Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy

Abstract

Autophagy is fundamental to the maintenance of intracellular homeostasis in virtually all human cells. Accordingly, defective autophagy predisposes healthy cells to undergoing malignant transformation. By contrast, malignant cells are able to harness autophagy to thrive, despite adverse microenvironmental conditions, and to resist therapeutic challenges. Thus, inhibition of autophagy has been proposed as a strategy to kill cancer cells or sensitize them to therapy; however, autophagy is also critical for optimal immune function, and mediates cell-extrinsic homeostatic effects owing to its central role in danger signalling by neoplastic cells responding to immunogenic chemotherapy and/or radiation therapy. In this Perspective, we discuss accumulating preclinical and clinical evidence in support of the all-too-often dismissed possibility that activating autophagy might be a relevant clinical objective that enables an increase in the effectiveness of immunogenic chemotherapy and/or radiation therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Autophagic responses to cellular demands.
Figure 2: Dominance of the cell-extrinsic effects of autophagy.

Similar content being viewed by others

References

  1. Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759–774 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Menzies, F. M., Fleming, A. & Rubinsztein, D. C. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci. 16, 345–357 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Green, D. R., Galluzzi, L. & Kroemer, G. Mitochondria and the autophagy–inflammation–cell death axis in organismal aging. Science 333, 1109–1112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaur, J. & Debnath, J. Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol. 16, 461–472 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Galluzzi, L., Pietrocola, F., Levine, B. & Kroemer, G. Metabolic control of autophagy. Cell 159, 1263–1276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fuchs, Y. & Steller, H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat. Rev. Mol. Cell Biol. 16, 329–344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Galluzzi, L., Bravo-San Pedro, J. M., Blomgren, K. & Kroemer, G. Autophagy in acute brain injury. Nat. Rev. Neurosci. 17, 467–484 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Galluzzi, L. et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22, 58–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Green, D. R. & Levine, B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157, 65–75 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sica, V. et al. Organelle-specific initiation of autophagy. Mol. Cell 59, 522–539 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Efeyan, A., Comb, W. C. & Sabatini, D. M. Nutrient-sensing mechanisms and pathways. Nature 517, 302–310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farre, J. C. & Subramani, S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat. Rev. Mol. Cell Biol. 17, 537–552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Galluzzi, L. et al. Autophagy in malignant transformation and cancer progression. EMBO J. 34, 856–880 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077–15082 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795–800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei, Y. et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154, 1269–1284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Tang, H. et al. Decreased mRNA expression in human breast cancer is associated with estrogen receptor-negative subtypes and poor prognosis. EBioMedicine 2, 255–263 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lan, Y. Y., Londono, D., Bouley, R., Rooney, M. S. & Hacohen, N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 9, 180–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Griffin, L. M., Cicchini, L. & Pyeon, D. Human papillomavirus infection is inhibited by host autophagy in primary human keratinocytes. Virology 437, 12–19 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Salemi, S., Yousefi, S., Constantinescu, M. A., Fey, M. F. & Simon, H. U. Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res. 22, 432–435 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Young, A. R. et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23, 798–803 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goussetis, D. J. et al. Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood 120, 3555–3562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo, J. Y., Xia, B. & White, E. Autophagy-mediated tumor promotion. Cell 155, 1216–1219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng, Y. F. et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9, 2056–2068 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Gong, C. et al. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32, 2261–2272 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Baginska, J. et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc. Natl Acad. Sci. USA 110, 17450–17455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Messai, Y. et al. ITPR1 protects renal cancer cells against natural killer cells by inducing autophagy. Cancer Res. 74, 6820–6832 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma, Y., Galluzzi, L., Zitvogel, L. & Kroemer, G. Autophagy and cellular immune responses. Immunity 39, 211–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. http://dx.doi.org/10.1038/nri.2016.107 (2016).

  33. Shi, C. S. et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zitvogel, L., Kepp, O., Galluzzi, L. & Kroemer, G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat. Immunol. 13, 343–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Li, Y. et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 68, 6889–6895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pua, H. H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y. W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204, 25–31 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Puleston, D. J. et al. Autophagy is a critical regulator of memory CD8+ T cell formation. eLife 3, e03706 (2014).

    Article  PubMed Central  Google Scholar 

  39. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Thorburn, J. et al. Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ. 16, 175–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Tang, D. et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29, 5299–5310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang, D. et al. Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190, 881–892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hou, W. et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 4, e966 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Q., Kang, R., Zeh, H. J. III, Lotze, M. T. & Tang, D. DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death. Autophagy 9, 451–458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garg, A. D. et al. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 9, 1292–1307 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Li, W. et al. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochem. Pharmacol. 81, 1152–1163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wei, H. et al. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 25, 1510–1527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McAfee, Q. et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc. Natl Acad. Sci. USA 109, 8253–8258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905–913 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, J., Hou, N., Faried, A., Tsutsumi, S. & Kuwano, H. Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur. J. Cancer 46, 1900–1909 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, X. G. et al. Chloroquine-enhanced efficacy of cisplatin in the treatment of hypopharyngeal carcinoma in xenograft mice. PLoS ONE 10, e0126147 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Golden, E. B. et al. Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg. Focus 37, E12 (2014).

    Article  PubMed  Google Scholar 

  53. Pan, Y. et al. Targeting autophagy augments in vitro and in vivo antimyeloma activity of DNA-damaging chemotherapy. Clin. Cancer Res. 17, 3248–3258 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Chittaranjan, S. et al. Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer. Clin. Cancer Res. 20, 3159–3173 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Lefort, S. et al. Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers. Autophagy 10, 2122–2142 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Amaravadi, R. K. et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest. 117, 326–336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dragowska, W. H. et al. Induction of autophagy is an early response to gefitinib and a potential therapeutic target in breast cancer. PLoS ONE 8, e76503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Selvakumaran, M., Amaravadi, R. K., Vasilevskaya, I. A. & O'Dwyer, P. J. Autophagy inhibition sensitizes colon cancer cells to antiangiogenic and cytotoxic therapy. Clin. Cancer Res. 19, 2995–3007 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Lin, J. et al. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy 10, 2006–2020 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wei, M. F. et al. Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy 10, 1179–1192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tseng, H. C. et al. Sensitizing effect of 3-methyladenine on radiation-induced cytotoxicity in radio-resistant HepG2 cells in vitro and in tumor xenografts. Chem. Biol. Interact. 192, 201–208 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Chen, Y. et al. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer. Mol. Med. Rep. 12, 1645–1652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Maes, H. et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26, 190–206 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Maycotte, P. et al. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 8, 200–212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Taherian, E., Rao, A., Malemud, C. J. & Askari, A. D. The biological and clinical activity of anti-malarial drugs in autoimmune disorders. Curr. Rheumatol. Rev. 9, 45–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Piconi, S. et al. Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood 118, 3263–3272 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Gostner, J. M. et al. Antimalarial drug chloroquine counteracts activation of indoleamine (2,3)-dioxygenase activity in human PBMC. FEBS Open Bio 2, 241–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martinson, J. A. et al. Chloroquine modulates HIV-1-induced plasmacytoid dendritic cell alpha interferon: implication for T-cell activation. Antimicrob. Agents Chemother. 54, 871–881 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Akin, D. et al. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy 10, 2021–2035 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mohan, N., Chakrabarti, M., Banik, N. L. & Ray, S. K. Combination of LC3 shRNA plasmid transfection and genistein treatment inhibited autophagy and increased apoptosis in malignant neuroblastoma in cell culture and animal models. PLoS ONE 8, e78958 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hu, Y. L. et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res. 72, 1773–1783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ko, A. et al. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ. 21, 92–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Karsli-Uzunbas, G. et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 4, 914–927 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Rosenfeldt, M. T. et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 504, 296–300 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Pietrocola, F. et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30, 147–160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rao, S. et al. A dual role for autophagy in a murine model of lung cancer. Nat. Commun. 5, 3056 (2014).

    Article  PubMed  CAS  Google Scholar 

  80. Strohecker, A. M. et al. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. 3, 1272–1285 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Guo, J. Y. et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27, 1447–1461 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wolpin, B. M. et al. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19, 637–638 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rangwala, R. et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10, 1369–1379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mahalingam, D. et al. Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10, 1403–1414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vogl, D. T. et al. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 10, 1380–1390 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Goldberg, S. B. et al. A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer. J. Thorac Oncol. 7, 1602–1608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rosenfeld, M. R. et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10, 1359–1368 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rojas-Puentes, L. L. et al. Phase II randomized, double-blind, placebo-controlled study of whole-brain irradiation with concomitant chloroquine for brain metastases. Radiat. Oncol. 8, 209 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Rangwala, R. et al. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10, 1391–1402 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chi, K. H. et al. Addition of rapamycin and hydroxychloroquine to metronomic chemotherapy as a second line treatment results in high salvage rates for refractory metastatic solid tumors: a pilot safety and effectiveness analysis in a small patient cohort. Oncotarget 6, 16735–16745 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Michaud, M. et al. An autophagy-dependent anticancer immune response determines the efficacy of melanoma chemotherapy. Oncoimmunology 3, e944047 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lee, C. et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl Med. 4, 124ra127 (2012).

    Article  Google Scholar 

  93. Saleh, A. D. et al. Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle 12, 1955–1963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Simone, B. A. et al. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer. Cell Cycle 15, 2265–2274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Di Biase, S. et al. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell 30, 136–146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Marino, G. et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 53, 710–725 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Xia, Z. W. et al. Heme oxygenase-1-mediated CD4+CD25high regulatory T cells suppress allergic airway inflammation. J. Immunol. 177, 5936–5945 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Otterbein, L. E. et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6, 422–428 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Zhu, X. F. et al. Knockdown of heme oxygenase-1 promotes apoptosis and autophagy and enhances the cytotoxicity of doxorubicin in breast cancer cells. Oncol. Lett. 10, 2974–2980 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang, M. et al. Autophagy-based survival prognosis in human colorectal carcinoma. Oncotarget 6, 7084–7103 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jung, G. et al. Autophagic markers BECLIN 1 and LC3 are associated with prognosis of multiple myeloma. Acta Haematol. 134, 17–24 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Ladoire, S. et al. Combined evaluation of LC3B puncta and HMGB1 expression predicts residual risk of relapse after adjuvant chemotherapy in breast cancer. Autophagy 11, 1878–1890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ladoire, S. et al. The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer. Autophagy 12, 864–875 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rubinsztein, D. C., Codogno, P. & Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11, 709–730 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Galluzzi, L., Lopez-Soto, A., Kumar, S. & Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity 44, 221–231 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Lopez-Otin, C., Galluzzi, L., Freije, J. M., Madeo, F. & Kroemer, G. Metabolic control of longevity. Cell 166, 802–821 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. de Groot, S. et al. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: a randomized pilot study. BMC Cancer 15, 652 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Argiles, J. M., Busquets, S., Stemmler, B. & Lopez-Soriano, F. J. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer 14, 754–762 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Tardif, N., Klaude, M., Lundell, L., Thorell, A. & Rooyackers, O. Autophagic–lysosomal pathway is the main proteolytic system modified in the skeletal muscle of esophageal cancer patients. Am. J. Clin. Nutr. 98, 1485–1492 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Pigna, E. et al. Aerobic exercise and pharmacological treatments counteract cachexia by modulating autophagy in colon cancer. Sci. Rep. 6, 26991 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Golden, E. B. et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3, e28518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Demaria, S. & Formenti, S. C. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front. Oncol. 2, 153 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Galluzzi, L. et al. Classification of current anticancer immunotherapies. Oncotarget 5, 12472–12508 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yang, S. et al. Autophagy inhibition dysregulates TBK1 signaling and promotes pancreatic inflammation. Cancer Immunol. Res. 4, 520–530 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liang, X. et al. Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression. Cancer Res. 72, 2791–2801 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Noman, M. Z. et al. Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res. 71, 5976–5986 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Koks, C. A. et al. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int. J. Cancer 136, E313–E325 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Martinez-Outschoorn, U. E., Peiris-Pages, M., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. http://dx.doi.org/10.1038/nrclinonc.2016.60 (2016).

  121. Guido, C. et al. Metabolic reprogramming of cancer-associated fibroblasts by TGF-beta drives tumor growth: connecting TGF-β signaling with “Warburg-like” cancer metabolism and L-lactate production. Cell Cycle 11, 3019–3035 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.G., J.M.B.-S.P. and G.K. gratefully acknowledge financial support from the ANR under the frame of E-Rare-2 (the ERA-Net for Research on Rare Diseases); Cancéropôle Ile-de-France; the European Commission (ArtForce); the European Research Council (ERC); the Fondation Bettencourt Schueller; the Fondation de France; the French Agence National de la Recherche (ANR) — Projets Blancs; the French Association pour la recherche sur le cancer (ARC); the French Fondation pour la Recherche Médicale (FRM); the French Institut National du Cancer (INCa); the French Ligue contre le Cancer (équipe labellisée); the LabEx Immuno-Oncology; the Paris Alliance of Cancer Research Institutes (PACRI); the SIRIC Cancer Research and Personalized Medicine (CARPEM); the SIRIC (Sites de Recherche Intégrée sur le Cancer) Stratified Oncology Cell DNA Repair and Tumour Immune Elimination (SOCRATE); the Swiss Bridge Foundation; and the Swiss Institute for Experimental Cancer Research (ISREC). The work of S.D. is supported by the Breast Cancer Research Foundation, the Chemotherapy Foundation, and the US National Institutes of Health (grants R01 CA201246 and R01 CA198533). The work of S.C.F is supported by the Breast Cancer Research Foundation; the US Department of Defence Breast Cancer Research Program (grant W81XWH-11-1-0530); and the US National Institutes of Health (grant R01 CA161891).

Author information

Authors and Affiliations

Authors

Contributions

L.G. and J.M.B.-S.P. researched data for this article. All authors made a substantial contribution to discussions of content, L.G. wrote the manuscript, and all authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Lorenzo Galluzzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galluzzi, L., Bravo-San Pedro, J., Demaria, S. et al. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol 14, 247–258 (2017). https://doi.org/10.1038/nrclinonc.2016.183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing