Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systemic, perioperative management of muscle-invasive bladder cancer and future horizons

Key Points

  • High metastatic relapse rates after radical cystectomy indicate muscle-invasive bladder cancer (MIBC) is a systemic disease at diagnosis in many patients

  • The use of adjuvant chemotherapy to decrease relapse rates after radical cystectomy is not supported by level 1 evidence, and the postoperative morbidity of patients often precludes such systemic treatment

  • For eligible patients, the standard-of-care treatment approach for MIBC comprises cisplatin-based neoadjuvant chemotherapy followed by radical cystectomy and bilateral pelvic lymph-node dissection

  • Barriers to improved patient outcomes include inaccurate clinical staging before selecting curative treatment, slow uptake of neoadjuvant chemotherapy, and the lack of an effective non-cisplatin-based neoadjuvant treatment regimen

  • Identification of genomic predictors of a response to chemotherapy might lead to a more-personalized approach to the treatment of patients with MIBC

  • Immunotherapy will probably reshape the MIBC treatment landscape

Abstract

Many patients diagnosed with muscle-invasive bladder cancer (MIBC) will develop distant metastatic disease. Over the past three decades, perioperative cisplatin-based chemotherapy has been investigated for its ability to reduce the number of deaths from bladder cancer. Insufficient evidence is available to fully support the use of such chemotherapy in the adjuvant setting; however, neoadjuvant cisplatin-based combination chemotherapy has become a standard of care for eligible patients based on the improved disease-specific and overall survival demonstrated in two randomized phase III trials, compared with surgery alone. For patients with disease downstaging to non-MIBC at the time of radical cystectomy as a result of neoadjuvant chemotherapy, outcomes are outstanding, with 5-year overall survival of 80–90%. Nevertheless, the inability to define before treatment the patients who will and those who will not achieve such a response has impeded the achievement of better outcomes for patients with MIBC. High-throughput DNA and RNA profiling technologies might help to overcome this barrier and enable a more-personalized approach to the use of cytotoxic neoadjuvant chemotherapy. In the past 2 years, trial results have demonstrated the unprecedented ability of immune- checkpoint blockade to induce durable remissions in patients with metastatic disease that has progressed after chemotherapy; studies are now urgently needed to determine how best to incorporate this powerful therapeutic modality into the care of patients with MIBC. Herein, we review the evolution of chemotherapy and immunotherapy for muscle-invasive bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jewett, H. J. & Strong, G. H. Infiltrating carcinoma of the bladder; relation of depth of penetration of the bladder wall to incidence of local extension and metastases. J. Urol. 55, 366–372 (1946).

    Article  CAS  PubMed  Google Scholar 

  2. Raghavan, D., Shipley, W. U., Garnick, M. B., Russell, P. J. & Richie, J. P. Biology and management of bladder cancer. N. Engl. J. Med. 322, 1129–1138 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

    Article  Google Scholar 

  4. Edge, S., Byrd, D. & Compton, C. AJCC Cancer Staging Manual 7th edn (Springer, 2010).

    Google Scholar 

  5. American Cancer Society. Cancer Facts and Figures 2016. Cancer.org http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-047079.pdf (2016).

  6. Wu, X.-R. Urothelial tumorigenesis: a tale of divergent pathways. Nat. Rev. Cancer 5, 713–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Pasin, E., Josephson, D. Y., Mitra, A. P., Cote, R. J. & Stein, J. P. Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev. Urol. 10, 31–43 (2008).

    PubMed  PubMed Central  Google Scholar 

  8. Stein, J. P. et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J. Clin. Oncol. 19, 666–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Yafi, F. A. et al. Contemporary outcomes of 2287 patients with bladder cancer who were treated with radical cystectomy: a Canadian multicentre experience. BJU Int. 108, 539–545 (2011).

    Article  PubMed  Google Scholar 

  10. Vale, C. L. Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data. Eur. Urol. 48, 202–206 (2005).

    Article  Google Scholar 

  11. Montie, J. E. et al. Bladder cancer. J. Natl Compr. Canc. Netw. 7, 8–39 (2009).

    Article  PubMed  Google Scholar 

  12. Witjes, J. A. et al. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur. Urol. 65, 778–792 (2014).

    Article  PubMed  Google Scholar 

  13. Milowsky, M. I. et al. Guideline on muscle-invasive and metastatic bladder cancer (European Association of Urology Guideline): American Society of Clinical Oncology clinical practice guideline endorsement. J. Clin. Oncol. 34, 1945–1952 (2016).

    Article  PubMed  Google Scholar 

  14. Grossman, H. B. et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N. Engl. J. Med. 349, 859–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Galsky, M. D. et al. A consensus definition of patients with metastatic urothelial carcinoma who are unfit for cisplatin-based chemotherapy. Lancet Oncol. 12, 211–214 (2011).

    Article  PubMed  Google Scholar 

  16. van der Hage, J. A. et al. Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer Trial 10902. J. Clin. Oncol. 19, 4224–4237 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Rastogi, P. et al. Preoperative chemotherapy: updates of national surgical adjuvant breast and bowel project protocols B-18 and B-27. J. Clin. Oncol. 26, 778–785 (2008).

    Article  PubMed  Google Scholar 

  18. Mauri, D., Pavlidis, N. & Ioannidis, J. P. A. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J. Natl Cancer Inst. 97, 188–194 (2005).

    Article  PubMed  Google Scholar 

  19. Pagano, F. et al. Results of contemporary radical cystectomy for invasive bladder cancer: a clinicopathological study with an emphasis on the inadequacy of the tumor, nodes and metastases classification. J. Urol. 145, 45–50 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Dalbagni, G. et al. Cystectomy for bladder cancer: a contemporary series. J. Urol. 165, 1111–1116 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Altekruse, S. et al. SEER Cancer Statistics Review, 1975–2007, National Cancer institute. Cancer.gov http://seer.cancer.gov/archive/csr/1975_2007/ (2011).

    Google Scholar 

  22. Donat, S. M. et al. Potential impact of postoperative early complications on the timing of adjuvant chemotherapy in patients undergoing radical cystectomy: a high-volume tertiary cancer center experience. Eur. Urol. 55, 177–186 (2009).

    Article  PubMed  Google Scholar 

  23. Paz-Ares, L. G. et al. Randomized phase III trial comparing adjuvant paclitaxel/gemcitabine/cisplatin (PGC) to observation in patients with resected invasive bladder cancer: results of the Spanish Oncology Genitourinary Group (SOGUG) 99/01 study [abstract]. J. Clin. Oncol. 28, LBA4518 (2010).

    Article  Google Scholar 

  24. Stadler, W. M. et al. Phase III study of molecularly targeted adjuvant therapy in locally advanced urothelial cancer of the bladder based on p53 status. J. Clin. Oncol. 29, 3443–3449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cognetti, F. et al. Adjuvant chemotherapy with cisplatin and gemcitabine versus chemotherapy at relapse in patients with muscle-invasive bladder cancer submitted to radical cystectomy: an Italian, multicenter, randomized phase III trial. Ann. Oncol. 23, 695–700 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Sternberg, C. N. et al. Immediate versus deferred chemotherapy after radical cystectomy in patients with pT3–pT4 or N+ M0 urothelial carcinoma of the bladder (EORTC 30994): an intergroup, open-label, randomised phase 3 trial. Lancet Oncol. 16, 76–86 (2015).

    Article  PubMed  Google Scholar 

  27. Leow, J. J. et al. Adjuvant chemotherapy for invasive bladder cancer: a 2013 updated systematic review and meta-analysis of randomized trials. Eur. Urol. 66, 42–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Svatek, R. S. et al. The effectiveness of off-protocol adjuvant chemotherapy for patients with urothelial carcinoma of the urinary bladder. Clin. Cancer Res. 16, 4461–4467 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Galsky, M. D. et al. Effectiveness of adjuvant chemotherapy for locally advanced bladder cancer. J. Clin. Oncol. 34, 825–832 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Yagoda, A., Watson, R. C., Gonzalez-Vitale, J. C., Grabstald, H. & Whitmore, W. F. Cis-dichlorodiammineplatinum(II) in advanced bladder cancer. Cancer Treat. Rep. 60, 917–923 (1976).

    CAS  PubMed  Google Scholar 

  31. Yagoda, A. Phase II trials with cis-dichlorodiammineplatinum(II) in the treatment of urothelial cancer. Cancer Treat. Rep. 63, 1565–1572 (1979).

    CAS  PubMed  Google Scholar 

  32. Herr, H. W. Cis-diamminedichloride platinum II in the treatment of advanced bladder cancer. J. Urol. 123, 853–855 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. Soloway, M. S., Ikard, M. & Ford, K. Cis-diamminedichloroplatinum (II) in locally advanced and metastatic urothelial cancer. Cancer 47, 476–480 (1981).

    Article  CAS  PubMed  Google Scholar 

  34. Harker, W. G. et al. Cisplatin, methotrexate, and vinblastine (CMV): an effective chemotherapy regimen for metastatic transitional cell carcinoma of the urinary tract. A Northern California Oncology Group study. J. Clin. Oncol. 3, 1463–1470 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Sternberg, C. N. et al. Preliminary results of M-VAC (methotrexate, vinblastine, doxorubicin and cisplatin) for transitional cell carcinoma of the urothelium. J. Urol. 133, 403–407 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Logothetis, C. J. et al. A prospective randomized trial comparing MVAC and CISCA chemotherapy for patients with metastatic urothelial tumors. J. Clin. Oncol. 8, 1050–1055 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Loehrer, P. J. et al. A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J. Clin. Oncol. 10, 1066–1073 (1992).

    Article  PubMed  Google Scholar 

  38. Saxman, S. B. et al. Long-term follow-up of a phase III intergroup study of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J. Clin. Oncol. 15, 2564–2569 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Mead, G. M. et al. A randomized trial comparing methotrexate and vinblastine (MV) with cisplatin, methotrexate and vinblastine (CMV) in advanced transitional cell carcinoma: results and a report on prognostic factors in a Medical Research Council study. MRC Advanced Bladder Cancer Working Party. Br. J. Cancer 78, 1067–1075 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scher, H. I. et al. Neoadjuvant M-VAC (methotrexate, vinblastine, doxorubicin and cisplatin) effect on the primary bladder lesion. J. Urol. 139, 470–474 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Millikan, R. et al. Integrated therapy for locally advanced bladder cancer: final report of a randomized trial of cystectomy plus adjuvant M-VAC versus cystectomy with both preoperative and postoperative M-VAC. J. Clin. Oncol. 19, 4005–4013 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. deVere White, R. W. et al. A sequential treatment approach to myoinvasive urothelial cancer: a phase II Southwest Oncology Group Trial (S0219). J. Urol. 181, 2476–2481 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Canter, D. et al. Clinicopathological outcomes after radical cystectomy for clinical T2 urothelial carcinoma: further evidence to support the use of neoadjuvant chemotherapy. BJU Int. 107, 58–62 (2011).

    Article  PubMed  Google Scholar 

  44. Meijer, R. P. et al. Response to induction chemotherapy and surgery in non-organ confined bladder cancer: a single institution experience. Eur. J. Surg. Oncol. 39, 365–371 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Culp, S. H. et al. Refining patient selection for neoadjuvant chemotherapy before radical cystectomy. J. Urol. 191, 40–47 (2014).

    Article  PubMed  Google Scholar 

  46. Apolo, A. B., Grossman, H. B., Bajorin, D., Steinberg, G. & Kamat, A. M. Practical use of perioperative chemotherapy for muscle-invasive bladder cancer: summary of session at the Society of Urologic Oncology annual meeting. Urol. Oncol. 30, 772–780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sternberg, C. N. et al. Methotrexate, vinblastine, doxorubicin, and cisplatin for advanced transitional cell carcinoma of the urothelium. Efficacy and patterns of response and relapse. Cancer 64, 2448–2458 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Dodd, P. M. et al. Outcome of postchemotherapy surgery after treatment with methotrexate, vinblastine, doxorubicin, and cisplatin in patients with unresectable or metastatic transitional cell carcinoma. J. Clin. Oncol. 17, 2546–2546 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Herr, H. W., Donat, S. M. & Bajorin, D. F. Post-chemotherapy surgery in patients with unresectable or regionally metastatic bladder cancer. J. Urol. 165, 811–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Ho, P. L. et al. Outcome of patients with clinically node-positive bladder cancer undergoing consolidative surgery after preoperative chemotherapy: the M.D. Anderson Cancer Center Experience. Urol. Oncol. 34, 59.e1–59.e8 (2016).

    Article  Google Scholar 

  51. Galsky, M. D. et al. Comparative effectiveness of treatment strategies for bladder cancer with clinical evidence of regional lymph node involvement. J. Clin. Oncol. 34, 2627–2635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Apolo, A. B. et al. Clinical value of fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in bladder cancer. J. Clin. Oncol. 28, 3973–3978 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Splinter, T. A. et al. The prognostic value of the pathological response to combination chemotherapy before cystectomy in patients with invasive bladder cancer. European Organization for Research on Treatment of Cancer — Genitourinary Group. J. Urol. 147, 606–608 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Sonpavde, G. et al. Quality of pathologic response and surgery correlate with survival for patients with completely resected bladder cancer after neoadjuvant chemotherapy. Cancer 115, 4104–4109 (2009).

    Article  PubMed  Google Scholar 

  55. Tully, C. M., Bochner, B. H. & Dalbagni, G. Gemcitabine-cisplatin (GC) plus radical cystectomy-pelvic lymph node dissection (RC-PLND) for patients (pts) with muscle-invasive bladder cancer (MIBC): assessing impacts of neoadjuvant chemotherapy (NAC) and the PLND [abstract]. J. Clin. Oncol. 32 (Suppl. 4), 355 (2014).

    Article  Google Scholar 

  56. Zargar, H. et al. Multicenter assessment of neoadjuvant chemotherapy for muscle-invasive bladder cancer. Eur. Urol. 67, 241–249 (2015).

    Article  PubMed  Google Scholar 

  57. Chism, D. D., Woods, M. E. & Milowsky, M. I. Neoadjuvant paradigm for accelerated drug development: an ideal model in bladder cancer. Oncologist 18, 933–940 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Funt, S. A. & Chapman, P. B. The role of neoadjuvant trials in drug development for solid tumors. Clin. Cancer Res. 22, 2323–2328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kassouf, W. et al. Outcome of patients with bladder cancer with pN+ disease after preoperative chemotherapy and radical cystectomy. Urology 73, 147–152 (2009).

    Article  PubMed  Google Scholar 

  60. Malmström, P. U. et al. Five-year followup of a prospective trial of radical cystectomy and neoadjuvant chemotherapy: Nordic Cystectomy Trial I. The Nordic Cooperative Bladder Cancer Study Group. J. Urol. 155, 1903–1906 (1996).

    Article  PubMed  Google Scholar 

  61. Sherif, A. et al. Neoadjuvant cisplatin–methotrexate chemotherapy for invasive bladder cancer — Nordic Cystectomy Trial 2. Scand. J. Urol. Nephrol. 36, 419–425 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. International Collaboration of Trialists. Neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: a randomised controlled trial. Lancet 354, 533–540 (1999).

  63. International Collaboration of Trialists. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long-term results of the BA06 30894 Trial. J. Clin. Oncol. 29, 2171–2177 (2011).

  64. Early Breast Cancer Trialists' Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet 352, 930–942 (1998).

  65. Gill, S. et al. Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: who benefits and by how much? J. Clin. Oncol. 22, 1797–1806 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. David, K. A., Milowsky, M. I., Ritchey, J., Carroll, P. R. & Nanus, D. M. Low incidence of perioperative chemotherapy for stage III bladder cancer 1998 to 2003: a report from the National Cancer Data Base. J. Urol. 178, 451–454 (2007).

    Article  PubMed  Google Scholar 

  67. Fedeli, U., Fedewa, S. A. & Ward, E. M. Treatment of muscle invasive bladder cancer: evidence from the National Cancer Database, 2003 to 2007. J. Urol. 185, 72–78 (2011).

    Article  PubMed  Google Scholar 

  68. Reardon, Z. D. et al. Trends in the use of perioperative chemotherapy for localized and locally advanced muscle-invasive bladder cancer: a sign of changing tides. Eur. Urol. 67, 165–170 (2015).

    Article  PubMed  Google Scholar 

  69. Lerner, S. P. et al. A phase III surgical trial to evaluate the benefit of a standard versus an extended pelvic lymphadenectomy performed at time of radical cystectomy for muscle invasive urothelial cancer: SWOG S1011 (NCT #01224665) [abstract MP65-02]. J. Urol. 193 (Suppl.), e807 (2015).

    Google Scholar 

  70. von der Maase, H. et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J. Clin. Oncol. 18, 3068–3077 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. von der Maase, H. et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol. 23, 4602–4608 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Dash, A. et al. A role for neoadjuvant gemcitabine plus cisplatin in muscle-invasive urothelial carcinoma of the bladder. Cancer 113, 2471–2477 (2008).

    Article  PubMed  Google Scholar 

  73. National Comprehensive Cancer Network. Bladder Cancer (Version 1.2016). NCCN http://www.nccn.org/professionals/physician_gls/pdf/bladder.pdf (2016).

  74. Porter, M. P., Kerrigan, M. C., Donato, B. M. K. & Ramsey, S. D. Patterns of use of systemic chemotherapy for Medicare beneficiaries with urothelial bladder cancer. Urol. Oncol. 29, 252–258 (2011).

    Article  PubMed  Google Scholar 

  75. Sternberg, C. N. et al. Randomized phase III trial of high-dose-intensity methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) chemotherapy and recombinant human granulocyte colony-stimulating factor versus classic MVAC in advanced urothelial tract tumors: European Organization for Research and Treatment of Cancer Protocol No. 30924. J. Clin. Oncol. 19, 2638–2646 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Sternberg, C. N. et al. Seven year update of an EORTC phase III trial of high-dose intensity M-VAC chemotherapy and G-CSF versus classic M-VAC in advanced urothelial tract tumours. Eur. J. Cancer 42, 50–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Choueiri, T. K. et al. Neoadjuvant dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: pathologic, radiologic, and biomarker correlates. J. Clin. Oncol. 32, 1889–1894 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Plimack, E. R. et al. Accelerated methotrexate, vinblastine, doxorubicin, and cisplatin is safe, effective, and efficient neoadjuvant treatment for muscle-invasive bladder cancer: results of a multicenter phase II study with molecular correlates of response and toxicity. J. Clin. Oncol. 32, 1895–1901 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Blick, C. et al. Accelerated methotrexate, vinblastine, doxorubicin, and cisplatin (AMVAC) as neoadjuvant chemotherapy for patients with muscle-invasive transitional cell carcinoma of the bladder. Cancer 118, 3920–3927 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Pouessel, D. et al. Pathologic down-staging following standard (SD) MVAC (methotrexate-vinblastine-doxorubicine-cisplatin) or dose-dense MVAC (DD) neoadjuvant chemotherapy (NC) for muscle-invasive urothelial bladder cancer (UC): a retrospective multicenter cohort of the French Genitourinary Tumor Group (GETUG/AFU) [abstract]. J. Clin. Oncol. 32, 4550 (2014).

    Article  Google Scholar 

  81. Pouessel, D., Gauthier, H., Serrate, C., Pfister, C. & Culine, S. Dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin neoadjuvant chemotherapy in bladder cancer: ready for prime time? J. Clin. Oncol. 32, 4168–4169 (2014).

    Article  PubMed  Google Scholar 

  82. Galsky, M. D. et al. Comparative effectiveness of gemcitabine plus cisplatin versus methotrexate, vinblastine, doxorubicin, plus cisplatin as neoadjuvant therapy for muscle-invasive bladder cancer. Cancer 121, 2586–2593 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02177695 (2016).

  84. Bamias, A. et al. Prospective, open-label, randomized, phase III study of two dose-dense regimens MVAC versus gemcitabine/cisplatin in patients with inoperable, metastatic or relapsed urothelial cancer: a Hellenic Cooperative Oncology Group study (HE 16/03). Ann. Oncol. 24, 1011–1017 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Plimack, E. et al. Neoadjuvant dose-dense gemcitabine and cisplatin (DDGC) in patients (pts) with muscle-invasive bladder cancer (MIBC): final results of a multicenter phase II study [abstract]. J. Clin. Oncol. 32 (Suppl. 5S), 4513 (2014).

    Article  Google Scholar 

  86. Balar, A. et al. Multicenter prospective phase II trial of neoadjuvant (neo) dose dense gemcitabine and cisplatin (DD-GC) in patients (pts) with muscle-invasive bladder cancer (MIBC) [abstract]. J. Clin. Oncol. 34 (Suppl. 2S), 436 (2016).

    Article  Google Scholar 

  87. Dash, A. et al. Impact of renal impairment on eligibility for adjuvant cisplatin-based chemotherapy in patients with urothelial carcinoma of the bladder. Cancer 107, 506–513 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Bellmunt, J. et al. Carboplatin-based versus cisplatin-based chemotherapy in the treatment of surgically incurable advanced bladder carcinoma. Cancer 80, 1966–1972 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Dogliotti, L. et al. Gemcitabine plus cisplatin versus gemcitabine plus carboplatin as first-line chemotherapy in advanced transitional cell carcinoma of the urothelium: results of a randomized phase 2 trial. Eur. Urol. 52, 134–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Petrioli, R. et al. Comparison between a cisplatin-containing regimen and a carboplatin-containing regimen for recurrent or metastatic bladder cancer patients: a randomized phase II study. Cancer 77, 344–351 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Smith, D. C. et al. Phase II trial of paclitaxel, carboplatin and gemcitabine in patients with locally advanced carcinoma of the bladder. J. Urol. 180, 2384–2388 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Grivas, P. D. et al. A phase II trial of neoadjuvant nab-paclitaxel, carboplatin, and gemcitabine (ACaG) in patients with locally advanced carcinoma of the bladder. Urology 82, 111–117 (2013).

    Article  PubMed  Google Scholar 

  93. Hussain, S. A. et al. A study of split-dose cisplatin-based neo-adjuvant chemotherapy in muscle-invasive bladder cancer. Oncol. Lett. 3, 855–859 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hutchins, L. F., Unger, J. M., Crowley, J. J., Coltman, C. A. & Albain, K. S. Underrepresentation of patients 65 years of age or older in cancer-treatment trials. N. Engl. J. Med. 341, 2061–2067 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Guancial, E. A. et al. Bladder cancer in the elderly patient: challenges and solutions. Clin. Interv. Aging 10, 939–949 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hurria, A. et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J. Clin. Oncol. 29, 3457–3465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Montgomery, J. S., Miller, D. C. & Weizer, A. Z. Quality indicators in the management of bladder cancer. J. Natl Compr. Canc. Netw. 11, 492–500 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Prat, A., Ellis, M. J. & Perou, C. M. Practical implications of gene-expression-based assays for breast oncologists. Nat. Rev. Clin. Oncol. 9, 48–57 (2012).

    Article  CAS  Google Scholar 

  100. von Minckwitz, G. et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 30, 1796–1804 (2012).

    Article  PubMed  Google Scholar 

  101. Esserman, L. J. et al. Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res. Treat. 132, 1049–1062 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Esserman, L. J. et al. Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL — CALGB 150007/150012, ACRIN 6657. J. Clin. Oncol. 30, 3242–3249 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sjödahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377–3386 (2012).

    Article  PubMed  CAS  Google Scholar 

  104. Lindgren, D. et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 70, 3463–3472 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Damrauer, J. S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl Acad. Sci. USA 111, 3110–3115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

  108. McConkey, D. J. et al. Therapeutic opportunities in the intrinsic subtypes of muscle-invasive bladder cancer. Hematol. Oncol. Clin. North Am. 29, 377–394 (2015).

    Article  PubMed  Google Scholar 

  109. Lerner, S. P. et al. Comprehensive characterization of 412 muscle invasive urothelial carcinomas: final analysis of The Cancer Genome Atlas (TCGA) project [abstract]. J. Clin. Oncol. 34 (Suppl. 2S), 405 (2016).

    Article  Google Scholar 

  110. McConkey, D. J. et al. A prognostic gene expression signature in the molecular classification of chemotherapy-naïve urothelial cancer is predictive of clinical outcomes from neoadjuvant chemotherapy: a phase 2 trial of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with bevacizumab in urothelial cancer. Eur. Urol. 69, 855–862 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Bouwman, P. & Jonkers, J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat. Rev. Cancer 12, 587–598 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Byrski, T. et al. Pathologic complete response to neoadjuvant cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res. Treat. 147, 401–405 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. van Allen, E. M. et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 4, 1140–1153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Plimack, E. R. et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur. Urol. 68, 959–967 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, J. K. et al. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc. Natl Acad. Sci. USA 104, 13086–13091 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Old, L. J., Clarke, D. A. & Benacerraf, B. Effect of Bacillus Calmette–Guérin infection on transplanted tumours in the mouse. Nature 184 (Suppl. 5), 291–292 (1959).

    Article  PubMed  Google Scholar 

  117. Herr, H. W. & Morales, A. History of Bacillus Calmette–Guérin and bladder cancer: an immunotherapy success story. J. Urol. 179, 53–56 (2008).

    Article  PubMed  Google Scholar 

  118. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Plimack, E. et al. Pembrolizumab (MK-3475) for advanced urothelial cancer: updated results and biomarker analysis from KEYNOTE-012 [abstract]. J. Clin. Oncol. 33, 4502 (2015).

    Article  Google Scholar 

  120. Apolo, A. B. et al. Safety, clinical activity, and PD-L1 expression of avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with metastatic urothelial carcinoma from the JAVELIN Solid Tumor phase Ib trial [abstract]. J. Clin. Oncol. 34 (Suppl. 2S), 367 (2016).

    Article  Google Scholar 

  121. Massard, C. et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J. Clin. Oncol. 34, 3119–3125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sharma, P. et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 17, 1590–1598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Galsky, M. D. et al. Efficacy and safety of nivolumab monotherapy in patients with metastatic urothelial cancer (mUC) who have received prior treatment: results from the phase II CheckMate 275 study [abstract]. J. Clin. Oncol. 34, 4501 (2016).

    Article  Google Scholar 

  124. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Balar, A. V. et al. Atezolizumab (atezo) as first-line (1L) therapy in cisplatin-ineligible locally advanced/metastatic urothelial carcinoma (mUC): primary analysis of IMvigor210 cohort 1 [abstract]. J. Clin. Oncol. 34, LBA4500 (2016).

    Article  Google Scholar 

  126. Balar, A. et al. Pembrolizumab (pembro) as first-line therapy for advanced/unresectable or metastatic urothelial cancer: preliminary results from the phase 2 KEYNOTE-052 study [abstract LBA32]. Ann. Oncol. 27 (Suppl. 6), http:\\dx.doi.org/10.1093/annonc/mdw435.25 (2016).

  127. De Santis, M. et al. Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC Study 30986. J. Clin. Oncol. 30, 191–199 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Food and Drug Administration. Guidance for industry: pathologic complete response in neoadjuvant treatment of high-risk early-stage breast cancer: use as an endpoint to support accelerated approval, 2012. FDA http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM305501.pdf (2014).

  129. Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R. & Albelda, S. M. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713–6721 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Sawant, A. et al. Enhancement of antitumor immunity in lung cancer by targeting myeloid-derived suppressor cell pathways. Cancer Res. 73, 6609–6620 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Ko, H.-J. et al. A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res. 67, 7477–7486 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Shevchenko, I. et al. Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. Int. J. Cancer 133, 98–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Ramakrishnan, R. et al. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J. Clin. Invest. 120, 1111–1124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, Z., Xu, X. S., Yang, J. & Wang, G. Defining the function of XPC protein in psoralen and cisplatin-mediated DNA repair and mutagenesis. Carcinogenesis 24, 1111–1121 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Chen, M.-J. et al. Cisplatin depletes TREX2 and causes Robertsonian translocations as seen in TREX2 knockout cells. Cancer Res. 67, 9077–9083 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Galon, J. et al. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J. 16, 61–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Rozkova, D., Horvath, R., Bartunkova, J. & Spisek, R. Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin. Immunol. 120, 260–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Liu, S. V., Powderly, J. D. & Camidge, D. R. Safety and efficacy of MPDL3280A (anti-PDL1) in combination with platinum-based doublet chemotherapy in patients with advanced non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 33, 8030 (2015).

    Article  Google Scholar 

  140. Langer, C. J. et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 17, 1497–1508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liakou, C. I. et al. CTLA-4 blockade increases IFNγ-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc. Natl Acad. Sci. USA 105, 14987–14992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Balar, A. V. & Milowsky, M. I. Neoadjuvant therapy in muscle-invasive bladder cancer: a model for rational accelerated drug development. Urol. Clin. North Am. 42, 217–224 (2015).

    Article  PubMed  Google Scholar 

  143. Rosenberg, J. Atezolizumab in patients (pts) with locally-advanced or metastatic urothelial carcinoma (mUC): results from a pivotal multicenter phase II study (IMvigor 210) [abstract 21LBA]. Eur. J. Cancer 51, (Suppl. 3), S720 (2015).

    Article  Google Scholar 

  144. Weiss, C. & Rödel, C. Urological cancer: chemoradiation superior in muscle-invasive bladder cancer. Nat. Rev. Clin. Oncol. 9, 374–375 (2012).

    Article  PubMed  Google Scholar 

  145. Mak, R. H. et al. Long-term outcomes in patients with muscle-invasive bladder cancer after selective bladder-preserving combined-modality therapy: a pooled analysis of radiation therapy oncology group protocols 8802, 8903, 9506, 9706, 9906, and 0233. J. Clin. Oncol. 32, 3801–3809 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. James, N. D. et al. Radiotherapy with or without chemotherapy in muscle-invasive bladder cancer. N. Engl. J. Med. 366, 1477–1488 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Iyer, G. et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J. Clin. Oncol. 31, 3133–3140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Iyer, G. et al. Genome sequencing identifies a basis for everolimus sensitivity. Science 338, 221–221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Martinez-Pineiro, J. A. et al. Original articles: bladder cancer: neoadjuvant cisplatin chemotherapy before radical cystectomy in invasive transitional cell carcinoma of the bladder: a prospective randomized phase III study. J. Urol. 153, 964–973 (1995).

    Article  CAS  PubMed  Google Scholar 

  150. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02450331 (2016).

  151. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02632409 (2016).

  152. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02690558 (2016).

  153. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02365766 (2016).

  154. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02845323 (2016).

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02812420 (2016).

Download references

Acknowledgements

The work of S.A.F. and J.E.R. is supported, in part, by a NIH/National Cancer Institute (NCI) Cancer Center Support Grant (P30 CA008748).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to all aspects of the preparation of the manuscript for publication.

Corresponding authors

Correspondence to Samuel A. Funt or Jonathan E. Rosenberg.

Ethics declarations

Competing interests

S.A.F. declares stock ownership in Kite Pharma. J.E.R. has been a consultant for Agensys, Eli Lilly, Roche and Sanofi, and declares a patent interest in ERCC2 testing for cisplatin sensitivity.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funt, S., Rosenberg, J. Systemic, perioperative management of muscle-invasive bladder cancer and future horizons. Nat Rev Clin Oncol 14, 221–234 (2017). https://doi.org/10.1038/nrclinonc.2016.188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing