Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards a new classification of gastroenteropancreatic neuroendocrine neoplasms

Key Points

  • Neuroendocrine neoplasms (NENs) constitute a heterogeneous group of tumours that are each associated with varying clinical presentations, a different likelihood of progression, and a distinct prognosis

  • The 2010 WHO classification of NENs stratifies disease into NEN grade 1, NEN grade 2, neuroendocrine carcinoma (NEC) grade 3; this classification forms the basis of current treatment guidelines

  • Molecular profiling of tissue specimens is increasingly performed in clinical practice and provides information on genetic aberrations of potential therapeutic relevance; although with limited clinical value to date

  • The 'driver' mutations in gastroenteropancreatic NENs, which might be important targets for new therapies, remain to be identified; however, the PI3K/AKT/mTOR axis has been identified as a key oncogenic signalling pathway

  • NENs can be treated using mTOR inhibitors (rapalogs including everolimus and temsirolimus), but resistance eventually develops via escape mechanisms that warrant further investigation in order to develop novel therapeutic strategies

  • The 2010 WHO classification will continue to guide the management of NENs; however, information from molecular profiling of tumours, 'liquid biopsies' (including circulating mRNA measurements), and molecular imaging might improve patient outcomes

Abstract

Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) constitute a heterogeneous group of tumours associated with variable clinical presentations, growth rates, and prognoses. To improve the management of GEP-NENs, the WHO developed a classification system that enables tumours to be graded based on markers of cell proliferation in biopsy specimens. Indeed, histopathology has been a mainstay in the diagnosis of GEP-NENs, and the WHO grading system facilitates therapeutic decision-making; however, considerable intratumoural heterogeneity, predominantly comprising regional variations in proliferation rates, complicates the evaluation of tumour biology. The use of molecular imaging modalities to delineate the most-aggressive cell populations is becoming more widespread. In addition, molecular profiling is increasingly undertaken in the clinical setting, and genomic studies have revealed a number of chromosomal alterations in GEP-NENs, although the 'drivers' of neoplastic development have not been identified. Thus, our molecular understanding of GEP-NENs remains insufficient to inform on patient prognosis or selection for treatments, and the WHO classification continues to form the basis for management of this disease. Nevertheless, our increasing understanding of the molecular genetics and biology of GEP-NENs has begun to expose flaws in the WHO classification. We describe the current understanding of the molecular characteristics of GEP-NENs, and discuss how advances in molecular profiling measurements, including assays of circulating mRNAs, are likely to influence the management of these tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The evolution of molecular classification systems for cancers.
Figure 2: Menin a major regulator of signalling in neuroendocrine neoplasms (NEN).
Figure 3: Points of interaction between the PI3K/AKT/mTOR and RAS/RAF/MEK/MAPK pathways.

Similar content being viewed by others

References

  1. Modlin, I. M. et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 9, 61–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Yao, J. C. et al. One hundred years after 'carcinoid': epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 26, 3063–3072 (2008).

    Article  PubMed  Google Scholar 

  3. Lawrence, B. et al. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol. Metab. Clin. North Am. 40, 1–18 (2011).

    Article  PubMed  Google Scholar 

  4. de Mestier, L. et al. Evaluating digestive neuroendocrine tumor progression and therapeutic responses in the era of targeted therapies: state of the art. Endocr. Relat. Cancer 21, R105–R120 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Bergsland, E. K. The evolving landscape of neuroendocrine tumors. Semin. Oncol. 40, 4–22 (2013).

    Article  PubMed  Google Scholar 

  6. Modlin, I. M., Moss, S. F., Chung, D. C., Jensen, R. T. & Snyderwine, E. Priorities for improving the management of gastroenteropancreatic neuroendocrine tumors. J. Natl Cancer Inst. 100, 1282–1289 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bosman, F. T. & Carneiro, F. WHO Classification of Tumours, Pathology and Genetics of Tumours of the Digestive System (IARC Press, 2010).

    Google Scholar 

  8. McCall, C. M. et al. Grading of well-differentiated pancreatic neuroendocrine tumors is improved by the inclusion of both Ki67 proliferative index and mitotic rate. Am. J. Surg. Pathol. 37, 1671–1677 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reid, M. D., Balci, S., Saka, B. & Adsay, N. V. Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr. Pathol. 25, 65–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Velayoudom-Cephise, F. L. et al. Are G3 ENETS neuroendocrine neoplasms heterogeneous? Endocr. Relat. Cancer 20, 649–657 (2013).

    Article  PubMed  Google Scholar 

  11. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  12. Jass, J. R. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50, 113–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Domingo, E. et al. Use of multivariate analysis to suggest a new molecular classification of colorectal cancer. J. Pathol. 229, 441–448 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Schnitt, S. J. Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod. Pathol. 23, S60–S64 (2010).

    Article  PubMed  Google Scholar 

  16. Rindi, G. et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 449, 395–401 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Oberg, K. Neuroendocrine tumors of the digestive tract: impact of new classifications and new agents on therapeutic approaches. Curr. Opin. Oncol. 24, 433–440 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Sundin, A. Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract. Res. Clin. Gastroenterol. 26, 803–818 (2012).

    Article  PubMed  Google Scholar 

  19. Baum, R. P., Kulkarni, H. R. & Carreras, C. Peptides and receptors in image-guided therapy: theranostics for neuroendocrine neoplasms. Semin. Nucl. Med. 42, 190–207 (2012).

    Article  PubMed  Google Scholar 

  20. Koopmans, K. P. et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol. 7, 728–734 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Kjaer, A. Molecular imaging of cancer using PET and SPECT. Adv. Exp. Med. Biol. 587, 277–284 (2006).

    Article  PubMed  Google Scholar 

  22. Binderup, T., Knigge, U., Loft, A., Federspiel, B. & Kjaer, A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin. Cancer Res. 16, 978–985 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Bahri, H. et al. High prognostic value of 18F-FDG PET for metastatic gastroenteropancreatic neuroendocrine tumors: a long-term evaluation. J. Nucl. Med. 55, 1786–1790 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Garin, E. & Edeline, J. Reply: modifying the poor prognosis associated with 18F-FDG-avid NET with peptide receptor chemo-radionuclide therapy (PRCRT). J. Nucl. Med. 56, 969 (2015).

    Article  PubMed  Google Scholar 

  25. Susini, C. & Buscail, L. Rationale for the use of somatostatin analogs as antitumor agents. Ann. Oncol. 17, 1733–1742 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Reubi, J. C. Somatostatin and other peptide receptors as tools for tumor diagnosis and treatment. Neuroendocrinology 80 (Suppl. 1), 51–56 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Bertherat, J. et al. Somatostatin receptors 2 and 5 are the major somatostatin receptors in insulinomas: an in vivo and in vitro study. J. Clin. Endocrinol. Metab. 88, 5353–5360 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Mirallie, E. et al. Value of endoscopic ultrasonography and somatostatin receptor scintigraphy in the preoperative localization of insulinomas and gastrinomas. Experience of 54 cases. Gastroenterol. Clin. Biol. 26, 360–366 (in French) (2002).

    PubMed  Google Scholar 

  29. Vezzosi, D. et al. Octreotide in insulinoma patients: efficacy on hypoglycemia, relationships with Octreoscan scintigraphy and immunostaining with anti-sst2A and anti-sst5 antibodies. Eur. J. Endocrinol. 152, 757–767 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Srirajaskanthan, R., Watkins, J., Marelli, L., Khan, K. & Caplin, M. E. Expression of somatostatin and dopamine 2 receptors in neuroendocrine tumours and the potential role for new biotherapies. Neuroendocrinology 89, 308–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Kvols, L. K. et al. The presence of somatostatin receptors in malignant neuroendocrine tumor tissue predicts responsiveness to octreotide. Yale J. Biol. Med. 65, 505–518; discussion 531–536 (1992).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Rinke, A. et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J. Clin. Oncol. 27, 4656–4663 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Caplin, M. E. et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 371, 224–233 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Kvols, L. K. et al. Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumors refractory or resistant to octreotide LAR: results from a phase II study. Endocr. Relat. Cancer 19, 657–666 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Lebtahi, R. et al. Clinical impact of somatostatin receptor scintigraphy in the management of patients with neuroendocrine gastroenteropancreatic tumors. J. Nucl. Med. 38, 853–858 (1997).

    CAS  PubMed  Google Scholar 

  36. Bodei, L., Sundin, A., Kidd, M., Prasad, V. & Modlin, I. M. The status of neuroendocrine tumor imaging: from darkness to light? Neuroendocrinology 101, 1–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Ruszniewski, P. ECC 2015 press release: rare cancer responds unusually well to new treatment: results from the NETTER-1 trial. ESMO http://www.esmo.org/Conferences/Past-Conferences/European-Cancer-Congress-2015/News/Rare-cancer-responds-unusually-well-to-new-treatment-results-from-the-NETTER-1-trial (2015).

  38. Okuwaki, K. et al. Clinicopathologic characteristics of pancreatic neuroendocrine tumors and relation of somatostatin receptor type 2A to outcomes. Cancer 119, 4094–4102 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Pinato, D. J. et al. An expression signature of the angiogenic response in gastrointestinal neuroendocrine tumours: correlation with tumour phenotype and survival outcomes. Br. J. Cancer 110, 115–122 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Campana, D. et al. Standardized uptake values of 68Ga-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J. Nucl. Med. 51, 353–359 (2010).

    Article  PubMed  Google Scholar 

  41. Kwekkeboom, D. J. et al. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr. Relat. Cancer 17, R53–R73 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Kidd, M., Modlin, I. M., Bodei, L. & Drozdov, I. Decoding the molecular and mutational ambiguities of gastroenteropancreatic neuroendocrine neoplasm pathobiology. Cell. Mol. Gastroenterol. Hepatol. 1, 131–153 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Larsson, C., Skogseid, B., Oberg, K., Nakamura, Y. & Nordenskjold, M. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 332, 85–87 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Hughes, C. M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 13, 587–597 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Richard, S. et al. Von Hippel–Lindau disease: recent genetic progress and patient management. Francophone Study Group of von Hippel–Lindau Disease (GEFVH). Ann. Endocrinol. (Paris) 59, 452–458 (in French) (1998).

    CAS  Google Scholar 

  46. Ruggieri, M. & Huson, S. M. The neurofibromatoses. An overview. Ital. J. Neurol. Sci. 20, 89–108 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Au, K. S., Williams, A. T., Gambello, M. J. & Northrup, H. Molecular genetic basis of tuberous sclerosis complex: from bench to bedside. J. Child Neurol. 19, 699–709 (2004).

    Article  PubMed  Google Scholar 

  48. Matkar, S., Thiel, A. & Hua, X. Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem. Sci. 38, 394–402 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bluyssen, H. A. et al. Fibronectin is a hypoxia-independent target of the tumor suppressor VHL. FEBS Lett. 556, 137–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Kibel, A., Iliopoulos, O., DeCaprio, J. A. & Kaelin, W. G. Jr. Binding of the von Hippel–Lindau tumor suppressor protein to Elongin B and C. Science 269, 1444–1446 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Faggiano, A. et al. Natural history of gastro-entero-pancreatic and thoracic neuroendocrine tumors. Data from a large prospective and retrospective Italian epidemiological study: the NET management study. J. Endocrinol. Invest. 35, 817–823 (2012).

    CAS  PubMed  Google Scholar 

  52. Jiao, Y. et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331, 1199–1203 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Langer, P. et al. Prospective evaluation of imaging procedures for the detection of pancreaticoduodenal endocrine tumors in patients with multiple endocrine neoplasia type 1. World J. Surg. 28, 1317–1322 (2004).

    Article  PubMed  Google Scholar 

  54. van Asselt, S. J. et al. EUS is superior for detection of pancreatic lesions compared with standard imaging in patients with multiple endocrine neoplasia type 1. Gastrointest. Endosc. 81, 159–167. e2 (2015).

    Article  PubMed  Google Scholar 

  55. de Wilde, R. F. et al. Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod. Pathol. 25, 1033–1039 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Corcos, O. et al. Endocrine pancreatic tumors in von Hippel–Lindau disease: clinical, histological, and genetic features. Pancreas 37, 85–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Sei, Y. et al. A hereditary form of small intestinal carcinoid associated with a germline mutation in inositol polyphosphate multikinase. Gastroenterology 149, 67–78 (2015).

    Article  PubMed  CAS  Google Scholar 

  58. Spurdle, A. B. et al. Refined histopathological predictors of BRCA1 and BRCA2 mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Res. 16, 3419 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jonkers, Y. M. et al. Chromosomal instability predicts metastatic disease in patients with insulinomas. Endocr. Relat. Cancer 12, 435–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Zhuang, Z. et al. Somatic mutations of the MEN1 tumor suppressor gene in sporadic gastrinomas and insulinomas. Cancer Res. 57, 4682–4686 (1997).

    CAS  PubMed  Google Scholar 

  61. Cao, Y. et al. Whole exome sequencing of insulinoma reveals recurrent T372R mutations in YY1. Nat. Commun. 4, 2810 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Shay, J. W., Reddel, R. R. & Wright, W. E. Cancer and telomeres — an ALTernative to telomerase. Science 336, 1388–1390 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Heaphy, C. M. et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333, 425 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Marinoni, I. et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology 146, 453–460. e5 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Zhou, C., Dhall, D., Nissen, N. N., Chen, C. R. & Yu, R. Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, α cell hyperplasia, and islet cell tumor. Pancreas 38, 941–946 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lin, W. et al. Dynamic epigenetic regulation by menin during pancreatic islet tumor formation. Mol. Cancer Res. 13, 689–698 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Gurung, B. et al. PTCH 1 staining of pancreatic neuroendocrine tumor (PNET) samples from patients with and without multiple endocrine neoplasia (MEN-1) syndrome reveals a potential therapeutic target. Cancer Biol. Ther. 16, 219–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Banck, M. S. et al. The genomic landscape of small intestine neuroendocrine tumors. J. Clin. Invest. 123, 2502–2508 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Francis, J. M. et al. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat. Genet. 45, 1483–1486 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lee, M. & Pellegata, N. S. Multiple endocrine neoplasia syndromes associated with mutation of p27. J. Endocrinol. Invest. 36, 781–787 (2013).

    CAS  PubMed  Google Scholar 

  71. Kytola, S. et al. Alterations of the SDHD gene locus in midgut carcinoids, Merkel cell carcinomas, pheochromocytomas, and abdominal paragangliomas. Genes Chromosomes Cancer 34, 325–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Karnik, S. K. et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc. Natl Acad. Sci. USA 102, 14659–14664 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ghimenti, C., Lonobile, A., Campani, D., Bevilacqua, G. & Caligo, M. A. Microsatellite instability and allelic losses in neuroendocrine tumors of the gastro-entero-pancreatic system. Int. J. Oncol. 15, 361–366 (1999).

    CAS  PubMed  Google Scholar 

  74. Arnold, C. N., Sosnowski, A. & Blum, H. E. Analysis of molecular pathways in neuroendocrine cancers of the gastroenteropancreatic system. Ann. NY Acad. Sci. 1014, 218–219 (2004).

    Article  PubMed  Google Scholar 

  75. House, M. G. et al. Prognostic value of hMLH1 methylation and microsatellite instability in pancreatic endocrine neoplasms. Surgery 134, 902–908; discussion 909 (2003).

    Article  PubMed  Google Scholar 

  76. Kidd, M. et al. Microsatellite instability and gene mutations in transforming growth factor-beta type II receptor are absent in small bowel carcinoid tumors. Cancer 103, 229–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Speel, E. J. et al. Genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. Am. J. Pathol. 155, 1787–1794 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Speel, E. J. et al. Genetic evidence for early divergence of small functioning and nonfunctioning endocrine pancreatic tumors: gain of 9Q34 is an early event in insulinomas. Cancer Res. 61, 5186–5192 (2001).

    CAS  PubMed  Google Scholar 

  79. Simon, B. & Lubomierski, N. Implication of the INK4a/ARF locus in gastroenteropancreatic neuroendocrine tumorigenesis. Ann. NY Acad. Sci. 1014, 284–299 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Zikusoka, M. N., Kidd, M., Eick, G., Latich, I. & Modlin, I. M. The molecular genetics of gastroenteropancreatic neuroendocrine tumors. Cancer 104, 2292–2309 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Perren, A. et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am. J. Pathol. 157, 1097–1103 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Missiaglia, E. et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT–mTOR pathway. J. Clin. Oncol. 28, 245–255 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Hu, W. et al. Gene amplifications in well-differentiated pancreatic neuroendocrine tumors inactivate the p53 pathway. Genes Cancer 1, 360–368 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kytola, S. et al. Comparative genomic hybridization identifies loss of 18q22-qter as an early and specific event in tumorigenesis of midgut carcinoids. Am. J. Pathol. 158, 1803–1808 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Lollgen, R. M., Hessman, O., Szabo, E., Westin, G. & Akerstrom, G. Chromosome 18 deletions are common events in classical midgut carcinoid tumors. Int. J. Cancer 92, 812–815 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Andersson, E., Sward, C., Stenman, G., Ahlman, H. & Nilsson, O. High-resolution genomic profiling reveals gain of chromosome 14 as a predictor of poor outcome in ileal carcinoids. Endocr. Relat. Cancer 16, 953–966 (2009).

    Article  PubMed  Google Scholar 

  87. Arnold, C. N., Sosnowski, A., Schmitt-Graff, A., Arnold, R. & Blum, H. E. Analysis of molecular pathways in sporadic neuroendocrine tumors of the gastro-entero-pancreatic system. Int. J. Cancer 120, 2157–2164 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Chan, A. O. et al. CpG island methylation in carcinoid and pancreatic endocrine tumors. Oncogene 22, 924–934 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. House, M. G. et al. Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann. Surg. 238, 423–431; discussion 431–432 (2003).

    PubMed  PubMed Central  Google Scholar 

  90. Kulke, M. H. et al. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin. Cancer Res. 15, 338–345 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Walter, T. et al. O6-methylguanine-DNA methyltransferase status in neuroendocrine tumours: prognostic relevance and association with response to alkylating agents. Br. J. Cancer 112, 523–531 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Schmitt, A. M. et al. VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors. Endocr. Relat. Cancer 16, 1219–1227 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Dejeux, E. et al. Hypermethylation of the IGF2 differentially methylated region 2 is a specific event in insulinomas leading to loss-of-imprinting and overexpression. Endocr. Relat. Cancer 16, 939–952 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Boissan, M. et al. Implication of metastasis suppressor NM23-H1 in maintaining adherens junctions and limiting the invasive potential of human cancer cells. Cancer Res. 70, 7710–7722 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Hendy, G. N., Kaji, H., Sowa, H., Lebrun, J. J. & Canaff, L. Menin and TGF-β superfamily member signaling via the Smad pathway in pituitary, parathyroid and osteoblast. Horm. Metab. Res. 37, 375–379 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Gurung, B., Feng, Z. & Hua, X. Menin directly represses Gli1 expression independent of canonical Hedgehog signaling. Mol. Cancer Res. 11, 1215–1222 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Yang, Y. J. et al. Menin mediates epigenetic regulation via histone H3 lysine 9 methylation. Cell Death Dis. 4, e583 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Fotouhi, O. et al. Global hypomethylation and promoter methylation in small intestinal neuroendocrine tumors: an in vivo and in vitro study. Epigenetics 9, 987–997 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhang, H. Y. et al. Association of DNA methylation and epigenetic inactivation of RASSF1A and beta-catenin with metastasis in small bowel carcinoid tumors. Endocrine 30, 299–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Duerr, E. M. et al. Defining molecular classifications and targets in gastroenteropancreatic neuroendocrine tumors through DNA microarray analysis. Endocr. Relat. Cancer 15, 243–256 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Dilley, W. G. et al. Global gene expression in neuroendocrine tumors from patients with the MEN1 syndrome. Mol. Cancer 4, 9 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Roldo, C. et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol. 24, 4677–4684 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Kidd, M., Modlin, I. M. & Drozdov, I. Gene network-based analysis identifies two potential subtypes of small intestinal neuroendocrine tumors. BMC Genomics 15, 595 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kidd, M. et al. The role of genetic markers — NAP1L1, MAGE-D2, and MTA1 — in defining small-intestinal carcinoid neoplasia. Ann. Surg. Oncol. 13, 253–262 (2006).

    Article  PubMed  Google Scholar 

  105. Leja, J. et al. Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. Mod. Pathol. 22, 261–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Cui, T. et al. Paraneoplastic antigen Ma2 autoantibodies as specific blood biomarkers for detection of early recurrence of small intestine neuroendocrine tumors. PLoS ONE 5, e16010 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Li, S. C. et al. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod. Pathol. 26, 685–696 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Kerr, S. E. et al. A 92-gene cancer classifier predicts the site of origin for neuroendocrine tumors. Mod. Pathol. 27, 44–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Modlin, I. M., Kidd, M., Bodei, L., Drozdov, I. & Aslanian, H. The clinical utility of a novel blood-based multi-transcriptome assay for the diagnosis of neuroendocrine tumors of the gastrointestinal tract. Am. J. Gastroenterol. 110, 1223–1232 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Kidd, M., Drozdov, I. & Modlin, I. Blood and tissue neuroendocrine tumor gene cluster analysis correlate, define hallmarks and predict disease status. Endocr. Relat. Cancer 22, 561–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Svejda, B. et al. Limitations in small intestinal neuroendocrine tumor therapy by mTor kinase inhibition reflect growth factor-mediated PI3K feedback loop activation via ERK1/2 and AKT. Cancer 117, 4141–4154 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Li, H. J., Kapoor, A., Giel-Moloney, M., Rindi, G. & Leiter, A. B. Notch signaling differentially regulates the cell fate of early endocrine precursor cells and their maturing descendants in the mouse pancreas and intestine. Dev. Biol. 371, 156–169 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Fendrich, V. et al. Snail and Sonic Hedgehog activation in neuroendocrine tumors of the ileum. Endocr. Relat. Cancer 14, 865–874 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Shida, T. et al. Sonic Hedgehog–Gli1 signaling pathway might become an effective therapeutic target in gastrointestinal neuroendocrine carcinomas. Cancer Biol. Ther. 5, 1530–1538 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Di Florio, A. et al. Src kinase activity coordinates cell adhesion and spreading with activation of mammalian target of rapamycin in pancreatic endocrine tumour cells. Endocr. Relat. Cancer 18, 541–554 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. von Wichert, G. et al. Insulin-like growth factor-I is an autocrine regulator of chromogranin A secretion and growth in human neuroendocrine tumor cells. Cancer Res. 60, 4573–4581 (2000).

    CAS  PubMed  Google Scholar 

  117. Besig, S., Voland, P., Baur, D. M., Perren, A. & Prinz, C. Vascular endothelial growth factors, angiogenesis, and survival in human ileal enterochromaffin cell carcinoids. Neuroendocrinology 90, 402–415 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Wolin, E. M. The expanding role of somatostatin analogs in the management of neuroendocrine tumors. Gastrointest. Cancer Res. 5, 161–168 (2012).

    PubMed  PubMed Central  Google Scholar 

  119. Oberg, K. et al. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann. Oncol. 15, 966–973 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Shah, T. et al. Epidermal growth factor receptor expression and activation in neuroendocrine tumours. J. Neuroendocrinol. 18, 355–360 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Very, N. M., Kittilson, J. D., Klein, S. E. & Sheridan, M. A. Somatostatin inhibits basal and growth hormone-stimulated hepatic insulin-like growth factor-I production. Mol. Cell. Endocrinol. 281, 19–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Svejda, B. et al. Serotonin and the 5-HT7 receptor: a link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors. Cancer Sci. 104, 844–855 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Porta, C., Paglino, C. & Mosca, A. Targeting PI3K/Akt/mTOR signaling in Cancer. Front. Oncol. 4, 64 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Yang, Q. & Guan, K. L. Expanding mTOR signaling. Cell Res. 17, 666–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Kasajima, A. et al. mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours. Endocr. Relat. Cancer 18, 181–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Larson, A. M. et al. Pancreatic neuroendocrine tumors in patients with tuberous sclerosis complex. Clin. Genet. 82, 558–563 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Han, X., Ji, Y., Zhao, J., Xu, X. & Lou, W. Expression of PTEN and mTOR in pancreatic neuroendocrine tumors. Tumour Biol. 34, 2871–2879 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Wang, L., Ignat, A. & Axiotis, C. A. Differential expression of the PTEN tumor suppressor protein in fetal and adult neuroendocrine tissues and tumors: progressive loss of PTEN expression in poorly differentiated neuroendocrine neoplasms. Appl. Immunohistochem. Mol. Morphol. 10, 139–146 (2002).

    CAS  PubMed  Google Scholar 

  129. O'Toole, D. et al. Molecular markers associated with response to chemotherapy in gastro-entero-pancreatic neuroendocrine tumors. Endocr. Relat. Cancer 17, 847–856 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Yao, J. C. et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 514–523 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Pavel, M. E. et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378, 2005–2012 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Yao, J. C. et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 387, 968–977 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Zitzmann, K. et al. Compensatory activation of Akt in response to mTOR and Raf inhibitors — a rationale for dual-targeted therapy approaches in neuroendocrine tumor disease. Cancer Lett. 295, 100–109 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Moelling, K., Schad, K., Bosse, M., Zimmermann, S. & Schweneker, M. Regulation of Raf–Akt cross-talk. J. Biol. Chem. 277, 31099–31106 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Zhu, J., Blenis, J. & Yuan, J. Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proc. Natl Acad. Sci. USA 105, 6584–6589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Reusch, H. P., Zimmermann, S., Schaefer, M., Paul, M. & Moelling, K. Regulation of Raf by Akt controls growth and differentiation in vascular smooth muscle cells. J. Biol. Chem. 276, 33630–33637 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Rozengurt, E., Soares, H. P. & Sinnet-Smith, J. Suppression of feedback loops mediated by PI3K/mTOR induces multiple overactivation of compensatory pathways: an unintended consequence leading to drug resistance. Mol. Cancer Ther. 13, 2477–2488 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01628913 (2016).

  139. Salazar, R. et al. Phase II studies of BEZ235 in patients with advanced pancreatic neuroendocrine tumors (pNET) [abstract]. J. Clin. Oncol. 33 (Suppl.), 4102 (2015).

    Article  Google Scholar 

  140. Perren, A. et al. BRAF and endocrine tumors: mutations are frequent in papillary thyroid carcinomas, rare in endocrine tumors of the gastrointestinal tract and not detected in other endocrine tumors. Endocr. Relat. Cancer 11, 855–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Karhoff, D. et al. Rap1/B-Raf signaling is activated in neuroendocrine tumors of the digestive tract and Raf kinase inhibition constitutes a putative therapeutic target. Neuroendocrinology 85, 45–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Wulbrand, U. et al. Growth factor receptor expression in human gastroenteropancreatic neuroendocrine tumours. Eur. J. Clin. Invest. 28, 1038–1049 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Nilsson, O., Wangberg, B., Theodorsson, E., Skottner, A. & Ahlman, H. Presence of IGF-I in human midgut carcinoid tumours — an autocrine regulator of carcinoid tumour growth? Int. J. Cancer 51, 195–203 (1992).

    Article  CAS  PubMed  Google Scholar 

  144. Samani, A. A., Yakar, S., LeRoith, D. & Brodt, P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr. Rev. 28, 20–47 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Gloesenkamp, C. et al. Heat shock protein 90 is a promising target for effective growth inhibition of gastrointestinal neuroendocrine tumors. Int. J. Oncol. 40, 1659–1667 (2012).

    CAS  PubMed  Google Scholar 

  146. Reidy-Lagunes, D. L. et al. A phase 2 study of the insulin-like growth factor-1 receptor inhibitor MK-0646 in patients with metastatic, well-differentiated neuroendocrine tumors. Cancer 118, 4795–4800 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Strosberg, J. R. et al. A multi-institutional, phase II open-label study of ganitumab (AMG 479) in advanced carcinoid and pancreatic neuroendocrine tumors. Endocr. Relat. Cancer 20, 383–390 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Libutti, S. K. Therapy: blockade of IGF-1R-not effective in neuroendocrine tumours. Nat. Rev. Endocrinol. 9, 389–390 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. US National Library of Science. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT00781911 (2016).

  150. US National Library of Science. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT01431547 (2015).

  151. Gilbert, J. A. et al. Molecular markers for novel therapies in neuroendocrine (carcinoid) tumors. Endocr. Relat. Cancer 17, 623–636 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. US National Library of Science. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT00843531 (2015).

  153. US National Library of Science. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT01172717 (2013).

  154. Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling — in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Bowen, K. A. et al. An analysis of trends and growth factor receptor expression of GI carcinoid tumors. J. Gastrointest. Surg. 13, 1773–1780 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kidd, M. et al. CTGF, intestinal stellate cells and carcinoid fibrogenesis. World J. Gastroenterol. 13, 5208–5216 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Zhang, J. et al. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer 109, 1478–1486 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Yao, J. C. et al. Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alfa-2b. J. Clin. Oncol. 26, 1316–1323 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Chan, J. A. et al. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J. Clin. Oncol. 30, 2963–2968 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Castellano, D. et al. Sorafenib and bevacizumab combination targeted therapy in advanced neuroendocrine tumor: a phase II study of the Spanish Neuroendocrine Tumors Group (GETNE0801). J. Clin. Oncol. 49, 3780–3787 (2013).

    Article  CAS  Google Scholar 

  161. Phan, A. T. et al. Pazopanib and depot octreotide in advanced, well-differentiated neuroendocrine tumours: a multicentre, single-group, phase 2 study. Lancet Oncol. 16, 695–703 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Raymond, E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Zurita, A. J. et al. Circulating cytokines and monocyte subpopulations as biomarkers of outcome and biological activity in sunitinib-treated patients with advanced neuroendocrine tumours. Br. J. Cancer 112, 1199–1205 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Khan, M. S. et al. Circulating tumor cells as prognostic markers in neuroendocrine tumors. J. Clin. Oncol. 31, 365–372 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Modlin, I. M. et al. A multianalyte PCR blood test outperforms single analyte ELISAs (chromogranin A, pancreastatin, neurokinin A) for neuroendocrine tumor detection. Endocr. Relat. Cancer 21, 615–628 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Modlin, I. M., Drozdov, I. & Kidd, M. The identification of gut neuroendocrine tumor disease by multiple synchronous transcript analysis in blood. PLoS ONE 8, e63364 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. US National Library of Science. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT00428220 (2015).

  169. US National Library of Science. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02315625 (2016).

Download references

Acknowledgements

The authors thank Xia Chu of the University of Uppsala, Sweden, for his assistance in developing Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Kjell Öberg.

Ethics declarations

Competing interests

I.M. is a consultant to Wren Laboratories, a subsidiary of Clifton Life Sciences. M.K. and K.Ö. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kidd, M., Modlin, I. & Öberg, K. Towards a new classification of gastroenteropancreatic neuroendocrine neoplasms. Nat Rev Clin Oncol 13, 691–705 (2016). https://doi.org/10.1038/nrclinonc.2016.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.85

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer