, 241–247 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).

    CAS  PubMed  Google Scholar 

  83. Jeselsohn, R. M. et al. Emergence of constitutively active estrogen receptor mutations in advanced estrogen receptor positive breast cancer [abstract]. 36th CTRC-AACR San Antonio Breast Cancer Symposium. S3–06 (2013).

  84. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ng, C. K., Pemberton, H. N. & Reis-Filho, J. S. Breast cancer intratumour genetic heterogeneity: causes and implications. Expert Rev. Anticancer Ther. 12, 1021–1032 (2012).

    CAS  PubMed  Google Scholar 

  86. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Turner, N. C. & Reis-Filho, J. S. Genetic heterogeneity and cancer drug resistance. Lancet Oncol. 13, e178–e185 (2012).

    PubMed  Google Scholar 

  88. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    CAS  PubMed  Google Scholar 

  89. Gundry, M. & Vijg, J. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants. Mutat. Res. 729, 1–15 (2012).

    CAS  PubMed  Google Scholar 

  90. Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11, 685–696 (2010).

    CAS  PubMed  Google Scholar 

  91. Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl Acad. Sci. USA 108, 9530–9535 (2011).

    PubMed  PubMed Central  Google Scholar 

  92. Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Vogelstein, B. & Kinzler, K. W. Digital PCR. Proc. Natl Acad. Sci. USA 96, 9236–9241 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Huggett, J. F., Cowen, S. & Foy, C. A. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin. Chem. 61, 79–88 (2014).

    PubMed  Google Scholar 

  95. Diaz, L. A. Jr & Bardelli, A. Liquid biopsies: genotyping circulating tumour DNA. J. Clin. Oncol. 32, 579–586 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumour DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Di Leo, A. et al. Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with oestrogen receptor-positive advanced breast cancer. J. Clin. Oncol. 28, 4594–4600 (2010).

    CAS  PubMed  Google Scholar 

  98. Skapek, S. X. et al. Safety and efficacy of high-dose tamoxifen and sulindac for desmoid tumour in children: results of a Children's Oncology Group (COG) phase II study. Paediatr. Blood Cancer 60, 1108–1112 (2013).

    CAS  Google Scholar 

  99. McClay, E. F., McClay, M. T., Monroe, L., Jones, J. A. & Winski, P. J. A phase II study of high dose tamoxifen and weekly cisplatin in patients with metastatic melanoma. Melanoma Res. 11, 309–313 (2001).

    CAS  PubMed  Google Scholar 

  100. Pinkerton, J. V. & Thomas, S. Use of SERMs for treatment in postmenopausal women. J. Steroid Biochem. Mol. Biol. 142, 142–154 (2014).

    CAS  PubMed  Google Scholar 

  101. Mayer, I. A. et al. Phase I study of ARN-810, a novel selective estrogen receptor degrader, in postmenopausal women with locally advanced or metastatic estrogen receptor positive breast cancer [abstract]. CTRC-AACR San Antonio Breast Cancer Symposium. OT3-2-07 (2013).

  102. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  103. Wang, Y. et al. Bufalin is a potent small-molecule inhibitor of the steroid receptor co-activators SRC-3 and SRC-1. Cancer Res. 74, 1506–1517 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yan, F. et al. Identification of verrucarin a as a potent and selective steroid receptor co-activator-3 small molecule inhibitor. PLoS ONE 9, e95243 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Finn, R. S. et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal oestrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 11, R77 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. Finn, R. S. et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 16, 25–35 (2015).

    CAS  PubMed  Google Scholar 

  107. Abrams, S. I., Hand, P. H., Tsang, K. Y. & Schlom, J. Mutant ras epitopes as targets for cancer vaccines. Semin. Oncol. 23, 118–134 (1996).

    CAS  PubMed  Google Scholar 

  108. Rahma, O. E. et al. The immunological and clinical effects of mutated ras peptide vaccine in combination with IL-2, GM-CSF, or both in patients with solid tumours. J. Transl. Med. 12, 55 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Buhrman, J. D. & Slansky, J. E. Improving T cell responses to modified peptides in tumour vaccines. Immunol. Res. 55, 34–47 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yu, M. et al. Cancer therapy. Ex vivo culture of circulating breast tumour cells for individualized testing of drug susceptibility. Science 345, 216–220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.S. has been funded in part by NCI grants P50 CA58183 and P50 CA186784-01 (SPORE) and P30 CA125123, as well as by the Susan G. Komen for the Cure Promise Grant PG12221410, and the Breast Cancer Research Foundation. C.D.A. has been funded by the Cancer Prevention and Research Institute of Texas (CPRIT) programme RP140102 and the Baylor College of Medicine Comprehensive Cancer Training Program. R.J. has been funded in part by the Claudia Adams Barr Award and by the NCI grant P50 CA168508 (SPORE) Career Development Award.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the discussion, content, writing, and review/editing of the manuscript.

Corresponding author

Correspondence to Rachel Schiff.

Ethics declarations

Competing interests

M.B. has received a commercial research grant and is a consultant/advisory board member for Novartis Pharmaceuticals. R.S. has received research funding from AstraZeneca and GlaxoSmithKline. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeselsohn, R., Buchwalter, G., De Angelis, C. et al. ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol 12, 573–583 (2015). https://doi.org/10.1038/nrclinonc.2015.117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.117

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer