Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease

Key Points

  • This Review highlights the therapeutic potential of inhibitors of a novel class of oxygen sensors — prolyl hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF (FIH) — to treat inflammatory and ischaemic diseases.

  • Oxygen sensors destabilize hypoxia inducible factors (HIFs), which are molecules that execute the cellular response to hypoxia. Induction of this HIF programme is associated with enhanced angiogenesis. Inhibition of PHDs might therefore offer opportunities for therapeutic revascularization of ischaemic tissues.

  • Inhibition of PHD1 results in ischaemia tolerance of skeletal muscle and other tissues; this protection is attributed to an attenuation of oxidative damage.

  • Inhibition of PHDs bears resemblance to changes in metabolism observed in hibernating species. This raises the possibility of therapeutically inducing (via inhibiting PHDs) a state of hibernation in various organs, which would confer cytoprotection against transient ischaemic periods during surgical (for example, bypass operations) or transplantation procedures.

  • Ischaemic preconditioning (IPC), a stressful but non-damaging hypoxic stimulus, confers protection against a subsequent harmful ischaemic event. Recent data indicate that inhibition of PHDs can induce IPC in vivo and confer resistance to hypoxic events in cardiac and cerebral tissues.

  • Inhibition of PHDs is also cytoprotective during development of inflammatory bowel disease in a murine model of colitis.

  • Most currently available PHD/FIH inhibitors are non-selective. Therefore, there is a need to develop novel, more specific inhibitors for each of the PHD isoforms. We discuss recently developed PHD inhibitors, and also introduce alternative approaches to generate more selective PHD inhibitors.

Abstract

Cells in the human body need oxygen to function and survive, and severe deprivation of oxygen, as occurs in ischaemic heart disease and stroke, is a major cause of mortality. Nevertheless, other organisms, such as the fossorial mole rat or diving seals, have acquired the ability to survive in conditions of limited oxygen supply. Hypoxia tolerance also allows the heart to survive chronic oxygen shortage, and ischaemic preconditioning protects tissues against lethal hypoxia. The recent discovery of a new family of oxygen sensors — including prolyl hydroxylase domain-containing proteins 1–3 (PHD1–3) — has yielded exciting novel insights into how cells sense oxygen and keep oxygen supply and consumption in balance. Advances in understanding of the role of these oxygen sensors in hypoxia tolerance, ischaemic preconditioning and inflammation are creating new opportunities for pharmacological interventions for ischaemic and inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic potential of PHD and FIH inhibition.
Figure 2: PHD inhibitors promote therapeutic angiogenesis.
Figure 3: PHD inhibition, oxygen conformance and hypoxia tolerance.
Figure 4: PHD inhibition and myocardial hibernation.
Figure 5: Role of the PHD and HIF system in ischaemic preconditioning.
Figure 6: Mechanisms underlying PHD inhibition in inflammatory diseases.
Figure 7: Simplified schematic strategies to design novel PHD and FIH inhibitors.

Similar content being viewed by others

References

  1. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    CAS  Google Scholar 

  2. Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix–loop–helix–PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA 92, 5510–5514 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaelin, W. G. Jr, & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    CAS  PubMed  Google Scholar 

  4. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001). References 4 and 5 describe the initial identification and characterization of HIF-regulating PHDs.

    CAS  PubMed  Google Scholar 

  6. Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahon, P. C., Hirota, K. & Semenza, G. L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15, 2675–2686 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ehrismann, D. et al. Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochem. J. 401, 227–234 (2007).

    CAS  PubMed  Google Scholar 

  9. Koivunen, P., Hirsila, M., Gunzler, V., Kivirikko, K. I. & Myllyharju, J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 279, 9899–9904 (2004).

    CAS  PubMed  Google Scholar 

  10. Gnaiger, E., Lassnig, B., Kuznetsov, A., Rieger, G. & Margreiter, R. Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J. Exp. Biol. 201, 1129–1139 (1998).

    CAS  PubMed  Google Scholar 

  11. Ward, J. P. Oxygen sensors in context. Biochim. Biophys. Acta 1777, 1–14 (2008).

    CAS  PubMed  Google Scholar 

  12. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    CAS  PubMed  Google Scholar 

  13. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    CAS  PubMed  Google Scholar 

  14. Stolze, I. P. et al. Genetic analysis of the role of the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (HIF) in regulating HIF transcriptional target genes. J. Biol. Chem. 279, 42719–42725 (2004).

    CAS  PubMed  Google Scholar 

  15. Ramirez, J. M., Folkow, L. P. & Blix, A. S. Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu. Rev. Physiol. 69, 113–143 (2007).

    CAS  PubMed  Google Scholar 

  16. Kelly, D. P. Hypoxic reprogramming. Nature Genet. 40, 132–134 (2008).

    CAS  PubMed  Google Scholar 

  17. Schmitz, A. & Harrison, J. F. Hypoxic tolerance in air-breathing invertebrates. Respir. Physiol. Neurobiol. 141, 229–242 (2004).

    CAS  PubMed  Google Scholar 

  18. Aragones, J. et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nature Genet. 40, 170–180 (2008). This study provides in vivo evidence that therapeutic inhibition of PHD1 results in protection of skeletal muscle fibres against an otherwise lethal ischaemic insult via reprogramming of basal metabolism and subsequent attenuation of oxidative stress.

    CAS  PubMed  Google Scholar 

  19. Eckle, T., Kohler, D., Lehmann, R., El Kasmi, K. & Eltzschig, H. K. Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118, 166–175 (2008). This study identifies cardiac PHD2 as an essential player in cardiac protection against ischaemia–reperfusion injury via the adenosine pathway.

    CAS  PubMed  Google Scholar 

  20. Simons, M. Angiogenesis: where do we stand now? Circulation 111, 1556–1566 (2005).

    PubMed  Google Scholar 

  21. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nature Med. 6, 389–395 (2000).

    CAS  PubMed  Google Scholar 

  22. Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer 2, 38–47 (2002).

    CAS  Google Scholar 

  23. Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Med. 9, 677–684 (2003).

    CAS  PubMed  Google Scholar 

  24. Shyu, K. G. et al. Intramyocardial injection of naked DNA encoding HIF-1α/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc. Res. 54, 576–583 (2002).

    CAS  PubMed  Google Scholar 

  25. Vincent, K. A. et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1α/VP16 hybrid transcription factor. Circulation 102, 2255–2261 (2000). This paper confirms the utility of increasing HIF1α expression in therapeutic angiogenesis.

    CAS  PubMed  Google Scholar 

  26. Kido, M. et al. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J. Am. Coll. Cardiol. 46, 2116–2124 (2005).

    CAS  PubMed  Google Scholar 

  27. Takeda, K., Cowan, A. & Fong, G. H. Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation 116, 774–781 (2007).

    CAS  PubMed  Google Scholar 

  28. Minamishima, Y. A. et al. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111, 3236–3244 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Takeda, K. & Fong, G. H. Prolyl hydroxylase domain 2 protein suppresses hypoxia-induced endothelial cell proliferation. Hypertension 49, 178–184 (2007).

    CAS  PubMed  Google Scholar 

  30. Knowles, H. J., Tian, Y. M., Mole, D. R. & Harris, A. L. Novel mechanism of action for hydralazine: induction of hypoxia-inducible factor-1α, vascular endothelial growth factor, and angiogenesis by inhibition of prolyl hydroxylases. Circ. Res. 95, 162–169 (2004).

    CAS  PubMed  Google Scholar 

  31. Milkiewicz, M., Pugh, C. W. & Egginton, S. Inhibition of endogenous HIF inactivation induces angiogenesis in ischaemic skeletal muscles of mice. J. Physiol. 560, 21–26 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Campbell, W. B., Graham, R. M., Jackson, E. K., Loisel, D. P. & Pettinger, W. A. Effect of indomethacin on hydralazine-induced renin and catecholamine release in the conscious rabbit. Br. J. Pharmacol. 71, 529–531 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Amaral, S. L., Roman, R. J. & Greene, A. S. Renin gene transfer restores angiogenesis and vascular endothelial growth factor expression in Dahl S rats. Hypertension 37, 386–390 (2001).

    CAS  PubMed  Google Scholar 

  34. Freret, T. et al. Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. Eur. J. Neurosci. 23, 1757–1765 (2006).

    PubMed  Google Scholar 

  35. Siddiq, A. et al. Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J. Biol. Chem. 280, 41732–41743 (2005). This paper illustrates the use of PHD inhibitors to confer neuroprotection in a mouse model of permanent cerebral focal ischaemia.

    CAS  PubMed  Google Scholar 

  36. Hayashi, T., Abe, K. & Itoyama, Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J. Cereb. Blood Flow Metab. 18, 887–895 (1998).

    CAS  PubMed  Google Scholar 

  37. Manoonkitiwongsa, P. S., Schultz, R. L., McCreery, D. B., Whitter, E. F. & Lyden, P. D. Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis. J. Cereb. Blood Flow Metab. 24, 693–702 (2004).

    CAS  PubMed  Google Scholar 

  38. Shen, F. et al. Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke 37, 2601–2606 (2006).

    CAS  PubMed  Google Scholar 

  39. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).

    CAS  Google Scholar 

  40. Comerford, K. M. et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62, 3387–3394 (2002).

    CAS  PubMed  Google Scholar 

  41. Zhang, H. et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407–420 (2007).

    CAS  PubMed  Google Scholar 

  42. Zhang, H. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892–10903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dahia, P. L. et al. A HIF1α regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 1, 72–80 (2005).

    CAS  PubMed  Google Scholar 

  44. Fukuda, R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111–122 (2007).

    CAS  PubMed  Google Scholar 

  45. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell. Metab. 3, 177–185 (2006).

    PubMed  Google Scholar 

  46. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell. Metab. 3, 187–197 (2006). References 45 and 46 identified PDK1 as a HIF1α-dependent mediator of downregulating mitochondrial oxygen consumption.

    CAS  PubMed  Google Scholar 

  47. Liu, L. et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell 21, 521–531 (2006).

    PubMed  PubMed Central  Google Scholar 

  48. Brugarolas, J. et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 18, 2893–2904 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. DeYoung, M. P., Horak, P., Sofer, A., Sgroi, D. & Ellisen, L. W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 22, 239–251 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Scortegagna, M. et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nature Genet. 35, 331–340 (2003).

    CAS  PubMed  Google Scholar 

  51. Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83, 1153–1181 (2003).

    CAS  PubMed  Google Scholar 

  52. Andrews, M. T. Genes controlling the metabolic switch in hibernating mammals. Biochem. Soc. Trans. 32, 1021–1024 (2004).

    CAS  PubMed  Google Scholar 

  53. Andrews, M. T., Squire, T. L., Bowen, C. M. & Rollins, M. B. Low-temperature carbon utilization is regulated by novel gene activity in the heart of a hibernating mammal. Proc. Natl Acad. Sci. USA 95, 8392–8397 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Buck, M. J., Squire, T. L. & Andrews, M. T. Coordinate expression of the PDK4 gene: a means of regulating fuel selection in a hibernating mammal. Physiol. Genomics 8, 5–13 (2002).

    CAS  PubMed  Google Scholar 

  55. Galster, W. A. & Morrison, P. Seasonal changes in serum lipids and proteins in the 13-lined ground squirrel. Comp. Biochem. Physiol. 18, 489–501 (1966).

    CAS  PubMed  Google Scholar 

  56. Harlow, H. J. & Frank, C. L. The role of dietary fatty acids in the evolution of spontaneous and facultative hibernation patterns in prairie dogs. J. Comp. Physiol. [B] 171, 77–84 (2001).

    CAS  Google Scholar 

  57. Drew, K. L. et al. Hypoxia tolerance in mammalian heterotherms. J. Exp. Biol. 207, 3155–3162 (2004).

    CAS  PubMed  Google Scholar 

  58. Zhou, F. et al. Hibernation, a model of neuroprotection. Am. J. Pathol. 158, 2145–2151 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bernhardt, W. M. et al. Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J. Am. Soc. Nephrol. 17, 1970–1978 (2006).

    CAS  PubMed  Google Scholar 

  60. Hill, P. et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia–reperfusion injury. J. Am. Soc. Nephrol. 19, 39–46 (2008). References 59 and 60 demonstrate that inhibition of PHDs confer renal protection against ischaemic insults.

    CAS  Google Scholar 

  61. Zhong, Z. et al. Activation of the oxygen-sensing signal cascade prevents mitochondrial injury after mouse liver ischemia–reperfusion. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G823–G832 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Taylor, C. T. & Pouyssegur, J. Oxygen, hypoxia, and stress. Ann. NY Acad. Sci. 1113, 87–94 (2007).

    CAS  PubMed  Google Scholar 

  63. Kulkarni, A. C., Kuppusamy, P. & Parinandi, N. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid. Redox Signal. 9, 1717–1730 (2007).

    CAS  PubMed  Google Scholar 

  64. Bonnet, S. et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51 (2007).

    CAS  PubMed  Google Scholar 

  65. Heusch, G., Schulz, R. & Rahimtoola, S. H. Myocardial hibernation: a delicate balance. Am. J. Physiol. Heart Circ. Physiol. 288, H984–H999 (2005).

    CAS  PubMed  Google Scholar 

  66. Fallavollita, J. A., Malm, B. J. & Canty, J. M. Jr. Hibernating myocardium retains metabolic and contractile reserve despite regional reductions in flow, function, and oxygen consumption at rest. Circ. Res. 92, 48–55 (2003).

    CAS  PubMed  Google Scholar 

  67. Page, B. et al. Persistent regional downregulation in mitochondrial enzymes and upregulation of stress proteins in swine with chronic hibernating myocardium. Circ. Res. 102, 103–112 (2008).

    CAS  PubMed  Google Scholar 

  68. Depre, C. et al. Program of cell survival underlying human and experimental hibernating myocardium. Circ. Res. 95, 433–440 (2004).

    CAS  PubMed  Google Scholar 

  69. Kim, S. J. et al. Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ. Res. 92, 1233–1239 (2003).

    CAS  PubMed  Google Scholar 

  70. Hosokawa, R. et al. Myocardial metabolism of 123I-BMIPP during low-flow ischaemia in an experimental model: comparison with myocardial blood flow and 18F-FDG. Eur. J. Nucl. Med. 28, 1630–1639 (2001).

    CAS  PubMed  Google Scholar 

  71. Shimonagata, T. et al. Metabolic changes in hibernating myocardium after percutaneous transluminal coronary angioplasty and the relation between recovery in left ventricular function and free fatty acid metabolism. Am. J. Cardiol. 82, 559–563 (1998).

    CAS  PubMed  Google Scholar 

  72. Heusch, G. Hibernating myocardium. Physiol. Rev. 78, 1055–1085 (1998).

    CAS  PubMed  Google Scholar 

  73. Sridharan, V. et al. The prolyl hydroxylase oxygen-sensing pathway is cytoprotective and allows maintenance of mitochondrial membrane potential during metabolic inhibition. Am. J. Physiol. Cell Physiol. 292, C719–C728 (2007). This publication describes mechanistic and metabolic changes on broad PHD inhibition on cardiomyocytes, and introduces the concept of alternative mechanisms to prevent cellular damage upon PHD inhibition.

    CAS  PubMed  Google Scholar 

  74. Ockaili, R. et al. HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am. J. Physiol. Heart Circ. Physiol. 289, H542–H548 (2005).

    CAS  PubMed  Google Scholar 

  75. Wright, G., Higgin, J. J., Raines, R. T., Steenbergen, C. & Murphy, E. Activation of the prolyl hydroxylase oxygen-sensor results in induction of GLUT1, heme oxygenase-1, and nitric-oxide synthase proteins and confers protection from metabolic inhibition to cardiomyocytes. J. Biol. Chem. 278, 20235–20239 (2003).

    CAS  PubMed  Google Scholar 

  76. May, D. et al. Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation. Proc. Natl Acad. Sci. USA 105, 282–287 (2008). This is the first paper to report an animal model of transient myocardial hibernation using transgenic modulation of cardiac VEGF levels that leads to attenuation of myocardium oxygen supply. This allows the study of mechanistic principles of myocardial hibernation utilizing the power of mouse genetics.

    CAS  PubMed  Google Scholar 

  77. Nakai, A. et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature Med. 13, 619–624 (2007).

    CAS  PubMed  Google Scholar 

  78. Grone, H. J., Warnecke, E. & Olbricht, C. J. Characteristics of renal tubular atrophy in experimental renovascular hypertension: a model of kidney hibernation. Nephron 72, 243–252 (1996).

    CAS  PubMed  Google Scholar 

  79. Warncke, J. et al. A hibernating kidney — ischemic preconditioning in a renal transplant recipient with a proximal stenosis of the iliac artery. Clin. Nephrol. 70, 168–171 (2008).

    CAS  PubMed  Google Scholar 

  80. Baranova, O. et al. Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J. Neurosci. 27, 6320–6332 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Stenzel-Poore, M. P. et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362, 1028–1037 (2003). Using a genomic approach, this work illustrates similarities in neuroprotection-conferring programmes between hibernation and a transiently induced hypoxia-tolerant state.

    CAS  PubMed  Google Scholar 

  82. Matsumoto, M. et al. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J. Am. Soc. Nephrol. 14, 1825–1832 (2003).

    PubMed  Google Scholar 

  83. Witteles, R. M. & Fowler, M. B. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J. Am. Coll. Cardiol. 51, 93–102 (2008).

    CAS  PubMed  Google Scholar 

  84. van Herpen, N. A. & Schrauwen-Hinderling, V. B. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol. Behav. 94, 231–241 (2008).

    CAS  PubMed  Google Scholar 

  85. Patel, A. et al. Early stress protein gene expression in a human model of ischemic preconditioning. Transplantation 78, 1479–1487 (2004).

    CAS  PubMed  Google Scholar 

  86. Alchera, E. et al. Adenosine-dependent activation of hypoxia-inducible factor-1 induces late preconditioning in liver cells. Hepatology 48, 230–239 (2008).

    CAS  PubMed  Google Scholar 

  87. Amador, A. et al. Ischemic pre-conditioning in deceased donor liver transplantation: a prospective randomized clinical trial. Am. J. Transplant. 7, 2180–2189 (2007).

    CAS  PubMed  Google Scholar 

  88. Grenz, A. et al. Protective role of ecto-5′-nucleotidase (CD73) in renal ischemia. J. Am. Soc. Nephrol. 18, 833–845 (2007).

    CAS  PubMed  Google Scholar 

  89. Gidday, J. M. Cerebral preconditioning and ischaemic tolerance. Nature Rev. Neurosci. 7, 437–448 (2006).

    CAS  Google Scholar 

  90. Sharp, F. R. et al. Hypoxic preconditioning protects against ischemic brain injury. NeuroRx 1, 26–35 (2004).

    PubMed  PubMed Central  Google Scholar 

  91. Jones, N. M. & Bergeron, M. Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. J. Cereb. Blood Flow Metab. 21, 1105–1114 (2001).

    CAS  PubMed  Google Scholar 

  92. Cai, Z. et al. Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1α. Cardiovasc. Res. 77, 463–470 (2008). This study identifies HIF1α as an essential component in mediating preconditioning-induced cardioprotection against ischaemia–reperfusion injury and highlights the importance of activating the prosurvival serine/threonine kinase AKT in mediating protection.

    CAS  PubMed  Google Scholar 

  93. Dendorfer, A. et al. Deferoxamine induces prolonged cardiac preconditioning via accumulation of oxygen radicals. Free Radic. Biol. Med. 38, 117–124 (2005).

    CAS  PubMed  Google Scholar 

  94. Philipp, S. et al. Desferoxamine and ethyl-3,4-dihydroxybenzoate protect myocardium by activating NOS and generating mitochondrial ROS. Am. J. Physiol. Heart Circ. Physiol. 290, H450–H457 (2006).

    CAS  PubMed  Google Scholar 

  95. Bergeron, M. et al. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann. Neurol. 48, 285–296 (2000). This paper identifies that HIF1α activation contributes to protective brain preconditioning.

    CAS  PubMed  Google Scholar 

  96. Sarco, D. P., Becker, J., Palmer, C., Sheldon, R. A. & Ferriero, D. M. The neuroprotective effect of deferoxamine in the hypoxic-ischemic immature mouse brain. Neurosci. Lett. 282, 113–116 (2000).

    CAS  PubMed  Google Scholar 

  97. Rosenberger, C. et al. Activation of hypoxia inducible factors (HIF) ameliorates hypoxic distal tubular injury in the isolated perfused rat kidney. Nephrol. Dial. Transplant. 23, 3472–3478 (2008).

    CAS  PubMed  Google Scholar 

  98. Otani, H. Ischemic preconditioning: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 10, 207–247 (2008).

    CAS  PubMed  Google Scholar 

  99. Obrenovitch, T. P. Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol. Rev. 88, 211–247 (2008).

    CAS  PubMed  Google Scholar 

  100. Synnestvedt, K. et al. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110, 993–1002 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kong, T., Westerman, K. A., Faigle, M., Eltzschig, H. K. & Colgan, S. P. HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J. 20, 2242–2250 (2006).

    CAS  PubMed  Google Scholar 

  102. Grenz, A. et al. The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med. 5, e137 (2008).

    PubMed  PubMed Central  Google Scholar 

  103. Hausenloy, D. J., Tsang, A., Mocanu, M. M. & Yellon, D. M. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am. J. Physiol. Heart Circ. Physiol. 288, H971–H976 (2005).

    CAS  PubMed  Google Scholar 

  104. Murphy, E. & Steenbergen, C. Mechanisms underlying acute protection from cardiac ischemia–reperfusion injury. Physiol. Rev. 88, 581–609 (2008).

    CAS  PubMed  Google Scholar 

  105. Hausenloy, D. J., Tsang, A. & Yellon, D. M. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc. Med. 15, 69–75 (2005).

    CAS  PubMed  Google Scholar 

  106. Halestrap, A. P., Clarke, S. J. & Khaliulin, I. The role of mitochondria in protection of the heart by preconditioning. Biochim. Biophys. Acta 1767, 1007–1031 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Murata, M., Akao, M., O'Rourke, B. & Marban, E. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ. Res. 89, 891–898 (2001).

    CAS  PubMed  Google Scholar 

  108. Leonard, M. O. et al. Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia–reperfusion injury. FASEB J. 20, 2624–2626 (2006).

    CAS  PubMed  Google Scholar 

  109. Cai, Z. & Semenza, G. L. PTEN activity is modulated during ischemia and reperfusion: involvement in the induction and decay of preconditioning. Circ. Res. 97, 1351–1359 (2005).

    CAS  PubMed  Google Scholar 

  110. Mocanu, M. M. & Yellon, D. M. PTEN, the Achilles' heel of myocardial ischaemia/reperfusion injury? Br. J. Pharmacol. 150, 833–838 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Palacios-Callender, M., Quintero, M., Hollis, V. S., Springett, R. J. & Moncada, S. Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proc. Natl Acad. Sci. USA 101, 7630–7635 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Quintero, M., Brennan, P. A., Thomas, G. J. & Moncada, S. Nitric oxide is a factor in the stabilization of hypoxia-inducible factor-1α in cancer: role of free radical formation. Cancer Res. 66, 770–774 (2006).

    CAS  PubMed  Google Scholar 

  113. Jefayri, M. K., Grace, P. A. & Mathie, R. T. Attenuation of reperfusion injury by renal ischaemic preconditioning: the role of nitric oxide. BJU Int. 85, 1007–1013 (2000).

    CAS  PubMed  Google Scholar 

  114. Park, K. M. et al. Inducible nitric-oxide synthase is an important contributor to prolonged protective effects of ischemic preconditioning in the mouse kidney. J. Biol. Chem. 278, 27256–27266 (2003).

    CAS  Google Scholar 

  115. Guo, Y. et al. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc. Natl Acad. Sci. USA 96, 11507–11512 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Date, T. et al. Expression of constitutively stable hybrid hypoxia-inducible factor-1α protects cultured rat cardiomyocytes against simulated ischemia–reperfusion injury. Am. J. Physiol. Cell Physiol. 288, C314–C320 (2005).

    CAS  PubMed  Google Scholar 

  117. Grimm, C. et al. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nature Med. 8, 718–724 (2002).

    CAS  PubMed  Google Scholar 

  118. Zhu, Y., Zhang, Y., Ojwang, B. A., Brantley, M. A. Jr & Gidday, J. M. Long-term tolerance to retinal ischemia by repetitive hypoxic preconditioning: role of HIF-1α and heme oxygenase-1. Invest. Ophthalmol. Vis. Sci. 48, 1735–1743 (2007).

    PubMed  Google Scholar 

  119. Bernaudin, M. et al. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J. Cereb. Blood Flow Metab. 22, 393–403 (2002).

    CAS  PubMed  Google Scholar 

  120. Wick, A. et al. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J. Neurosci. 22, 6401–6407 (2002).

    CAS  Google Scholar 

  121. Peng, Z. et al. Up-regulated HIF-1α is involved in the hypoxic tolerance induced by hyperbaric oxygen preconditioning. Brain Res. 1212, 71–78 (2008).

    CAS  PubMed  Google Scholar 

  122. Prass, K. et al. Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 34, 1981–1986 (2003).

    CAS  PubMed  Google Scholar 

  123. Nishijima, K. et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am. J. Pathol. 171, 53–67 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Malhotra, S., Savitz, S. I., Ocava, L. & Rosenbaum, D. M. Ischemic preconditioning is mediated by erythropoietin through PI-3 kinase signaling in an animal model of transient ischemic attack. J. Neurosci. Res. 83, 19–27 (2006).

    CAS  PubMed  Google Scholar 

  125. Schlisio, S. et al. The kinesin KIF1Bβ acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev. 22, 884–893 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kariko, K., Weissman, D. & Welsh, F. A. Inhibition of toll-like receptor and cytokine signaling — a unifying theme in ischemic tolerance. J. Cereb. Blood Flow Metab. 24, 1288–1304 (2004).

    CAS  Google Scholar 

  127. Saadi, S., Wrenshall, L. E. & Platt, J. L. Regional manifestations and control of the immune system. FASEB J. 16, 849–856 (2002).

    CAS  PubMed  Google Scholar 

  128. Schor, H., Vaday, G. G. & Lider, O. Modulation of leukocyte behavior by an inflamed extracellular matrix. Dev. Immunol. 7, 227–238 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zinkernagel, A. S., Johnson, R. S. & Nizet, V. Hypoxia inducible factor (HIF) function in innate immunity and infection. J. Mol. Med. 85, 1339–1346 (2007).

    CAS  PubMed  Google Scholar 

  130. Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003). This paper demonstrates a direct role for myeloid-specific HIF1α in regulating survival and function of inflammatory cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim, H. Y. et al. HIF-1α expression in response to lipopolysaccaride mediates induction of hepatic inflammatory cytokine TNFα. Exp. Cell Res. 313, 1866–1876 (2007).

    CAS  PubMed  Google Scholar 

  132. Peyssonnaux, C. et al. Cutting edge: Essential role of hypoxia inducible factor-1α in development of lipopolysaccharide-induced sepsis. J. Immunol. 178, 7516–7519 (2007).

    CAS  PubMed  Google Scholar 

  133. Peyssonnaux, C. et al. HIF-1α expression regulates the bactericidal capacity of phagocytes. J. Clin. Invest. 115, 1806–1815 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Walmsley, S. R. et al. Neutrophils from patients with heterozygous germline mutations in the von Hippel Lindau protein (pVHL) display delayed apoptosis and enhanced bacterial phagocytosis. Blood 108, 3176–3178 (2006).

    CAS  PubMed  Google Scholar 

  135. Walmsley, S. R. et al. Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity. J. Exp. Med. 201, 105–115 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Cummins, E. P. et al. Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc. Natl Acad. Sci. USA 103, 18154–18159 (2006). This study identifies a direct correlation between PHD activity and regulation of NF-κB activity via proposed hydroxylation of IKKβ.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453, 807–811 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Nishi, K. et al. LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid. Redox Signal. 10, 983–996 (2008).

    CAS  PubMed  Google Scholar 

  139. Hartmann, H. et al. Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores. Gastroenterology 134, 756–767 (2008).

    CAS  PubMed  Google Scholar 

  140. Taylor, C. T. & Colgan, S. P. Hypoxia and gastrointestinal disease. J. Mol. Med. 85, 1295–1300 (2007).

    PubMed  Google Scholar 

  141. Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114, 1098–1106 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Cummins, E. P. et al. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134, 156–165 (2008).

    CAS  PubMed  Google Scholar 

  143. Robinson, A. et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134, 145–155 (2008). References 142 and 143 are the first to demonstrate that inhibition of PHDs is protective in a mouse model of colitis.

    CAS  PubMed  Google Scholar 

  144. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    CAS  PubMed  Google Scholar 

  145. Thiel, M. et al. Targeted deletion of HIF-1 α gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival. PLoS ONE 2, e853 (2007).

    PubMed  PubMed Central  Google Scholar 

  146. Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053 (2004).

    PubMed  Google Scholar 

  147. Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007).

    CAS  PubMed  Google Scholar 

  148. Ye, J., Gao, Z., Yin, J. & He, Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab. 293, E1118–E1128 (2007).

    CAS  PubMed  Google Scholar 

  149. Yun, Z., Maecker, H. L., Johnson, R. S. & Giaccia, A. J. Inhibition of PPAR γ 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev. Cell 2, 331–341 (2002).

    CAS  PubMed  Google Scholar 

  150. Shimba, S., Wada, T., Hara, S. & Tezuka, M. EPAS1 promotes adipose differentiation in 3T3-L1 cells. J. Biol. Chem. 279, 40946–40953 (2004).

    CAS  PubMed  Google Scholar 

  151. Wada, T., Shimba, S. & Tezuka, M. Transcriptional regulation of the hypoxia inducible factor-2α (HIF-2α) gene during adipose differentiation in 3T3-L1 cells. Biol. Pharm. Bull. 29, 49–54 (2006).

    CAS  PubMed  Google Scholar 

  152. Floyd, Z. E., Kilroy, G., Wu, X. & Gimble, J. M. Effects of prolyl hydroxylase inhibitors on adipogenesis and hypoxia inducible factor 1 alpha levels under normoxic conditions. J. Cell Biochem. 101, 1545–1557 (2007).

    CAS  PubMed  Google Scholar 

  153. Irwin, R., LaPres, J. J., Kinser, S. & McCabe, L. R. Prolyl-hydroxylase inhibition and HIF activation in osteoblasts promotes an adipocytic phenotype. J. Cell Biochem. 100, 762–772 (2007).

    CAS  PubMed  Google Scholar 

  154. McDonough, M. A. et al. Selective inhibition of factor inhibiting hypoxia-inducible factor. J. Am. Chem. Soc. 127, 7680–7681 (2005).

    CAS  PubMed  Google Scholar 

  155. Hirsila, M. et al. Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J. 19, 1308–1310 (2005).

    CAS  PubMed  Google Scholar 

  156. McDonough, M. A. et al. Cellular oxygen sensing: crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc. Natl Acad. Sci. USA 103, 9814–9819 (2006). This seminal study describes the crystal structure of PHD2 and thereby lays the foundation for generating more specific PHD inhibitors.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nature Rev. Mol. Cell Biol. 5, 343–354 (2004).

    CAS  Google Scholar 

  158. Salnikow, K. et al. Depletion of intracellular ascorbate by the carcinogenic metals nickel and cobalt results in the induction of hypoxic stress. J. Biol. Chem. 279, 40337–40344 (2004).

    CAS  PubMed  Google Scholar 

  159. Yoon, Y. S., Cho, H., Lee, J. H. & Yoon, G. Mitochondrial dysfunction via disruption of complex II activity during iron chelation-induced senescence-like growth arrest of Chang cells. Ann. NY Acad. Sci. 1011, 123–132 (2004).

    CAS  PubMed  Google Scholar 

  160. Needleman, P., Turk, J., Jakschik, B. A., Morrison, A. R. & Lefkowith, J. B. Arachidonic acid metabolism. Annu. Rev. Biochem. 55, 69–102 (1986).

    CAS  PubMed  Google Scholar 

  161. Hewitson, K. S., McNeill, L. A. & Schofield, C. J. Modulating the hypoxia-inducible factor signaling pathway: applications from cardiovascular disease to cancer. Curr. Pharm. Des. 10, 821–833 (2004).

    CAS  PubMed  Google Scholar 

  162. Nangaku, M. et al. A novel class of prolyl hydroxylase inhibitors induces angiogenesis and exerts organ protection against ischemia. Arterioscler. Thromb. Vasc. Biol. 27, 2548–2554 (2007). This paper describes the generation of two novel PHD inhibitors that might have isoform-specific inhibitory properties.

    CAS  PubMed  Google Scholar 

  163. Dann, C. E. 3rd, Bruick, R. K. & Deisenhofer, J. Structure of factor-inhibiting hypoxia-inducible factor 1: an asparaginyl hydroxylase involved in the hypoxic response pathway. Proc. Natl Acad. Sci. USA 99, 15351–15356 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Elkins, J. M. et al. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1α. J. Biol. Chem. 278, 1802–1806 (2003).

    CAS  PubMed  Google Scholar 

  165. Villar, D., Vara-Vega, A., Landazuri, M. O. & Del Peso, L. Identification of a region on hypoxia-inducible-factor prolyl 4-hydroxylases that determines their specificity for the oxygen degradation domains. Biochem. J. 408, 231–240 (2007). This work identifies protein domains that are distant from the catalytic site which contribute to the substrate specificity of PHD isoforms. This information may aid the generation of isoform-specific inhibitors by targeting these domains.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Barth, S. et al. The peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability. Mol. Cell. Biol. 27, 3758–3768 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Hopfer, U., Hopfer, H., Jablonski, K., Stahl, R. A. & Wolf, G. The novel WD-repeat protein Morg1 acts as a molecular scaffold for hypoxia-inducible factor prolyl hydroxylase 3 (PHD3). J. Biol. Chem. 281, 8645–8655 (2006).

    CAS  PubMed  Google Scholar 

  168. Baek, J. H. et al. OS-9 interacts with hypoxia-inducible factor 1α and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1α. Mol. Cell 17, 503–512 (2005).

    CAS  PubMed  Google Scholar 

  169. Ozer, A., Wu, L. C. & Bruick, R. K. The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc. Natl Acad. Sci. USA 102, 7481–7486 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Willam, C. et al. Peptide blockade of HIFα degradation modulates cellular metabolism and angiogenesis. Proc. Natl Acad. Sci. USA 99, 10423–10428 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Lee, C., Kim, S. J., Jeong, D. G., Lee, S. M. & Ryu, S. E. Structure of human FIH-1 reveals a unique active site pocket and interaction sites for HIF-1 and von Hippel-Lindau. J. Biol. Chem. 278, 7558–7563 (2003).

    CAS  PubMed  Google Scholar 

  172. Bishop, T. et al. Abnormal sympathoadrenal development and systemic hypotension in PHD3−/− mice. Mol. Cell. Biol. 28, 3386–3400 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Takeda, K. et al. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood 111, 3229–3235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Takeda, K. et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor α levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell. Biol. 26, 8336–8346 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Percy, M. J. et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358, 162–168 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Percy, M. J. et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc. Natl Acad. Sci. USA 103, 654–659 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ang, S. O. et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nature Genet. 32, 614–621 (2002).

    CAS  PubMed  Google Scholar 

  178. Gordeuk, V. R. et al. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular abnormalities but not tumors. Blood 103, 3924–3932 (2004).

    CAS  PubMed  Google Scholar 

  179. Smith, T. G., Robbins, P. A. & Ratcliffe, P. J. The human side of hypoxia-inducible factor. Br. J. Haematol. 141, 325–334 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Semenza, G. L. & Prabhakar, N. R. HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid. Redox Signal. 9, 1391–1396 (2007).

    CAS  PubMed  Google Scholar 

  181. Baader, E., Tschank, G., Baringhaus, K. H., Burghard, H. & Gunzler, V. Inhibition of prolyl 4-hydroxylase by oxalyl amino acid derivatives in vitro, in isolated microsomes and in embryonic chicken tissues. Biochem. J. 300, 525–530 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Ivan, M. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl Acad. Sci. USA 99, 13459–13464 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Mole, D. R. et al. 2-oxoglutarate analogue inhibitors of HIF prolyl hydroxylase. Bioorg. Med. Chem. Lett. 13, 2677–2680 (2003).

    CAS  PubMed  Google Scholar 

  184. Hamrick, S. E. et al. A role for hypoxia-inducible factor-1α in desferoxamine neuroprotection. Neurosci. Lett. 379, 96–100 (2005).

    CAS  PubMed  Google Scholar 

  185. Majamaa, K., Gunzler, V., Hanauske-Abel, H. M., Myllyla, R. & Kivirikko, K. I. Partial identity of the 2-oxoglutarate and ascorbate binding sites of prolyl 4-hydroxylase. J. Biol. Chem. 261, 7819–7823 (1986).

    CAS  PubMed  Google Scholar 

  186. Majamaa, K., Sasaki, T. & Uitto, J. Inhibition of prolyl hydroxylation during collagen biosynthesis in human skin fibroblast cultures by ethyl 3,4-dihydroxybenzoate. J. Invest. Dermatol. 89, 405–409 (1987).

    CAS  PubMed  Google Scholar 

  187. Sasaki, T., Majamaa, K. & Uitto, J. Reduction of collagen production in keloid fibroblast cultures by ethyl-3,4-dihydroxybenzoate. Inhibition of prolyl hydroxylase activity as a mechanism of action. J. Biol. Chem. 262, 9397–9403 (1987).

    CAS  PubMed  Google Scholar 

  188. Warnecke, C. et al. Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. FASEB J. 17, 1186–1188 (2003).

    CAS  PubMed  Google Scholar 

  189. Nwogu, J. I. et al. Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation 104, 2216–2221 (2001).

    CAS  PubMed  Google Scholar 

  190. Linden, T. et al. The antimycotic ciclopirox olamine induces HIF-1alpha stability, VEGF expression, and angiogenesis. FASEB J. 17, 761–763 (2003).

    CAS  PubMed  Google Scholar 

  191. Ju, H., Hao, J., Zhao, S. & Dixon, I. M. Antiproliferative and antifibrotic effects of mimosine on adult cardiac fibroblasts. Biochim. Biophys. Acta 1448, 51–60 (1998).

    CAS  PubMed  Google Scholar 

  192. McCaffrey, T. A. et al. Specific inhibition of eIF-5A and collagen hydroxylation by a single agent. Antiproliferative and fibrosuppressive effects on smooth muscle cells from human coronary arteries. J. Clin. Invest. 95, 446–455 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Schlemminger, I. et al. Analogues of dealanylalahopcin are inhibitors of human HIF prolyl hydroxylases. Bioorg. Med. Chem. Lett. 13, 1451–1454 (2003).

    CAS  PubMed  Google Scholar 

  194. Warshakoon, N. C. et al. Structure-based design, synthesis, and SAR evaluation of a new series of 8-hydroxyquinolines as HIF-1alpha prolyl hydroxylase inhibitors. Bioorg. Med. Chem. Lett. 16, 5517–5522 (2006).

    CAS  PubMed  Google Scholar 

  195. Warshakoon, N. C. et al. Design and synthesis of a series of novel pyrazolopyridines as HIF-1α prolyl hydroxylase inhibitors. Bioorg. Med. Chem. Lett. 16, 5687–5690 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported, in part, by grant GOA2006/11/KULeuven from the University of Leuven, Belgium, Methusalem Program, KU Leuven; grant IUAP06/30 from the Federal Government Belgium; and grants FWO G.0265 and FWO G.0652 from the Flanders Research Foundation, Belgium. P.F. is supported by a postdoctoral fellowship from the Marie Curie Program of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Ethics declarations

Competing interests

Peter Carmeliet is a named inventor on patent application WO/2007/082899, which claims subject matter that is partially based on the results described in this article. Should the aforementioned patent application or any resulting patent be licensed, this may result in royalty payment to P.C.

Glossary

Angiogenesis

The growth of new blood vessels from pre-existing vessels. Angiogenesis is a normal process in growth and development, but also has a crucial role in the growth of tumours.

Ischaemic preconditioning

A stressful but non-damaging stimulus that confers protection against a subsequent harmful acute ischaemic insult.

Abnormalization

Describes blood vessels in tumours, which are often tortuous, leaky and non-homogeneous in size and shape.

Multidrug resistance 1

Multidrug resistance 1 (MDR1; also known as P-glycoprotein), is a transmembrane energy-dependent drug-efflux pump encoded by the gene ABCB1 in humans. By reducing intracellular drug levels, P-glycoprotein can contribute to multidrug resistance to chemotherapeutics.

Autophagy

The self-cannibalism of intracellular organelles.

Cytochrome c oxidase

A component of the oxidative phosphorylation machinery within the cell that normally binds oxygen.

Mitochondrial permeability transition pore

A protein pore that is formed in the inner membrane of mitochondria that can lead to mitochondrial swelling and cell death.

Siderophores

Iron-binding proteins of bacterial origin.

Adipogenesis

The development of fat precursor cells into mature white or brown fat tissue.

Osteoblast

Osteoblasts are mononucleate cells that are responsible for bone formation.

Polycythaemia

An abnormal increase in the number of blood cells (primarily red blood cells).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraisl, P., Aragonés, J. & Carmeliet, P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 8, 139–152 (2009). https://doi.org/10.1038/nrd2761

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing