Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology platforms for pharmacogenomic diagnostic assays

Key Points

  • The application of genetic, genomic and proteomic technologies to the development of in vitro molecular diagnostics provides many opportunities for improving choice of therapy and the prediction of drug response.

  • The first examples of in vitro diagnostics designed to aid therapeutic decisions are making their way towards regulatory approval and routine use in the clinic, and this article reviews some of the relative strengths and limitations of the most widely used technologies and platforms for such diagnostics.

  • The following assay formats and platforms, which are commonly used and currently automated, or that have near-term automation potential, are described: assays using TaqMan probes, assays using hybridization probes, assays using Invader probes, bead-based multiplex genotyping, and high-density microarrays for genotyping.

Abstract

Rapid advances in the understanding of genomic variation affecting drug responses, and the development of multiplex assay technologies, are converging to form the basis for new in vitro diagnostic assays. These molecular diagnostic assays are expected to guide the therapeutic treatment of many diseases, by informing physicians about molecular subtypes of disease that require differential treatment, which drug has the greatest probability of effectively managing the disease, and which individual patients are at the highest risk of experiencing adverse reactions to a given drug therapy. This article reviews some of the relative strengths and limitations of the most widely used technologies and platforms for such assays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genotype analysis approaches: TaqMan probes.
Figure 2: Genotype analysis approaches: hybridization probes.
Figure 3: Genotype analysis approaches: Invader assay.
Figure 4: Bead-based multiplex genotyping using allele-specific primer extension.
Figure 5: Oligonucleotide microarray-based genetic variation detection or gene-expression analysis.
Figure 6: High-density oligonucleotide microarray probe-tiling approaches for genotyping.
Figure 7: Probe-tiling approach for re-sequencing p53.
Figure 8: Affymetrix oligonucleotide microarray probe strategy for differential gene-expression analysis.

Similar content being viewed by others

References

  1. Weinshilboum, R. Inheritance and drug response. N. Engl. J. Med. 348, 529–537 (2003).

    Article  Google Scholar 

  2. Evans, W. E. & Relling, M. V. Moving towards individualized medicine with pharmacogenomics. Nature 429, 464–468 (2004).

    Article  CAS  Google Scholar 

  3. Ingelman–Sundberg, M., Oscarson, M. & McLellan, R. A. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol. Sci. 20, 342–349 (1999).

    Article  Google Scholar 

  4. Goldstein, J. A. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br. J. Clin. Pharmacol. 52, 349–355 (2001).

    Article  CAS  Google Scholar 

  5. Desta, Z., Zhao, X., Shin, J. G. & Flockhart, D. A. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 41, 913–958 (2002).

    Article  CAS  Google Scholar 

  6. Levy, G. N. & Weber, W. W. in Interindividual Variability in Human Drug Metabolism (ed. Pacifici, G. M. & Pelkonen, O.) 333–357 (Taylor and Francis, London and New York, 2001).

    Google Scholar 

  7. Weinshilboum, R. M., Otterness, D. M. & Szumlanski, C. L. Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu. Rev. Pharmacol. Toxicol. 39, 19–52 (1999).

    Article  CAS  Google Scholar 

  8. Townsend, D. & Tew, K. Cancer drugs, genetic variation and the glutathione-S–transferase gene family. Am. J. Pharmacogenomics 3, 157–172 (2003).

    Article  CAS  Google Scholar 

  9. Cascorbi, I. Pharmacogenetics of cytochrome p4502D6: genetic background and clinical implication. Eur. J. Clin. Invest. 33 (Suppl. 2), 17–22 (2003).

    Article  CAS  Google Scholar 

  10. Dracopoli, N. C. Pharmacogenomic applications in clinical drug development. Cancer Chemother. Pharmacol. 52 (Suppl 1), S57–S60 (2003).

    Article  CAS  Google Scholar 

  11. Ross, J. S. et. al. Pharmacogenomics. Adv. Anat. Pathol. 11, 211–220 (2004).

    Article  CAS  Google Scholar 

  12. Holleman, A. et. al. Gene-expression patterns in drug resistant acute lymphoblastic leukemia cells and response to treatment. N. Engl. J. Med. 351, 533–542 (2004).

    Article  CAS  Google Scholar 

  13. Newton, C. R. et. al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17, 2503–2516 (1989).

    Article  CAS  Google Scholar 

  14. Holland, P. M., Abramson, R. D., Watson, R. & Gelfand, D. H. Detection of specific polymerase chain reaction product by utilizing the 5′—-—3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl Acad. Sci. USA 88, 7276–7280 (1991). This paper describes the principles of the Taqman homogeneous PCR detection format.

    Article  CAS  Google Scholar 

  15. Lyamichev, V. et. al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature Biotechnol. 17, 292–296 (1999).

    Article  CAS  Google Scholar 

  16. Syvanen, A. C., Aalto-Setala, K., Harju, L., Kontula, K. & Soderlund, H. A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics 8, 684–692 (1990). This study reports development of a primer extension extension for genotyping.

    Article  CAS  Google Scholar 

  17. Barany, F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl Acad. Sci. USA 88, 189–193 (1991).

    Article  CAS  Google Scholar 

  18. Fan, J. B. et. al. Parallel genotyping of human SNPs using generic high–density oligonucleotide tag arrays. Genome Res. 10, 853–860 (2000).

    Article  CAS  Google Scholar 

  19. Haff, L. A. & Smirnov, I. P. Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI–TOF mass spectrometry. Genome Res. 7, 378–388 (1997).

    Article  CAS  Google Scholar 

  20. Bugawan, T. L., Apple, R. & Erlich, H. A. A method for typing polymorphism at the HLA-A locus using PCR amplification and immobilized oligonucleotide probes. Tissue Antigens 44, 137–147 (1994).

    Article  CAS  Google Scholar 

  21. Cronin, M. T. et al. Cystic fibrosis mutation detection by hybridization to light-generated DNA probe arrays. Hum Mutat. 7, 244–255 (1996). This report is one of the first to describe the use of high-density oligonucleotide microarrays for multiplex genotyping large numbers of polymorphisms.

    Article  CAS  Google Scholar 

  22. Armstrong, B., Stewart, M. & Mazumder, A. Suspension arrays for high throughput, multiplexed single nucleotide polymorphism genotyping. Cytometry 40, 102–108 (2000). This paper describes development of a bead-based multiplex genotyping assay.

    Article  CAS  Google Scholar 

  23. Murphy, G. M. Jr et al. CYP2D6 genotyping with oligonucleotide microarrays and nortriptyline concentrations in geriatric depression. Neuropsychopharmacology 25, 737–743 (2001).

    Article  CAS  Google Scholar 

  24. Chou, W. H. et. al. Comparison of two CYP2D6 genotyping methods and assessment of genotype–phenotype relationships. Clin Chem. 49, 542–551 (2003).

    Article  CAS  Google Scholar 

  25. Schena, M. et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl Acad. Sci. USA 93, 10614–10619 (1996). This is one of the first uses of microarrays to assess differential gene expression of hundreds of human genes in parallel.

    Article  CAS  Google Scholar 

  26. DeRisi, J. et. al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457–460 (1996). This was the first report of the use of microarrays to examine differential gene expression in cancer.

    Article  CAS  Google Scholar 

  27. Scherf, U. et. al. A gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236–244 (2000).

    Article  CAS  Google Scholar 

  28. Liotta, L. & Petricoin, E. Molecular profiling of human cancer. Nature Rev. Genet. 1, 48–56 (2000).

    Article  CAS  Google Scholar 

  29. Goldstein, J. A. & Blaisdell, J. Genetic tests which identify the principal defects in CYP2C19 responsible for the polymorphism in mephenytoin metabolism. Methods Enzymol. 272, 210–218 (1996).

    Article  CAS  Google Scholar 

  30. Claassen, J. D., Pascoe, N., Schatzberg, A. F. & Murphy, G. M. Jr. Rapid detection of the C-1496G polymorphism in the CYP2D6*2 allele. Clin. Chem. 47, 2153–2155 (2001).

    CAS  PubMed  Google Scholar 

  31. Higuchi, R., Dollinger, G., Walsh, P. S. & Griffith, R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology NY 10, 413–417 (1992). This paper was the first to describe a method for homogeneous fluorescence-based detection of PCR reaction products.

    Article  CAS  Google Scholar 

  32. Schneeberger, C., Speiser, P., Kury, F. & Zeillinger, R. Quantitative detection of reverse transcriptase–PCR products by means of a novel and sensitive DNA stain. PCR Methods Appl. 4, 234–238 (1995).

    Article  CAS  Google Scholar 

  33. Livak, K. J. Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal. 14, 143–149 (1999).

    Article  CAS  Google Scholar 

  34. Aithal, G. P., Day, C. P., Kesteven, P. J. & Daly, A. K. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353, 717–719 (1999).

    Article  CAS  Google Scholar 

  35. Teupser, D., Rupprecht, W., Lohse, P. & Thiery, J. Fluorescence-based detection of the CETP TaqIB polymorphism: false positives with the TaqMan-based exonuclease assay attributable to a previously unknown gene variant. Clin Chem. 47, 852–857 (2001).

    CAS  PubMed  Google Scholar 

  36. Lay, M. J. & Wittwer, C. T. Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin Chem. 43, 2262–2267 (1997). This paper describes the use of hybridization probes to genotype a common genetic variant.

    CAS  PubMed  Google Scholar 

  37. Bernard, P. S., Ajioka, R. S., Kushner, J. P. & Wittwer, C. T. Homogeneous multiplex genotyping of hemochromatosis mutations with fluorescent hybridization probes. Am. J. Pathol. 153, 1055–1061 (1998).

    Article  CAS  Google Scholar 

  38. Burian, M., Grosch, S., Tegeder, I. & Geisslinger, G. Validation of a new fluorogenic real-time PCR assay for detection of CYP2C9 allelic variants and CYP2C9 allelic distribution in a German population. Br. J. Clin. Pharmacol. 54, 518–521 (2002).

    Article  CAS  Google Scholar 

  39. Wikman, H. et al. Relevance of N-acetyltransferase 1 and 2 (NAT1, NAT2) genetic polymorphisms in non-small cell lung cancer susceptibility. Pharmacogenetics 11, 157–168 (2001).

    Article  CAS  Google Scholar 

  40. Wusk, B. et al. Thiopurine S-methyltransferase polymorphisms: efficient screening method for patients considering taking thiopurine drugs. Eur. J. Clin. Pharmacol. 60, 5–10 (2004).

    Article  CAS  Google Scholar 

  41. Warshawsky, I. et al. Detection of a novel point mutation of the prothrombin gene at position 20209. Diagn. Mol. Pathol. 11, 152–156 (2002).

    Article  Google Scholar 

  42. Tag, C. G., Gressner, A. M. & Weiskirchen, R. An unusual melting curve profile in LightCycler multiplex genotyping of the hemochromatosis H63D/C282Y gene mutations. Clin. Biochem. 34, 511–515 (2001).

    Article  CAS  Google Scholar 

  43. Emanuel, P. A. et al. Detection of Francisella tularensis within infected mouse tissues by using a hand-held PCR thermocycler. J. Clin. Microbiol. 41, 689–693 (2003).

    Article  CAS  Google Scholar 

  44. Kwiatkowski, R. W., Lyamichev, V., de Arruda, M. & Neri, B. Clinical, genetic, and pharmacogenetic applications of the Invader assay. Mol. Diagn. 4, 353–364 (1999).

    Article  CAS  Google Scholar 

  45. de Arruda, M. et al. Invader technology for DNA and RNA analysis: principles and applications. Expert Rev. Mol. Diagn. 2, 487–496 (2002).

    Article  CAS  Google Scholar 

  46. Nevilie, M. et al. Characterization of cytochrome P450 2D6 alleles using the Invader system. Biotechniques. 34 (Suppl.), 40–43 (2002).

    Google Scholar 

  47. Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B. & Erlich, H. A. Analysis of enzymatically amplified β-globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature 324, 163–166 (1986). This was the first use of PCR together with allele specific probes to genotype a human gene variant.

    Article  CAS  Google Scholar 

  48. Ye, F. et al. Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification. Hum. Mutat. 17, 305–316 (2001).

    Article  CAS  Google Scholar 

  49. Gilles, P. N., Wu, D. J., Foster, C. B., Dillon, P. J. & Chanock, S. J. Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips. Nature Biotechnol. 17, 365–370 (1999).

    Article  CAS  Google Scholar 

  50. Lipshutz, R. J., Fodor, S. P., Gingeras, T. R. & Lockhart, D. J. High density synthetic oligonucleotide arrays. Nature Genet. 21 (Suppl. 1), 20–24 (1999).

    Article  CAS  Google Scholar 

  51. Taylor, J. D. et al. Flow cytometric platform for high-throughput single nucleotide polymorphism analysis. Biotechniques 30, 661–666, 668–669 (2001).

    Article  CAS  Google Scholar 

  52. Matsuzaki, H. et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res. 14, 414–425 (2004).

    Article  CAS  Google Scholar 

  53. Kennedy, G. C. et al. Large-scale genotyping of complex DNA. Nature Biotechnol. 21, 1233–1237 (2003).

    Article  CAS  Google Scholar 

  54. Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001). This paper describes the use of high-density oligonucleotide micoarrays to genotype across an entire chromosome.

    Article  CAS  Google Scholar 

  55. Koch, W. H. in Clinical Pharmacogenomics (eds Wong, S. H., Linder, M. W. & Valdes, R.) (in the press).

  56. Sebastian, J. & Faruki, H. Update on HIV resistance and resistance testing. Med. Res. Rev. 24, 115–125 (2004).

    Article  CAS  Google Scholar 

  57. Soussi, T. & Beroud, C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nature Rev. Cancer 1, 233–240 (2001).

    Article  CAS  Google Scholar 

  58. Woods, Y. L. & Lane, D. P. Exploiting the p53 pathway for cancer diagnosis and therapy. Hematol. J. 4, 233–247 (2003).

    Article  CAS  Google Scholar 

  59. Petersen, S., Thames, H. D., Nieder, C., Petersen, C. & Baumann, M. The results of colorectal cancer treatment by p53 status: treatment-specific overview. Dis. Colon Rectum 44, 322–333 (2001).

    Article  CAS  Google Scholar 

  60. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  Google Scholar 

  61. Yager, T. D. et al. High performance DNA sequencing, and the detection of mutations and polymorphisms, on the Clipper sequencer. Electrophoresis 20, 1280–1300 (1999).

    Article  CAS  Google Scholar 

  62. Bharaj, B. S., Angelopoulou, K. & Diamandis, E. P. Rapid sequencing of the p53 gene with a new automated DNA sequencer. Clin. Chem. 44, 1397–1403 (1998).

    CAS  PubMed  Google Scholar 

  63. Kozal, M. J. et al. Extensive polymorphisms observed in HIV-1 clade B protease gene using high-density oligonucleotide arrays. Nature Med. 2, 753–759 (1996).

    Article  CAS  Google Scholar 

  64. Takahashi, Y. et al. Clinical application of oligonucleotide probe array for full-length gene sequencing of TP53 in colon cancer. Oncology 64, 54–60 (2003).

    Article  CAS  Google Scholar 

  65. Wen, W. H. et al. Comparison of TP53 mutations identified by oligonucleotide microarray and conventional DNA sequence analysis. Cancer Res. 60, 2716–2722 (2000).

    CAS  PubMed  Google Scholar 

  66. The Tumor Analysis Best Practices Working Group. Expression Profiling — best practices for data generation and interpretation in clinical trials. Nature Rev. Genet. 5, 229–237 (2004).

  67. Parmigiani, G., Garrett, E., Irizarry, R. & Zeger, S. in The Analysis of Gene Expression Data, (eds Parmigiani, G., Garrett, E., Irizarry, R. & Zeger, S.) 1–45 (Springer, New York, 2003).

    Google Scholar 

  68. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl J. Med. 350, 2129–2139 (2004).

    Article  CAS  Google Scholar 

  69. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  Google Scholar 

  70. Ross, M. E. et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102, 2951–2959 (2003).

    Article  CAS  Google Scholar 

  71. Haferlach, T. et al. Gene expression profiling as a tool for the diagnosis of acute leukemias. Semin. Hematol. 40, 281–295 (2003).

    Article  CAS  Google Scholar 

  72. Boyer, J., Maxwell, P. J., Longley, D. B. & Johnston, P. G. 5-Fluorouracil: identification of novel downstream mediators of tumor response. Anticancer Res. 24, 417–423 (2004).

    CAS  PubMed  Google Scholar 

  73. Chang, J. C. et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362, 362–369 (2003).

    Article  CAS  Google Scholar 

  74. Ma, X. J. et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5, 607–616 (2004).

    Article  CAS  Google Scholar 

  75. US Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research & Center for Devices and Radiological Health. 'Draft' Guidance for Industry: Pharmacogenomics Data Submissions. (November, 2003).

  76. Bradford, L. D. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3, 229–243 (2002).

    Article  CAS  Google Scholar 

  77. Kimura, S., Umeno, M., Skoda, R. C., Meyer, U. A. & Gonzalez, F. J. The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am. J. Hum. Genet. 45, 889–904 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Heim, M. H. & Meyer, U. A. Evolution of a highly polymorphic human cytochrome P450 gene cluster: CYP2D6. Genomics 14, 49–58 (1992).

    Article  CAS  Google Scholar 

  79. Ingelman–Sundberg, M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol. Sci. 25, 193–200 (2004)

    Article  Google Scholar 

  80. Sachse, C., Brockmoller, J., Bauer, S. & Roots, I. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am. J. Hum. Genet. 60, 284–295 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Steen, V. M. et al. Detection of the poor metabolizer-associated CYP2D6(D) gene deletion allele by long-PCR technology. Pharmacogenetics 5, 215–223 (1995).

    Article  CAS  Google Scholar 

  82. Lovlie, R., Daly, A. K., Molven, A., Idle, J. R. & Steen, V. M. Ultrarapid metabolizers of debrisoquine: characterization and PCR-based detection of alleles with duplication of the CYP2D6 gene. FEBS Lett. 392, 30–34 (1996).

    Article  CAS  Google Scholar 

  83. Ahrendt, S. A. et al. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc. Natl Acad. Sci. USA 96, 7382–7387 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank J. Flanagan for assistance in preparing this manuscript, and G. Beer for providing CYP2C9 four-colour genotyping results.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

W.K. is employed by Roche Diagnostics and is engaged in the research and development of pharmagenomics assays.

Related links

Related links

DATABASES

Entrez Gene

ABL

BCR

CFTR

CYP2C9

CYP2C19

CYP2D6

EGFR

ERBB2

factor II

factor V

MDM2

NAT2

p53

TPMT

National Cancer Institute Cancer Topics

Chronic myelogenous leukaemia

FURTHER INFORMATION

CYP2D6 allele nomenclature

Guidance for Industry: Pharmacogenomics Data Submissions

Pharmacogenetics Research Network

Roche 510(k) summary

TM Bioscience Product page

Glossary

SINGLE-NUCLEOTIDE POLYMORPHISM

A substitution of one base pair at a given position in genomic DNA.

CAPILLARY ELECTROPHORESIS

An adaptation of traditional slab gel electrophoresis to a capillary format.

MALDI-TOF MASS SPECTROMETRY

A technique that enables mass spectrometric analyses of biomolecules including proteins and nucleic acids.

PSEUDOGENE

DNA sequence similar to a homologue normal gene but that seems to have no function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, W. Technology platforms for pharmacogenomic diagnostic assays. Nat Rev Drug Discov 3, 749–761 (2004). https://doi.org/10.1038/nrd1496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1496

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing