Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ever-expanding myokinome: discovery challenges and therapeutic implications

Key Points

  • Myokines are proteins or peptides that are upregulated and secreted from skeletal muscle to carry out paracrine or endocrine functions.

  • The concept that stimulated muscle secretes factors that partially mediate the benefits of exercise on health is attractive, as it raises the possibility that these peptides might be manipulated for therapeutic gain.

  • There are many technical hurdles to the discovery of new myokines, but developing methodologies such as proteomics, genetic modification of mice by CRISPR and parabiosis are well suited for myokine discovery and validation.

  • With the increasing realization that brown fat and the 'browning' of adipose tissue represents a therapeutic avenue for treating obesity and metabolic disease, putative myokines irisin and meteorin-like may have a role in this research setting. The myokines interleukin-6 (IL-6) and SPARC (secreted protein acidic and rich in cysteine) have been implicated in the prevention of cancers by exercise.

  • It is anticipated that future research will uncover more novel myokines with the potential to treat diseases that are known to be prevented by regular exercise.

Abstract

Exercise reduces the risk of a multitude of disorders, from metabolic disease to cancer, but the molecular mechanisms mediating the protective effects of exercise are not completely understood. The realization that skeletal muscle is an endocrine organ capable of secreting proteins termed 'myokines', which participate in tissue crosstalk, provided a critical link in the exercise–health paradigm. However, the myokine field is still emerging, and several challenges remain in the discovery and validation of myokines. This Review considers these challenges and highlights some recently identified novel myokines with the potential to be therapeutically exploited in the treatment of metabolic disease and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The opposing effects of physical inactivity and exercise on disease risk.
Figure 2: Challenges and approaches to myokine discovery.

Similar content being viewed by others

References

  1. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    CAS  PubMed  Google Scholar 

  2. Booth, F. W., Roberts, C. K. & Laye, M. J. Lack of exercise is a major cause of chronic diseases. Comp. Physiol. 2, 1143–1211 (2012).

    Google Scholar 

  3. Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

    CAS  PubMed  Google Scholar 

  4. Starkie, R., Ostrowski, S., Jauffred, S., Febbraio, M. & Pedersen, B. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J. 17, 884–886 (2003).

    CAS  PubMed  Google Scholar 

  5. Walhin, J.-P., Richardson, J., Betts, J. & Thompson, D. Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J. Physiol. 591, 6231–6243 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hagobian, T. A. & Braun, B. Interactions between energy surplus and short-term exercise on glucose and insulin responses in healthy people with induced, mild insulin insensitivity. Metabolism 55, 402–408 (2006).

    CAS  PubMed  Google Scholar 

  7. Goldstein, M. S. Humoral nature of the hypoglycemic factor of muscular work. Diabetes 10, 232–234 (1961). The first paper to propose that skeletal muscle might secrete 'exercise factors'.

    CAS  PubMed  Google Scholar 

  8. Febbraio, M. A., Hiscock, N., Sacchetti, M., Fischer, C. P. & Pedersen, B. K. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes 53, 1643–1648 (2004). A significant finding in the identification of IL-6 as a secreted product of skeletal muscle that carries out endocrine functions.

    CAS  PubMed  Google Scholar 

  9. Pedersen, B. K. & Febbraio, M. A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379–1406 (2008).

    CAS  PubMed  Google Scholar 

  10. Febbraio, M. A. & Pedersen, B. K. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 16, 1335–1347 (2002).

    CAS  PubMed  Google Scholar 

  11. Pal, M., Febbraio, M. A. & Whitham, M. From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol. Cell Biol. 92, 331–339 (2014).

    CAS  PubMed  Google Scholar 

  12. Benatti, F. B. & Pedersen, B. K. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat. Rev. Rheumatol. 11, 86–97 (2015).

    CAS  PubMed  Google Scholar 

  13. Görgens, S. W., Eckardt, K., Jensen, J., Drevon, C. A. & Eckel, J. Exercise and regulation of adipokine and myokine production. Prog. Mol. Biol. Transl. Sci. 135, 313–336 (2015).

    PubMed  Google Scholar 

  14. Schnyder, S. & Handschin, C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone 80, 115–125 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Uhlen, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    PubMed  Google Scholar 

  16. Catoire, M., Mensink, M., Kalkhoven, E., Schrauwen, P. & Kersten, S. Identification of human exercise-induced myokines using secretome analysis. Physiol. Genom. 46, 256–267 (2014).

    CAS  Google Scholar 

  17. Geiger, T. et al. Initial quantitative proteomic map of twenty-eight mouse tissues using the SILAC mouse. Mol. Cell. Proteom. 12, 1709–1722 (2013).

    CAS  Google Scholar 

  18. Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl Acad. Sci. USA 101, 6062–6067 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Azimifar, S. B., Nagaraj, N., Cox, J. & Mann, M. Cell-type-resolved quantitative proteomics of murine liver. Cell. Metab. 20, 1076–1087 (2014).

    CAS  PubMed  Google Scholar 

  20. Williams, E. G. et al. Systems proteomics of liver mitochondria function. Science 352, aad0189 (2016).

    PubMed  Google Scholar 

  21. Kawamoto, S., Matsumoto, Y., Mizuno, K., Okubo, K. & Matsubara, K. Expression profiles of active genes in human and mouse livers. Gene 174, 151–158 (1996).

    CAS  PubMed  Google Scholar 

  22. Steen, H. & Mann, M. The ABC's (and XYZ's) of peptide sequencing. Nat. Rev. Mol. Cell. Biol. 5, 699–711 (2004).

    CAS  PubMed  Google Scholar 

  23. Matthiesen, R. & Bunkenborg, J. Introduction to mass spectrometry-based proteomics. Methods Mol. Biol. 1007, 1–45 (2013).

    CAS  PubMed  Google Scholar 

  24. Hartwig, S. et al. Secretome profiling of primary human skeletal muscle cells. Biochim. Biophys. Acta 1844, 1011–1017 (2014).

    CAS  PubMed  Google Scholar 

  25. Henningsen, J., Rigbolt, K. T., Blagoev, B., Pedersen, B. K. & Kratchmarova, I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol. Cell. Proteom. 9, 2482–2496 (2010).

    CAS  Google Scholar 

  26. Norheim, F. et al. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am. J. Physiol. Endocrinol. Metab. 301, E1013–E1021 (2011).

    CAS  PubMed  Google Scholar 

  27. Henningsen, J., Pedersen, B. K. & Kratchmarova, I. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells. Mol. Biosyst. 7, 311–321 (2011).

    CAS  PubMed  Google Scholar 

  28. Yoon, J. H. et al. Comparative proteomic analysis of the insulin-induced L6 myotube secretome. Proteomics 9, 51–60 (2009).

    CAS  PubMed  Google Scholar 

  29. Yoon, J. H. et al. Proteomic analysis of the palmitate-induced myotube secretome reveals involvement of the annexin A1-formyl peptide receptor 2 (FPR2) pathway in insulin resistance. Mol. Cell. Proteom. 14, 882–892 (2015).

    CAS  Google Scholar 

  30. Chan, C. Y., McDermott, J. C. & Siu, K. W. Secretome analysis of skeletal myogenesis using SILAC and shotgun proteomics. Int. J. Proteom. 2011, 329467 (2011).

    Google Scholar 

  31. Raschke, S., Eckardt, K., Bjørklund Holven, K., Jensen, J. & Eckel, J. Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells. PLoS ONE 8, e62008 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Haugen, F. et al. IL-7 is expressed and secreted by human skeletal muscle cells. Am. J. Physiol. Cell Physiol. 298, C807–C816 (2010).

    CAS  PubMed  Google Scholar 

  33. Deshmukh, A. S. et al. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol. Cell. Proteom. 14, 841–853 (2015). The deepest quantitation of the skeletal muscle proteome thus far and an insight into the power of discovery-based proteomics.

    CAS  Google Scholar 

  34. Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteom. 1, 845–867 (2002).

    CAS  Google Scholar 

  35. Omenn, G. S. et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5, 3226–3245 (2005).

    CAS  PubMed  Google Scholar 

  36. States, D. J. et al. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat. Biotechnol. 24, 333–338 (2006).

    CAS  PubMed  Google Scholar 

  37. Pernemalm, M., Lewensohn, R. & Lehtio, J. Affinity prefractionation for MS-based plasma proteomics. Proteomics 9, 1420–1427 (2009).

    CAS  PubMed  Google Scholar 

  38. Liu, X. et al. Mapping the human plasma proteome by SCX-LC-IMS-MS. J. Am. Soc. Mass Spectrom. 18, 1249–1264 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pocsfalvi, G. et al. Mass spectrometry of extracellular vesicles. Mass Spectrom. Rev. 35, 3–21 (2015).

    PubMed  Google Scholar 

  40. Harel, M., Oren-Giladi, P., Kaidar-Person, O., Shaked, Y. & Geiger, T. Proteomics of microparticles with SILAC Quantification (PROMIS-Quan): a novel proteomic method for plasma biomarker quantification. Mol. Cell. Proteom. 14, 1127–1136 (2015).

    CAS  Google Scholar 

  41. Forterre, A. et al. Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk? PLoS ONE 9, e84153 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10, e1001450 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lancaster, G. I. & Febbraio, M. A. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J. Biol. Chem. 280, 23349–23355 (2005).

    CAS  PubMed  Google Scholar 

  44. Steensberg, A. et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol. 529, 237–242 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wiles, M. V., Qin, W., Cheng, A. W. & Wang, H. CRISPR–Cas9-mediated genome editing and guide RNA design. Mamm. Genome 26, 501–510 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, Y. et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34, 334–338 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamran, P. et al. Parabiosis in mice: a detailed protocol. J. Vis. Exp. http://dx.doi.org/10.3791/50556 (2013).

  48. Chambers, A. G., Percy, A. J., Simon, R. & Borchers, C. H. MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum. Exp. Rev. Proteom. 11, 137–148 (2014).

    CAS  Google Scholar 

  49. Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteom. 11, 1475–1488 (2012).

    Google Scholar 

  50. Horsley, V., Jansen, K. M., Mills, S. T. & Pavlath, G. K. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483–494 (2003).

    CAS  PubMed  Google Scholar 

  51. Nieman, D. C. et al. Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J. Appl. Physiol. 94, 1917–1925 (2003).

    CAS  PubMed  Google Scholar 

  52. Ouchi, N. et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J. Biol. Chem. 283, 32802–32811 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hamrick, M. W., McNeil, P. L. & Patterson, S. L. Role of muscle-derived growth factors in bone formation. J. Musculoskelet. Neuronal Interact. 10, 64–70 (2010).

    CAS  PubMed  Google Scholar 

  54. McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387, 83–90 (1997).

    CAS  PubMed  Google Scholar 

  55. Hittel, D. S., Berggren, J. R., Shearer, J., Boyle, K. & Houmard, J. A. Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes 58, 30–38 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. McPherron, A. C. & Lee, S. J. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Invest. 109, 595–601 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wilkes, J. J., Lloyd, D. J. & Gekakis, N. Loss-of-function mutation in myostatin reduces tumor necrosis factor α production and protects liver against obesity-induced insulin resistance. Diabetes 58, 1133–1143 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Camporez, J-. P. G. et al. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc. Natl Acad. Sci. USA 113, 2212–2217 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Moon, H. Y. et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell. Metab. http://dx.doi.org/10.1016/j.cmet.2016.05.025 (2016).

  60. Bartelt, A. & Heeren, J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10, 24–36 (2014).

    CAS  PubMed  Google Scholar 

  61. Cousin, B. et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 103, 931–942 (1992).

    CAS  PubMed  Google Scholar 

  62. Barbatelli, G. et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 298, E1244–E1253 (2010).

    CAS  PubMed  Google Scholar 

  63. Yoshida, T. et al. Nicotine induces uncoupling protein 1 in white adipose tissue of obese mice. Int. J. Obes. Relat. Metab. Disord. 23, 570–575 (1999).

    CAS  PubMed  Google Scholar 

  64. Boström, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    PubMed  PubMed Central  Google Scholar 

  65. Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

    CAS  PubMed  Google Scholar 

  66. Raschke, S. et al. Evidence against a beneficial effect of irisin in humans. PLoS ONE 8, e73680 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Albrecht, E. et al. Irisin – a myth rather than an exercise-inducible myokine. Sci. Rep. 5, 8889 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Erickson, H. P. Irisin and FNDC5 in retrospect: an exercise hormone or a transmembrane receptor? Adipocyte 2, 289–293 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Schumacher, M. A., Chinnam, N., Ohashi, T., Shah, R. S. & Erickson, H. P. The structure of irisin reveals a novel intersubunit β-sheet fibronectin type III (FNIII) dimer: implications for receptor activation. J. Biol. Chem. 288, 33738–33744 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jedrychowski, M. P. et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell. Metab. 22, 734–740 (2015). An example of how targeted proteomics can validate myokine expression in exercise contexts.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell. Metab. 19, 302–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Izumiya, Y., Hopkins, T., Morris, C., Sato, K. & Zeng, L. Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell. Metab. 7, 159–172 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Izumiya, Y. et al. FGF21 is an Akt-regulated myokine. FEBS Lett. 582, 3805–3810 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, K. H. et al. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS ONE 8, e63517 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kharitonenkov, A. et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627–1635 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Coskun, T. et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018–6027 (2008).

    CAS  PubMed  Google Scholar 

  78. Hansen, J. S. et al. Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans. Mol. Met. 4, 551–560 (2015). An insightful examination of the source of circulating FGF21 during exercise.

    CAS  Google Scholar 

  79. Markan, K. R. et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63, 4057–4063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hondares, E. et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 286, 12983–12990 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Fisher, F. M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Samms, R. J. et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep. 11, 991–999 (2015).

    CAS  PubMed  Google Scholar 

  83. Véniant, M. M. et al. Pharmacologic effects of FGF21 are independent of the “browning” of white adipose tissue. Cell. Metab. 21, 731–738 (2015).

    PubMed  Google Scholar 

  84. Degirolamo, C., Sabbà, C. & Moschetta, A. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat. Rev. Drug. Discov. 15, 51–69 (2016).

    CAS  PubMed  Google Scholar 

  85. Roberts, L. D. et al. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell. Metab. 19, 96–108 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Seldin, M. M., Peterson, J. M., Byerly, M. S., Wei, Z. & Wong, G. W. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J. Biol. Chem. 287, 11968–11980 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Seldin, M. M. et al. Skeletal muscle-derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver. J. Biol. Chem. 288, 36073–36082 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell. Metab. 11, 467–478 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Leitzmann, M. et al. European Code against Cancer 4th Edition: physical activity and cancer. Cancer Epidemiol. 39 (Suppl. 1), 46–55 (2015).

    Google Scholar 

  90. Brown, J. C., Winters-Stone, K., Lee, A. & Schmitz, K. H. Cancer, physical activity, and exercise. Comp. Physiol. 2, 2775–2809 (2012).

    Google Scholar 

  91. Goh, J. et al. Exercise training in transgenic mice is associated with attenuation of early breast cancer growth in a dose-dependent manner. PLoS ONE 8, e80123 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. Pedersen, L. et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell. Metab. 23, 554–562 (2016). A comprehensive demonstration that voluntary wheel running in mouse models of cancer is a beneficial effect partially mediated by the myokine IL-6.

    CAS  PubMed  Google Scholar 

  93. Hojman, P. et al. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am. J. Physiol. Endocrinol. Metab. 301, E504–E510 (2011).

    CAS  PubMed  Google Scholar 

  94. Aoi, W. et al. A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut 62, 882–889 (2013).

    CAS  PubMed  Google Scholar 

  95. Kanzleiter, T. et al. The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochem. Biophys. Res. Comm. 450, 1089–1094 (2014).

    CAS  PubMed  Google Scholar 

  96. Soria-Valles, C. et al. The anti-metastatic activity of collagenase-2 in breast cancer cells is mediated by a signaling pathway involving decorin and miR-21. Oncogene 33, 3054–3063 (2014).

    CAS  PubMed  Google Scholar 

  97. Araki, K. et al. Decorin suppresses bone metastasis in a breast cancer cell line. Oncology 77, 92–99 (2009).

    CAS  PubMed  Google Scholar 

  98. Laye, M. J. et al. Cessation of daily wheel running differentially alters fat oxidation capacity in liver, muscle, and adipose tissue. J. Appl. Physiol. 106, 161–168 (2009).

    CAS  PubMed  Google Scholar 

  99. Carotta, S. Targeting, N. K. Cells for anticancer immunotherapy: clinical and preclinical approaches. Front. Immunol. 7, 152 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. Morikawa, T. et al. Prospective analysis of body mass index, physical activity, and colorectal cancer risk associated with β-catenin (CTNNB1) status. Cancer Res. 73, 1600–1610 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Je, Y., Jeon, J. Y., Giovannucci, E. L. & Meyerhardt, J. A. Association between physical activity and mortality in colorectal cancer: a meta-analysis of prospective cohort studies. Int. J. Cancer 133, 1905–1913 (2013).

    CAS  PubMed  Google Scholar 

  102. Murphy-Ullrich, J. E. & Sage, E. H. Revisiting the matricellular concept. Matrix Biol. 37, 1–14 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Brekken, R. A. et al. Enhanced growth of tumors in SPARC null mice is associated with changes in the ECM. J. Clin. Invest. 111, 487–495 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Neill, T., Schaefer, L. & Iozzo, R. V. Decorin: a guardian from the matrix. Am. J. Pathol. 181, 380–387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rahman, M., Chan, A. P. K. & Tai, I. T. A peptide of SPARC interferes with the interaction between caspase8 and Bcl2 to resensitize chemoresistant tumors and enhance their regression in vivo. PLoS ONE 6, e26390 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Nishizawa, H. et al. Musclin, a novel skeletal muscle-derived secretory factor. J. Biol. Chem. 279, 19391–19395 (2004).

    CAS  PubMed  Google Scholar 

  107. Subbotina, E. et al. Musclin is an activity-stimulated myokine that enhances physical endurance. Proc. Natl Acad. Sci. USA 112, 16042–16047 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Myers, J. et al. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 346, 793–801 (2002).

    PubMed  Google Scholar 

  109. Korpelainen, R. et al. Exercise capacity and mortality - a follow-up study of 3033 subjects referred to clinical exercise testing. Ann. Med. http://dx.doi.org/10.1080/07853890.2016.1178856 (2016).

  110. Lua, L. H. L. & Chuan, Y. P. in Biopharmaceutical Production Technology Vol. 1 & Vol. 2 43–77 (Wiley-VCH Verlag GmbH & Co. KGaA, 2012).

    Google Scholar 

  111. Pisal, D. S., Kosloski, M. P. & Balu-Iyer, S. V. Delivery of therapeutic proteins. J. Pharm. Sci. 99, 2557–2575 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug. Discov. 2, 214–221 (2003).

    CAS  PubMed  Google Scholar 

  113. Jazayeri, J. A. & Carroll, G. J. Fc-based cytokines: prospects for engineering superior therapeutics. Biodrugs 22, 11–26 (2008).

    CAS  PubMed  Google Scholar 

  114. Huang, C. Receptor-Fc fusion therapeutics, traps, and MIMETIBODY technology. Curr. Opin. Biotechnol. 20, 692–699 (2009).

    CAS  PubMed  Google Scholar 

  115. Rath, T. et al. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit. Rev. Biotechnol. 35, 235–254 (2015).

    CAS  PubMed  Google Scholar 

  116. Panyam, J. & Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug. Deliv. Rev. 55, 329–347 (2003).

    CAS  PubMed  Google Scholar 

  117. Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug. Discov. 7, 771–782 (2008).

    CAS  PubMed  Google Scholar 

  118. Popielarski, S. R., Hu-Lieskovan, S., French, S. W., Triche, T. J. & Davis, M. E. A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 2. In vitro and in vivo uptake results. Bioconjug. Chem. 16, 1071–1080 (2005).

    CAS  PubMed  Google Scholar 

  119. Febbraio, M. A. gp130 receptor ligands as potential therapeutic targets for obesity. J. Clin. Invest. 117, 841–849 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ostrowski, K., Rohde, T., Zacho, M., Asp, S. & Pedersen, B. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J. Physiol. 508, 949–953 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Febbraio, M. A. et al. Hepatosplanchnic clearance of interleukin-6 in humans during exercise. Am. J. Physiol. Endocrinol. Metab. 285, E397–E402 (2003).

    CAS  PubMed  Google Scholar 

  122. Hiscock, N., Chan, M., Bisucci, T., Darby, I. & Febbraio, M. Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity. FASEB J. 18, 992–994 (2004).

    CAS  PubMed  Google Scholar 

  123. Starkie, R. L., Arkinstall, M. J., Koukoulas, I., Hawley, J. A. & Febbraio, M. A. Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal muscle interleukin-6 mRNA, during exercise in humans. J. Physiol. 533, 585–591 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Steensberg, A. et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J. Physiol. 537, 633–639 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Richter, E. A. & Galbo, H. Diabetes, insulin and exercise. Sports Med. 3, 275–288 (1986).

    CAS  PubMed  Google Scholar 

  126. Wasserman, D. H. Regulation of glucose fluxes during exercise in the postabsorptive state. Annu. Rev. Physiol. 57, 191–218 (1995).

    CAS  PubMed  Google Scholar 

  127. Whitham, M. et al. Contraction-induced interleukin-6 gene transcription in skeletal muscle is regulated by c-Jun terminal kinase/activator protein-1. J. Biol. Chem. 287, 10771–10779 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kelly, M. et al. AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem. Biophys. Res. Comm. 320, 449–454 (2004).

    CAS  PubMed  Google Scholar 

  129. Al-Khalili, L. et al. Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol. Endocrinol. 20, 3364–3375 (2006).

    CAS  PubMed  Google Scholar 

  130. Carey, A. L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55, 2688–2697 (2006).

    CAS  PubMed  Google Scholar 

  131. Petersen, A. M. & Pedersen, B. K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 98, 1154–1162 (2005).

    CAS  PubMed  Google Scholar 

  132. van Hall, G. et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 88, 3005–3010 (2003).

    CAS  PubMed  Google Scholar 

  133. Ellingsgaard, H. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 17, 1481–1489 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Shirazi, R. et al. Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proc. Natl Acad. Sci. USA 110, 16199–16204 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. ALS CNTF Treatment Study Group. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurology 46, 1244–1249 (1996).

  136. Duff, E. & Baile, C. A. Ciliary neurotrophic factor: a role in obesity? Nutr. Rev. 61, 423–426 (2003).

    PubMed  Google Scholar 

  137. Ettinger, M. P. et al. Recombinant variant of ciliary neurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study. J. Am. Med. Assoc. 289, 1826–1832 (2003).

    CAS  Google Scholar 

  138. Kraakman, M. et al. Targeting gp130 to prevent inflammation and promote insulin action. Diabetes Obes. Metab. 15 (Suppl. 3), 170–175 (2013).

    CAS  Google Scholar 

  139. Tsiloulis, T. & Watt, M. J. Exercise and the regulation of adipose tissue metabolism. Prog. Mol. Biol. Transl. Sci. 135, 175–201 (2015).

    CAS  PubMed  Google Scholar 

  140. Vosselman, M. J. et al. Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int. J. Obes. 39, 1696–1702 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

M.W. and M.A.F. are supported by the National Health and Medical Research Council of Australia (NHMRC Project Grant APP1062436 to M.A.F and M.W; Research Fellowship APP11021168 to M.A.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Febbraio.

Ethics declarations

Competing interests

M.A.F is a holder of patents for IC7, a gp130 receptor ligand.

PowerPoint slides

Glossary

VO2max

The term given to the maximal oxygen uptake; an indicator of aerobic capacity and cardiorespiratory fitness.

Myokine

A cytokine or peptide that is produced by skeletal muscle cells and subsequently released into the circulation to exert paracrine or endocrine effects.

Omics

A term given to the comprehensive biological assessment of entities with the suffix 'ome', such as the geneome, transcriptome and proteome (or proteinome).

Liquid chromatography tandem mass spectrometry

(LC–MS/MS). A technique used to identify proteins in complex mixtures via ionization and manipulation of the resultant ions to derive amino acid sequence information.

CRISPR

A gene editing tool that facilitates the establishment of genetically modified rodent models.

Adeno-associated viruses

Methods of gene transfer, in vivo, used to create transgenic overexpression mouse models in specific tissues.

Parabiosis

A mouse model of shared circulation, whereby surgical suturing initiates skin-to-skin contact of paired mice. After a period of 2 weeks, inflammation induces the development of microcirculation between mice so that the effect of a circulating factor from one animal can be assessed in the partner animal.

AMP-activated protein kinase

(AMPK). A kinase that is considered to be a master regulator of metabolism by sensing changes in AMP:ATP ratio.

PPARγ coactivator 1α

(PGC1α). A transcription factor that regulates genes involved in energy metabolism, of which there are at least four variants (PGC1α1 to PGC1α4).

PEGylation

Process of covalently adding repeating units of (polymerized) ethelene glycol to proteins with a view to improving stability, pharmacokinetics and therapeutic utility.

Fc fusion

Addition of the crystallizable fragment (Fc) domain of IgG molecules to therapeutic agents to improve pharmacokinetics and pharmacodynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitham, M., Febbraio, M. The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat Rev Drug Discov 15, 719–729 (2016). https://doi.org/10.1038/nrd.2016.153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.153

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer