Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PET in the management of locally advanced and metastatic NSCLC

Key Points

  • Disease-specific survival of patients with advanced-stage non-small-cell lung cancer remains poor; combined and intensified treatments have failed to substantially improve patient outcome

  • Specific patient groups can benefit considerably from certain treatment approaches, emphasizing the requirement to adapt treatment to the individual

  • PET can be used to characterize the biological landscape of the tumour and identify possible resistance to specific treatments, and thus facilitate clinical decision-making

  • Quantification of tumour glucose metabolism, hypoxia, and cellular proliferation has the potential to provide valuable information for treatment selection, adaptation and response assessment in this patient group

  • Ongoing development of novel PET radiotracers will further extend the opportunities to non-invasively quantify other factors relevant to treatment resistance, which could ultimately be used to personalize treatment

Abstract

Despite considerable improvements in the treatment options for advanced-stage non-small-cell lung cancer (NSCLC), disease-specific survival remains poor. With the aim of improving patient outcome, the treatment paradigm of locally advanced NSCLC has shifted from solely radiotherapy towards combined and intensified treatment approaches. Also, treatment for patients with stage IV (oligo)metastatic NSCLC has evolved rapidly, with therapeutic options that include a number of targeted agents, surgery, and stereotactic ablative radiotherapy. However, personalizing treatment to the individual patient remains difficult and requires monitoring of biological parameters responsible for treatment resistance to facilitate treatment selection, guidance, and adaptation. PET is a well-established molecular imaging platform that enables non-invasive quantification of many biological parameters that are relevant to both local and systemic therapy. With increasing clinical evidence, PET has gradually evolved from a purely diagnostic tool to a multifunctional imaging modality that can be utilized for treatment selection, adaptation, early response monitoring, and follow up in patients with NSCLC. Herein, we provide a comprehensive overview of the available clinical data on the use of this modality in this setting, and discuss future perspectives of PET imaging for the clinical management of patients with locally advanced and metastatic NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The application of PET imaging for dose-painting radiotherapy in a patient with NSCLC.
Figure 2: Adaptive radiotherapy planning using serial FDG-PET–CT imaging in a patient with stage IIIB NSCLC.
Figure 3: Sequential FDG-PET and low-dose CT imaging for treatment response monitoring in two patients with stage III NSCLC treated with concomitant chemoradiotherapy.

Similar content being viewed by others

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    PubMed  Google Scholar 

  2. Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E. & Adjei, A. A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83, 584–594 (2008).

    Article  PubMed  Google Scholar 

  3. Shepherd, F. A. et al. The International Association for the Study of Lung Cancer lung cancer staging project: proposals regarding the clinical staging of small cell lung cancer in the forthcoming (seventh) edition of the tumor, node, metastasis classification for lung cancer. J. Thorac. Oncol. 2, 1067–1077 (2007).

    Article  PubMed  Google Scholar 

  4. Aupérin, A. et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol. 28, 2181–2190 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362, 2380–2388 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Giaccone, G. et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 1. J. Clin. Oncol. 22, 777–784 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Herbst, R. S. et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 2. J. Clin. Oncol. 22, 785–794 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Govindan, R. et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kaira, K. et al. Biological significance of 18F-FDG uptake on PET in patients with non-small-cell lung cancer. Lung Cancer 83, 197–204 (2014).

    Article  PubMed  Google Scholar 

  10. Hellwig, D., Baum, R. P. & Kirsch, C. M. FDG-PET, PET/CT and conventional nuclear medicine procedures in the evaluation of lung cancer—a systematic review. Nuklearmedizin 48, 59–69 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. van Tinteren, H. et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 359, 1388–1392 (2002).

    Article  PubMed  Google Scholar 

  12. Mac Manus, M. P. et al. The use of fused PET/CT images for patient selection and radical radiotherapy target volume definition in patients with non-small cell lung cancer: results of a prospective study with mature survival data. Radiother. Oncol. 106, 292–298 (2013).

    Article  PubMed  Google Scholar 

  13. Tehrani, O. S. & Shields, A. F. PET imaging of proliferation with pyrimidines. J. Nucl. Med. 54, 903–912 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Shields, A. F. et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med. 4, 1334–1336 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Chalkidou, A. et al. Correlation between Ki-67 immunohistochemistry and 18F-fluorothymidine uptake in patients with cancer: a systematic review and meta-analysis. Eur. J. Cancer 48, 3499–3513 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Buck, A. et al. Clinical relevance of imaging proliferative activity in lung nodules. Eur. J. Nucl. Med. Mol. Imaging 32, 525–533 (2005).

    Article  PubMed  Google Scholar 

  17. Yamamoto, Y. et al. Comparison of 18F-FLT PET and 18F-FDG PET for preoperative staging in non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 35, 236–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Cobben, D. C. et al. Is 18F-3′-fluoro-3′-deoxy-L-thymidine useful for the staging and restaging of non-small cell lung cancer? J. Nucl. Med. 45, 1677–1682 (2004).

    CAS  PubMed  Google Scholar 

  19. Vansteenkiste, J. et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24, vi89–vi98 (2013).

    Article  PubMed  Google Scholar 

  20. O'Rourke, N., Roqué i Figuls, M., Farré Bernadó, N. & Macbeth, F. Concurrent chemoradiotherapy in non-small cell lung cancer. Cochrane Database of Systematic Reviews, Issue 6. Art. No.: CD002140. http://dx.doi.org/10.1002/14651858.CD002140.pub3 (2010).

  21. Curran, W. J. et al. Sequential vs concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J. Natl Cancer Inst. 103, 1452–1460 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Goffin, J. et al. First-line systemic chemotherapy in the treatment of advanced non-small cell lung cancer: a systematic review. J. Thorac. Oncol. 5, 260–274 (2010).

    Article  PubMed  Google Scholar 

  23. Albain, K. S. et al. Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. Lancet 374, 379–386 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Machtay, M. et al. Defining local-regional control and its importance in locally advanced non-small cell lung carcinoma. J. Thorac. Oncol. 7, 716–722 (2012).

    Article  PubMed  Google Scholar 

  25. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Fidler, I. J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Schiller, J. H. et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 346, 92–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Baumann, M., Krause, M. & Hill, R. Exploring the role of cancer stem cells in radioresistance. Nat. Rev. Cancer 8, 545–554 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Baumann, M. et al. Final results of the randomized phase III CHARTWEL-trial (ARO 97-1) comparing hyperfractionated-accelerated versus conventionally fractionated radiotherapy in non-small cell lung cancer (NSCLC). Radiother. Oncol. 100, 76–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Mauguen, A. et al. Hyperfractionated or accelerated radiotherapy in lung cancer: an individual patient data meta-analysis. J. Clin. Oncol. 30, 2788–2797 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Everitt, S. J. et al. Differential 18F-FDG and 18F-FLT uptake on serial PET/CT imaging before and during definitive chemoradiation for non-small cell lung cancer. J. Nucl. Med. 55, 1069–1074 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Yue, J.-B. et al. Histopathologic validation of 3′-deoxy-3′-18F-fluorothymidine PET for detecting tumor repopulation during fractionated radiotherapy of human FaDu squamous cell carcinoma in nude mice. Radiother. Oncol. 111, 475–481 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Graves, E. E., Maity, A. & Le, Q.-T. The tumor microenvironment in non-small-cell lung cancer. Semin. Radiat. Oncol. 20, 156–163 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bollineni, V. R., Wiegman, E. M., Pruim, J., Groen, H. J. M. & Langendijk, J. A. Hypoxia imaging using positron emission tomography in non-small cell lung cancer: implications for radiotherapy. Cancer Treat. Rev. 38, 1027–1032 (2012).

    Article  PubMed  Google Scholar 

  36. Horsman, M. R., Mortensen, L. S., Petersen, J. B., Busk, M. & Overgaard, J. Imaging hypoxia to improve radiotherapy outcome. Nat. Rev. Clin. Oncol. 9, 674–687 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Sun, X., Niu, G., Chan, N., Shen, B. & Chen, X. Tumor hypoxia imaging. Mol. Imaging Biol. 13, 399–410 (2011).

    Article  PubMed  Google Scholar 

  38. Hu, M. et al. Hypoxia imaging with 18F-fluoroerythronitroimidazole integrated PET/CT and immunohistochemical studies in non-small cell lung cancer. Clin. Nucl. Med. 38, 91–596 (2013).

    Article  Google Scholar 

  39. Zegers, C. M. et al. Hypoxia imaging with [18F]HX4 PET in NSCLC patients: defining optimal imaging parameters. Radiother. Oncol. 109, 58–64 (2013).

    Article  PubMed  Google Scholar 

  40. Postema, E. et al. Initial results of hypoxia imaging using 1-α-d-(5-deoxy-5-18F-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur. J. Nucl. Med. Mol. Imaging 36, 1565–1573 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Dehdashti, F. et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur. J. Nucl. Med. Mol. Imaging 30, 844–850 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Yip, C., Blower, P., Goh, V., Landau, D. & Cook, G. R. Molecular imaging of hypoxia in non-small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 42, 956–976 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Meng, X., Kong, F.-M. & Yu, J. Implementation of hypoxia measurement into lung cancer therapy. Lung Cancer 75, 146–150 (2012).

    Article  PubMed  Google Scholar 

  44. Williamson, S. K. et al. Phase III trial of paclitaxel plus carboplatin with or without tirapazamine in advanced non-small-cell lung cancer: Southwest Oncology Group Trial S0003. J. Clin. Oncol. 23, 9097–9104 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. US Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0 [online], (2010).

  46. Leimgruber, A. et al. Effect of platinum-based chemoradiotherapy on cellular proliferation in bone marrow and spleen, estimated by 18F-FLT PET/CT in patients with locally advanced non-small cell lung cancer. J. Nucl. Med. 55, 1075–1080 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Kocak, Z. et al. Prospective assessment of dosimetric/physiologic-based models for predicting radiation pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 67, 178–186 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Petit, S. F. et al. [18F]fluorodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 81, 698–705 (2011).

    Article  PubMed  Google Scholar 

  49. Castillo, R. et al. Pre-radiotherapy FDG PET predicts radiation pneumonitis in lung cancer. Radiat. Oncol. 9, 74 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mac Manus, M. P. et al. Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 80, 1365–1371 (2011).

    Article  PubMed  Google Scholar 

  51. De Ruysscher, D., Nestle, U., Jeraj, R. & MacManus, M. PET scans in radiotherapy planning of lung cancer. Lung Cancer 75, 141–145 (2012).

    Article  PubMed  Google Scholar 

  52. van Baardwijk, A. et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int. J. Radiat. Oncol. Biol. Phys. 68, 771–778 (2007).

    Article  PubMed  Google Scholar 

  53. De Ruysscher, D. et al. Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: a prospective clinical study. Int. J. Radiat. Oncol. Biol. Phys. 62, 988–994 (2005).

    Article  PubMed  Google Scholar 

  54. Bentzen, S. M. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol. 6, 112–117 (2005).

    Article  PubMed  Google Scholar 

  55. Aerts, H. J. et al. Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: a prospective validation. Lung Cancer 75, 73–76 (2012).

    Article  PubMed  Google Scholar 

  56. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  57. van Elmpt, W. et al. The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother. Oncol. 104, 67–71 (2012).

    Article  PubMed  Google Scholar 

  58. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  59. Sonke, J.-J. & Belderbos, J. Adaptive radiotherapy for lung cancer. Semin. Radiat. Oncol. 20, 94–106 (2010).

    Article  PubMed  Google Scholar 

  60. Guckenberger, M., Wilbert, J., Richter, A., Baier, K. & Flentje, M. Potential of adaptive radiotherapy to escalate the radiation dose in combined radiochemotherapy for locally advanced non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 79, 901–908 (2011).

    Article  PubMed  Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  62. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  63. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  64. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Wahl, R. L., Jacene, H., Kasamon, Y. & Lodge, M. A. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 50, 122S–150S (2009).

    Article  PubMed  CAS  Google Scholar 

  66. Huang, W. et al. Value of metabolic tumor volume on repeated 18F-FDG PET/CT for early prediction of survival in locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy. J. Nucl. Med. 55, 1584–1590 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Usmanij, E. A. et al. 18F-FDG PET early response evaluation of locally advanced non-small cell lung cancer treated with concomitant chemoradiotherapy. J. Nucl. Med. 54, 1528–1534 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Decoster, L. et al. Complete metabolic tumour response, assessed by 18-fluorodeoxyglucose positron emission tomography (18FDG-PET), after induction chemotherapy predicts a favourable outcome in patients with locally advanced non-small cell lung cancer (NSCLC). Lung Cancer 62, 55–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Trigonis, I. et al. Early reduction in tumour [18F]fluorothymidine (FLT) uptake in patients with non-small cell lung cancer (NSCLC) treated with radiotherapy alone. Eur. J. Nucl. Med. Mol. Imaging 41, 682–693 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kahraman, D. et al. Quantitative analysis of response to treatment with erlotinib in advanced non-small cell lung cancer using 18F-FDG and 3′-deoxy-3′-18F-fluorothymidine PET. J. Nucl. Med. 52, 1871–1877 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Sohn, H.-J. et al. [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin. Cancer Res. 14, 7423–7429 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Zander, T. et al. Early prediction of nonprogression in advanced non-small-cell lung cancer treated with erlotinib by using [18F]fluorodeoxyglucose and [18F]fluorothymidine positron emission tomography. J. Clin. Oncol. 29, 1701–1708 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Yoon, D. H. et al. FDG-PET as a potential tool for selecting patients with advanced non-small cell lung cancer who may be spared maintenance therapy after first-line chemotherapy. Clin. Cancer Res. 17, 5093–5100 (2011).

    Article  PubMed  Google Scholar 

  74. Moon, S. et al. Metabolic response evaluated by 18F-FDG PET/CT as a potential screening tool in identifying a subgroup of patients with advanced non-small cell lung cancer for immediate maintenance therapy after first-line chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 40, 1005–1013 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Lopez Guerra, J. L. et al. Large decreases in standardized uptake values after definitive radiation are associated with better survival of patients with locally advanced non-small cell lung cancer. 53, 225–233 (2012).

  76. Machtay, M. et al. Prediction of survival by [18F]fluorodeoxyglucose positron emission tomography in patients with locally advanced non-small-cell lung cancer undergoing definitive chemoradiation therapy: results of the ACRIN 6668/RTOG 0235 trial. J. Clin. Oncol. 31, 3823–3830 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chen, H. H., Chiu, N.-T., Su, W.-C., Guo, H.-R. & Lee, B.-F. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology 264, 559–566 (2012).

    Article  PubMed  Google Scholar 

  78. Liao, S. et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 39, 27–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Im, H.-J. et al. Prognostic value of volumetric parameters of 18F-FDG PET in non-small-cell lung cancer: a meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 42, 241–251 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  81. Hicks, R. J. Role of 18F-FDG PET in assessment of response in non-small cell lung cancer. J. Nucl. Med. 50, 31S–42S (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Boellaard, R. Standards for PET image acquisition and quantitative data analysis. J. Nucl. Med. 50, 11S–20S (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Boellaard, R. et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur. J. Nucl. Med. Mol. Imaging 42, 328–354 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Korreman, S. S. Motion in radiotherapy: photon therapy. Phys. Med. Biol. 57, R161–R191 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Dawood, M., Büther, F., Lang, N., Schober, O. & Schäfers, K. P. Respiratory gating in positron emission tomography: a quantitative comparison of different gating schemes. Med. Phys. 34, 3067–3076 (2007).

    Article  PubMed  Google Scholar 

  86. Grootjans, W. et al. Amplitude-based optimal respiratory gating in positron emission tomography in patients with primary lung cancer. Eur. Radiol. 24, 3242–3250 (2014).

    Article  PubMed  Google Scholar 

  87. Büther, F. et al. List mode-driven cardiac and respiratory gating in PET. J. Nucl. Med. 50, 674–681 (2009).

    Article  PubMed  Google Scholar 

  88. Bundschuh, R. A. et al. Postacquisition detection of tumor motion in the lung and upper abdomen using list-mode pet data: a feasibility study. J. Nucl. Med. 48, 758–763 (2007).

    Article  PubMed  Google Scholar 

  89. Kesner, A. L. & Kuntner, C. A new fast and fully automated software based algorithm for extracting respiratory signal from raw PET data and its comparison to other methods. Med. Phys. 37, 5550–5559 (2010).

    Article  PubMed  Google Scholar 

  90. Houshmand, S. et al. An update on novel quantitative techniques in the context of evolving whole-body PET imaging. PET Clinics 10, 45–58 (2015).

    Article  PubMed  Google Scholar 

  91. Hoetjes, N. J. et al. Partial volume correction strategies for quantitative FDG PET in oncology. Eur. J. Nucl. Med. Mol. Imaging 37, 1679–1687 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tixier, F. et al. Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J. Nucl. Med. 55, 1235–1241 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Cook, G. J. et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J. Nucl. Med. 54, 19–26 (2013).

    Article  PubMed  Google Scholar 

  94. Houseni, M. et al. Prognostic implication of dual-phase PET in adenocarcinoma of the lung. J. Nucl. Med. 51, 535–542 (2010).

    Article  PubMed  Google Scholar 

  95. Chen, H. H. et al. The increment in standardized uptake value determined using dual-phase 18F-FDG PET is a promising prognostic factor in non-small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 40, 1478–1485 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Schmidt-Hansen, M., Baldwin, D. R. & Hasler, E. What is the most effective follow-up model for lung cancer patients? A systematic review. J. Thorac. Oncol. 7, 821–824 (2012).

    Article  PubMed  Google Scholar 

  97. Ettinger, D. S. et al. Non-small cell lung cancer. J. Natl Compr. Canc. Netw. 10, 1236–1271 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Mac Manus, M. P. et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J. Clin. Oncol. 21, 1285–1292 (2003).

    Article  PubMed  Google Scholar 

  99. van Loon, J. et al. Follow-up with 18FDG-PET-CT after radical radiotherapy with or without chemotherapy allows the detection of potentially curable progressive disease in non-small cell lung cancer patients: a prospective study. Eur. J. Cancer 45, 588–595 (2009).

    Article  PubMed  Google Scholar 

  100. Hicks, R. J. et al. The utility of 18F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy: impact on management and prognostic stratification. J. Nucl. Med. 42, 1605–1613 (2001).

    CAS  PubMed  Google Scholar 

  101. Antoniou, A. J., Marcus, C., Tahari, A. K., Wahl, R. L. & Subramaniam, R. M. Follow-up or surveillance 18F-FDG PET/CT and survival outcome in lung cancer patients. J. Nucl. Med. 55, 1062–1068 (2014).

    Article  PubMed  CAS  Google Scholar 

  102. van der Veldt, A. A., Smit, E. F. & Lammertsma, A. A. Positron emission tomography as a method for measuring drug delivery to tumors in vivo: the example of [11C]docetaxel. Front. Oncol. 3, 208 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. van der Veldt, A. A. et al. Toward prediction of efficacy of chemotherapy: a proof of concept study in lung cancer patients using [11C]docetaxel and positron emission tomography. Clin. Cancer Res. 19, 4163–4173 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. van der Veldt, A. A. et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 21, 82–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Zhou, C. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12, 735–742 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. van de Wateringen, F. C. et al. Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. Biomed. Res. Int. 2014, 203601 (2014).

    Google Scholar 

  107. Memon, A. A. et al. PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer. Br. J. Cancer 105, 1850–1855 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Meng, X. et al. Molecular imaging with 11C-PD153035 PET/CT predicts survival in non–small cell lung cancer treated with EGFR-TKI: a pilot study. J. Nucl. Med. 52, 1573–1579 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Kwak, E. L. et al. anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bergethon, K. et al. ROS1 rearrangements define a unique molecular class of lung cancers. J. Clin. Oncol. 30, 863–870 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Gold, K. A. ROS1—targeting the one percent in lung cancer. N. Engl. J. Med. 371, 2030–2031 (2014).

    Article  PubMed  Google Scholar 

  112. Shaw, A. T. et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 371, 1963–1971 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Stollman, T. H., Ruers, T. J., Oyen, W. J. & Boerman, O. C. New targeted probes for radioimaging of angiogenesis. Methods 48, 188–192 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Gaertner, F. C., Kessler, H., Wester, H. J., Schwaiger, M. & Beer, A. J. Radiolabelled RGD peptides for imaging and therapy. Eur. J. Nucl. Med. Mol. Imaging 39, 126–138 (2012).

    Article  CAS  Google Scholar 

  116. Beer, A. J. et al. Comparison of integrin αvβ3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-Galacto-RGD and 18F-FDG. J. Nucl. Med. 49, 22–29 (2008).

    Article  PubMed  Google Scholar 

  117. Shimizu, K. et al. ASC amino-acid transporter 2 (ASCT2) as a novel prognostic marker in non-small cell lung cancer. Br. J. Cancer 110, 2030–2039 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Pieterman, R. et al. Visualisation and assessment of the protein synthesis rate of lung cancer using carbon-11 tyrosine and positron emission tomography. Eur. J. Nucl. Med. 29, 243–247 (2002).

    Article  Google Scholar 

  119. Pauleit, D. et al. PET with O-(2-18F-fluoroethyl)-L-tyrosine in peripheral tumors: first clinical results. J. Nucl. Med. 46, 411–416 (2005).

    CAS  PubMed  Google Scholar 

  120. Miyazawa, H., Arai, T., Iio, M. & Hara, T. PET imaging of non-small-cell lung carcinoma with carbon-11-methionine: relationship between radioactivity uptake and flow-cytometric parameters. J. Nucl. Med. 34, 1886–1891 (1993).

    CAS  PubMed  Google Scholar 

  121. Kaira, K. et al. 18F-FMT uptake seen within primary cancer on PET helps predict outcome of non-small cell lung cancer. J. Nucl. Med. 50, 1770–1776 (2009).

    Article  PubMed  Google Scholar 

  122. Kaira, K. et al. Assessment of therapy response in lung cancer with 18F-α-methyl tyrosine PET. AJR Am. J. Roentgenol. 195, 1204–1211 (2010).

    Article  PubMed  Google Scholar 

  123. Baek, S. et al. Exploratory clinical trial of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate for imaging xC transporter using positron emission tomography in patients with non-small cell lung or breast cancer. Clin. Cancer Res. 18, 5427–5437 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Huang, C. & McConathy, J. Radiolabeled amino acids for oncologic imaging. J. Nucl. Med. 54, 1007–1010 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Neves, A. A. & Brindle, K. M. Imaging cell death. J. Nucl. Med. 55, 1–4 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Allen, A. et al. Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with 18F-ML-10. Eur. J. Nucl. Med. Mol. Imaging 39, 1400–1408 (2012).

    Article  PubMed  Google Scholar 

  127. Nguyen, Q.-D. et al. Temporal and spatial evolution of therapy-induced tumor apoptosis detected by caspase-3-selective molecular imaging. Clin. Cancer Res. 19, 3914–3924 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

W.G. is the recipient of an educational grant from Siemens Healthcare, The Hague, Netherlands. The authors would like to thank Aniek Even and Lucas Persoon from the Department of Radiation Oncology (MAASTRO clinic), Maastricht University Medical Centre, for providing the radiotherapy dose painting and adaptive radiotherapy images shown in Figure 1 and Figure 2, respectively.

Author information

Authors and Affiliations

Authors

Contributions

W.G., L.-F.d.G.-O., and E.G.C.T. researched the data for the article. W.G., L.-F.d.G.-O., E.G.C.T., W.J.G.O., and J.B. made substantial contributions to discussions of content. W.G. wrote the article and all authors reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Willem Grootjans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grootjans, W., de Geus-Oei, LF., Troost, E. et al. PET in the management of locally advanced and metastatic NSCLC. Nat Rev Clin Oncol 12, 395–407 (2015). https://doi.org/10.1038/nrclinonc.2015.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.75

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer