Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Understanding 'Global' Systems Biology: Metabonomics and the Continuum of Metabolism

Abstract

To apply genomic knowledge effectively in drug discovery, mechanistic connectivities between genetic variation and disease processes need to be established via systems biology approaches. Humans have hundreds of functionally specialized cell types that interact differentially with environmental factors to influence disease development and to modulate the effects of drugs. Metabonomics can provide a means of modelling these interactions, but the relationships between 'endogenous' metabolic processes (coded in the genome and intrinsic to cellular function) and 'xenobiotic' (foreign compound) metabolism are poorly understood, especially with respect to environmental factors. We present an overview of 'global' mammalian metabolic conversions that should be accounted for in human systems biology models and propose a new probabilistic approach to help understand gene–disease relationships and vexed issues of idiosyncratic drug toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mammalian system–microbial–nutritional–xenobiotic interactions.
Figure 2: Three common examples of sym-xenobiotic metabolism occuring in mammals.
Figure 3: Possible interactions between diet, gut microfloral composition, parasites and gut structure and the influence of drugs.
Figure 4: The dynamic Pachinko model of metabolism.
Figure 5: Visualizing metabolic space and influence vectors.

Similar content being viewed by others

References

  1. Hood, L. & Galas, D. The digital code of DNA. Nature 421, 444–448 (2003).

    Article  PubMed  Google Scholar 

  2. Smith, L. L. Key challenges for toxicologists in the 21st Century. Trend. Pharm. Sci. 22, 281–285 (2001).

    Article  CAS  Google Scholar 

  3. Raamsdonk, L. M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotech. 19, 45–50 (2001).

    Article  CAS  Google Scholar 

  4. Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nicholson, J. K., Lindon, J. C. & Holmes, E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR data. Xenobiotica 29, 1181–1189 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nature Rev. Drug Discov. 1, 153–161 (2002).

    Article  CAS  Google Scholar 

  7. Lindon, J. C., Nicholson, J. K., Holmes, E. & Everett, J. R. Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn. Reson. 12, 289–320 (2000).

    Article  CAS  Google Scholar 

  8. Brindle, J. T. et al. Rapid and non-invasive diagnosis of the presence of coronary heart disease using 1H NMR-based metabonomics. Nature Med. 8, 1439–1444 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. KEGG: Kyoto Encyclopaedia of genes and genomes. Release 26. April 2003.

  10. Kacser, H. Recent developments beyond metabolic control analysis. Biochem. Soc. Trans. 23, 387–391 (1973).

    Article  Google Scholar 

  11. Kacser, H. & Burns, J. A. in Rate Control of Biological processes. Symposium of the Society of Experimental Biology 27 (ed. Davies, D. D.) 65–104 (Cambridge Univ. Press, 1973).

    Google Scholar 

  12. Meyer, U. A. & Zanger, U. M. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu. Rev. Pharmacol. Toxicol. 37, 269–296 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Srivastava, P. Drug metabolism and individualized medicine. Curr. Drug Metab. 4, 33–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Ingelman-Sundberg, M. Polymorphism of cytochrome P450 and xenobiotic toxicity. Toxicology 181, 447–452 (2002).

    Article  PubMed  Google Scholar 

  15. Eichelbaum, M. & Burk, O. CYP3A genetics in drug metabolism. Nature Med. 7, 285–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Eiselt, R. et al. Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics 11, 447–458 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Scott, R. J. et al. Association of extracolonic manifestations of familial adenomatous polyposis with acetylation phenotype in a large FAP kindred. Eur. J. Hum. Genet. 5, 43–49 (1997).

    CAS  PubMed  Google Scholar 

  18. Kivistö, K. T. et al. Analysis of CYP2D6 expression in human lung: implications for the association between CYP2D6 activity and susceptibility to lung cancer. Pharmacogenetics 7, 295–302 (1997).

    Article  PubMed  Google Scholar 

  19. Griese, E. U., Asante-Poku, S., Ofori-Adjei, D., Mikus, G. & Eichelbaum, M. Analysis of the CYP2D6 gene mutations and their consequences for enzyme function in a west African population. Pharmacogenetics 9, 715–723 (1999).

    CAS  PubMed  Google Scholar 

  20. Griese, E. U. et al. Allele and genotype frequencies of polymorphic cytochromes P4502D6, 2C19 and 2E1 in aborigines from Western Australia. Pharmacogenetics 11, 69–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Gilmore, M. S. & Ferretti, J. J. The thin line between gut commensal and pathogen. Science 299, 1999–2002 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Tannock, G. W. Normal Microflora (Chapman and Hall, 1995).

    Google Scholar 

  23. Xu, J. et al. A genomic view of the human–Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Beale, B. Probiotics: Their tiny worlds are under scrutiny. The Scientist 16, 20–22 (2002).

    Google Scholar 

  25. Kirjavainen, P. V. et al. Aberrant composition of gut microflora of allergic infants: a target of bifidobacterial therapy at weaning. Gut 51, 51–55 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Muller, M. & Kersten, S. Nutrigenomics: Goals and Strategies. Nature Gen. 4, 315–322 (2003).

    Article  Google Scholar 

  27. Willet, W. C. Balancing life-style and genomics research for disease prevention. Science 296, 695–698 (2002).

    Article  Google Scholar 

  28. Ghauri, F., McLean, A., Beales, D., Wilson, I. D. & Nicholson, J. K. Induction of 5-oxoprolinuria in the rat following chronic feeding with N-acetyl 4-aminophenol (paracetamol). Biochem. Pharmacol. 46, 953–957 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Nyhan, W. L. & Ozand, P. T. Atlas of Metabolic Diseases (Chapman and Hall, 1998).

    Google Scholar 

  30. Lof, A. et al. Relationship between uptake and elimination of toluene and debrisoquine hydroxylation polymorphism. Clin. Pharmacol. Ther. 47, 412–417 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Cok, I., Dagdelen, A. & Gokce, E. Determination of urinary hippuratic acid and O-cresol levels as biological indicators of toluene exposure in shoe-workers and glure sniffers. Biomarkers 8, 119–127 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Phipps, A. N., Stewart, J., Wright, B. & Wilson, I. D. Effect of diet on the urinary excretion of hippuric acid and other dietary derived aromatics in the rat. Xenobiotica 28, 527–537 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Gavaghan, C. L. et al. HPLC-NMR spectroscopic and chemometric studies on metabolic variation in Sprague Dawley rats. Anal. Biochem. 291, 245–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Murphy, G. M. The Bile Acids Vol. 4 (eds. Katchevsky, D. K. & Nair, P. P.) (Plenum, 1988).

    Google Scholar 

  35. Setchell, K. D., Harrison, D. L., Gilbert, J. M. & Mupthy, G. M. Serum unconjugated bile acids: qualitative and quantitative profiles in ileal resection and bacterial overgrowth. Clin. Chim. Acta 152, 297–306 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Yoneda, M. et al. The biotransformed metabolite profiles in blood after intravenous administration of dehydrocholic acid. Am. J. Gastroenterol. 84, 290–295 (1989).

    CAS  PubMed  Google Scholar 

  37. Einarsson, K., Nilsell, K. & Bjorkhem, I. Increased oxidoreduction of deoxycholic acid in cholecystectomised patients. Gut 30, 1275–1278 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Howard, P. J. & Murphy, G. M. Bile physiology: theory and practise. Curr. Opin. Gastroenterol. 6, 657–667 (1990).

    Article  Google Scholar 

  39. Nicholls, A. N., Mortishire–Smith, R. & Nicholson, J. K. Metabonomic investigations into the acclimatisation of axenic rats to a normal gut microflora. Chem. Res. Toxicol. (in the press).

  40. Krebs, H. A. & Perkins, J. R. The physiological role of liver alcohol dehydrogenase. Biochem. J. 118, 635–644 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Albro, P. W. & Lavenhar, S. R. Metabolism of di (2-ethylhexyl)phthalate. Drug Metab. Rev. 21, 13–34 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Astill, B. D. Metabolism of DEHP: Effects of prefeeding and dose variation, and comparative studies in rodents and the cynomolgus monkey (CMA Studies). Drug Metab. Rev. 21, 35–53 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Wilson, I. D. & Nicholson, J. K. Do metabolic pathways for xenobiotics really exist? Xenobiotica (in the press).

  44. Schwartz, M. A. Chemical aspects of penicillin allergy. J. Pharm. Sci. 58, 643–661 (1969).

  45. Connor, S. C., Everett, J., Jennings, K. R., Woodnut, G. & Nicholson, J. K. High-resolution 1H NMR spectroscopic studies of the metabolism and excretion of ampicillin and amoxycillin. J. Pharm. Pharmacol. 46, 128–134 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Nicholson, J. K. et al. Proton NMR studies of serum, plasma and urine from fasting normal, and diabetic subjects. Biochem. J. 217, 365–375 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Caldwell, J., Hutt, A. J., Marsh, M. V. & Sinclair, K. in Drug Metabolite Isolation and Determination (eds Reid, E. & Leppard, J. P.) 161–179 (Plenum, New York, 1983).

    Book  Google Scholar 

  48. Corcoran, O., Mortensen, R. W., Hansen, S. H., Troke, J. & Nicholson, J. K. HPLC/1H NMR spectroscopic studies of the reactive α-1-O-acyl isomer formed during acyl migration of S-naproxen β-1-O-acyl glucuronide. Chem. Res. Toxicol. 14, 1363–1370 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Mortensen, R. W. et al. S-naproxen-β-1-O-acyl glucuronide degradation kinetic studies by stopped-flow HPLC-1H NMR and HPLC-UV. Drug Metab. Dispos. 29, 375–380 (2001).

    CAS  PubMed  Google Scholar 

  50. Nicholls, A. W. et al. NMR spectroscopic and theoretical chemistry studies on the internal acyl migration reactions of the 1-O-acyl-β-D-glucopyranuronate conjugates of 2-, 3- and 4-trifluoromethylbenzoic acids. Chem. Res. Toxicol. 9, 1414–1424 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Spahn-Langguth, H. & Benet, L. Z. Acyl glucuronides revisited: is the glucuronidation process a toxification as well as a detoxification mechanism? Drug Metab. Rev. 24, 5–48 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Anthony, M., McDowell, P., Holmes, E., Gray, T. & Nicholson, J. K. 1H NMR spectroscopic studies on the reactions of haloalkylamines with bicarbonate ions: Formation of N-carbamates and 2-oxazolidone in cell culture media and blood plasma. Chem. Res. Toxicol. 8, 1046–1053 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Holmes, E. et al. Quantitative structure metabolism relationships and the prediction of phase II conjugation reactions of substituted phenols in the rat. Xenobiotica 25, 1269–1282 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Ghauri, F. Y. K. et al. Quantitative structure metabolism relationships for substituted benzoic acids in the rat using NMR spectroscopy, computational chemistry and pattern recognition methods. Biochem. Pharmacol. 44, 1935–1946 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Cupid, B. C., Bedell, C. R., Lindon, J. C., Wilson, I. D. & Nicholson, J. K. Quantitative structure metabolism relationships for substituted benzoic acids in the rabbit: prediction of urinary excretion of glycine and glucuronide conjugates. Xenobiotica 26, 157–176(1996).

    Article  CAS  PubMed  Google Scholar 

  56. Scarfe, G. B., Wilson, I. D., Lindon, J. C., Holmes, E. & Nicholson, J. K. Determination of structure–metabolism relationships of substituted anilines for prediction of N-acetylation and N-oxanillic acid formation. Xenobiotica 32, 267–277(2002).

    Article  CAS  PubMed  Google Scholar 

  57. Nicholson, J. K. et al. High-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and orthogonal acceleration time-of-flight mass spectrometry (oa-TOF-MS) for the simultaneous analysis and identification of the metabolites of 2-bromo-4-trifluoromethylacetaniline in rat urine. Anal. Chem. 73, 1491–1494 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Major, H., Castro-Perez, J., Nicholson, J. K. & Wilson, I. D. Characterisation of putative pentose-containing conjugates as minor metabolites of 4-bromoaniline presenting the urine of rats following intraperitoneal administration. Rap. Comm. in Mass Spectrom. 17, 76–80 (2003).

    Article  CAS  Google Scholar 

  59. Skilling, J. in Maximum Entropy and Bayesian Methods (ed. Paul Fougere) 267–273 (Kluwer, Dordrecht, 1990).

    Google Scholar 

  60. Seddon, M. J., Spraul, M., Wilson, I. D., Nicholson, J. K. & Lindon, J. C. Improvement in the characterization of minor drug metabolites from HPLC–NMR studies through the use of quantified maximum entropy processing of NMR spectra. J. Pharm Biomed. Anal. 12, 419–424 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the BBSRC, EPSRC, The Wellcome Trust and NIH and the COMET consortium for funding this and related work. We also thank Professors John Lindon, Paul Elliot and James Scott, FRS, Drs Elaine Holmes, Paul Carmichael, George Tranter, Mary Bollard, Hector Keun, Olaf Boeckoenert, Tim Ebbels, Henrik Antti and Steve Mitchell (Imperial College), Dr Istvan Peltzer, Dr Yueurg Utzinger and Professor Burt Singer (Princeton University), Professor Jeremy Everett (Pfizer Global Research, UK) and Dr Felicity Nicholson for their helpful comments and discussion on this work and related subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy K. Nicholson.

Related links

Related links

DATABASES

LocusLink

CYP2C19

CYP2D6

CYP2E1

FURTHER INFORMATION

Imperial College Division of Biomedical Science

Imperial College Section of Biological Chemistry

Glossary

ENDOGENOUS METABOLISM

Metabolic conversions under direct host cell genome/proteome control or under mitochondrial control, for example, all major energy-generating pathways and biosynthetic routes.

METABOLOMICS

The measurement of metabolite concentrations and fluxes and secretions in cells and tissues in which there is a direct connection between the genetic activity (gene expression), protein activity (proteome) and the metabolic activity itself.

METABOLOME

The full set of metabolites within, or that can be secreted by, a given cell type of tissue.

METABONOMICS

The quantitative measurement of the multivariate metabolic responses of multicellular systems to pathophysiological stimuli or genetic modification5,6. An approach to understanding global metabolic regulation of organism and its commensal and symbiotic partners.

METABONOME

The sum of the cellular metabolomes in a multi-cellular organism and their interaction components plus the products of facile chemical transformations and extra-genomically generated metabolites.

METABONATE

A compound that is produced by a facile chemical rearrangement or reaction within an organism, that can be excreted or further metabolized.

SYM-ENDOGENOUS

Processes or compounds that are essential to host biological function and which can be metabolized or further utilized by host, but for which there is no biosynthetic capability in the host genome, for example, vitamins and essential amino acids.

SYM-XENOBIOTIC

Metabolites or processes involving co-metabolism by two or more organisms that are commensal or symbiotic (for example, bile acid metabolism). Not necessarily essential to the host, but can influence endogenous or other xenobiotic metabolic processes.

TRANS-XENOBIOTIC

Compounds of extra-genomic or chemical origin but which are metabolically converted to endogenous species or metabolites that can be utilized directly in endogenous processes, for example, ethanol.

XENOBIOTIC

A compound that is foreign to the endogenous process and has no intrinsic biological function but which can have major effects on endogenous pathway control and can be extensively metabolized by complexes of host enzymic systems that have collectively relatively low substrate specificities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, J., Wilson, I. Understanding 'Global' Systems Biology: Metabonomics and the Continuum of Metabolism. Nat Rev Drug Discov 2, 668–676 (2003). https://doi.org/10.1038/nrd1157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing