Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting

Abstract

Proteomics has revealed that many proteins are present in unexpected cellular locations. Moreover, it is increasingly recognized that proteins can translocate between intracellular and extracellular compartments in non-conventional ways. This increases gene pleiotrophy as the diverse functions of the protein that the gene encodes are dependent on the cellular location. Given that trafficking drug targets may exist in various forms — often with completely different functions — in multiple cellular compartments, careful interpretation of proteomics data is needed for an accurate understanding of gene function. This Perspective is intended to inspire the investigation of unusual protein localizations, rather than assuming that they are due to mislocalization or artefacts. Given a fair chance, proteomics could reveal novel and unforeseen biology with important ramifications for target validation in drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alternative secretion pathways.
Figure 2: Workflow for drug target validation.
Figure 3: Impact of multifunctional proteins on drug outcome.

Similar content being viewed by others

References

  1. Walgren, J. L. & Thompson, D. C. Application of proteomic technologies in the drug development process. Toxicol. Lett. 149, 377–385 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Sleno, L. & Emili, A. Proteomic methods for drug target discovery. Curr. Opin. Chem. Biol. 12, 46–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Butler, G. S., Dean, R. A., Tam, E. & Overall, C. M. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of matrix metalloproteinase-14 (MT1-MMP) mediated membrane protein shedding. Mol. Cell Biol. 28, 4896–4914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, G. et al. Proteomic analysis identifies protein targets responsible for depsipeptide sensitivity in tumor cells. J. Proteome Res. 7, 2733–2742 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Hu, W. et al. Proteomic identification of heat shock protein 70 as a candidate target for enhancing apoptosis induced by farnesyl transferase inhibitor. Proteomics 3, 1904–1911 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Verrills, N. M., Walsh, B. J., Cobon, G. S., Hains, P. G. & Kavallaris, M. Proteome analysis of vinca alkaloid response and resistance in acute lymphoblastic leukemia reveals novel cytoskeletal alterations. J. Biol. Chem. 278, 45082–45093 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. MacKeigan, J. P. et al. Proteomic profiling drug-induced apoptosis in non-small cell lung carcinoma: identification of RS/DJ-1 and RhoGDIα. Cancer Res. 63, 6928–6934 (2003).

    CAS  PubMed  Google Scholar 

  10. Ong, S. E. et al. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proc. Natl Acad. Sci. USA 106, 4617–4622 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  14. Jeffery, C. J. Multifunctional proteins: examples of gene sharing. Ann. Med. 35, 28–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Piatigorsky, J. Gene sharing in lens and cornea: facts and implications. Prog. Retin. Eye Res. 17, 145–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Doucet, A., Butler, G. S., Rodriguez, D., Prudova, A. & Overall, C. M. Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome. Mol. Cell Proteomics 7, 1925–1951 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Roshy, S., Sloane, B. F. & Moin, K. Pericellular cathepsin B and malignant progression. Cancer Metastasis Rev. 22, 271–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Falsone, S. F., Gesslbauer, B., Rek, A. & Kungl, A. J. A proteomic approach towards the Hsp90-dependent ubiquitinylated proteome. Proteomics 7, 2375–2383 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Banerji, U. Heat shock protein 90 as a drug target: some like it hot. Clin. Cancer Res. 15, 9–14 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Solit, D. B. & Chiosis, G. Development and application of Hsp90 inhibitors. Drug Discov. Today 13, 38–43 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Li, W. et al. Extracellular heat shock protein-90α: linking hypoxia to skin cell motility and wound healing. EMBO J. 26, 1221–1233 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patterson, S. D. & Aebersold, R. H. Proteomics: the first decade and beyond. Nature Genet. 33, S311–S323 (2003).

    Article  CAS  Google Scholar 

  23. Pan, S. & Aebersold, R. Quantitative proteomics by stable isotope labeling and mass spectrometry. Methods Mol. Biol. 367, 209–218 (2007).

    CAS  PubMed  Google Scholar 

  24. Rozanas, C. R. & Loyland, S. M. Capabilities using 2-D DIGE in proteomics research: the new gold standard for 2-D gel electrophoresis. Methods Mol. Biol. 441, 1–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Eustace, B. K. et al. Functional proteomic screens reveal an essential extracellular role for HSP90α in cancer cell invasiveness. Nature Cell Biol. 6, 507–514 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Greenberg, Y. et al. The novel fragment of tyrosyl tRNA synthetase, mini-TyrRS, is secreted to induce an angiogenic response in endothelial cells. FASEB J. 22, 1597–1605 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Park, S. G. et al. Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response. Proc. Natl Acad. Sci. USA 102, 6356–6361 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, H. et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Fages, C., Nolo, R., Huttunen, H. J., Eskelinen, E. & Rauvala, H. Regulation of cell migration by amphoterin. J. Cell Sci. 113, 611–620 (2000).

    CAS  PubMed  Google Scholar 

  31. Lee, S. W., Cho, B. H., Park, S. G. & Kim, S. Aminoacyl-tRNA synthetase complexes: beyond translation. J. Cell Sci. 117, 3725–3734 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, J., Shue, E., Ewalt, K. L. & Schimmel, P. A new γ-interferon-inducible promoter and splice variants of an anti-angiogenic human tRNA synthetase. Nucleic Acids Res. 32, 719–727 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Westbrook, C. A., Gasson, J. C., Gerber, S. E., Selsted, M. E. & Golde, D. W. Purification and characterization of human T-lymphocyte-derived erythroid-potentiating activity. J. Biol. Chem. 259, 9992–9996 (1984).

    CAS  PubMed  Google Scholar 

  34. Gasson, J. C. et al. Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Nature 315, 768–771 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Docherty, A. J. et al. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 318, 66–69 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Cawston, T. E., Galloway, W. A., Mercer, E., Murphy, G. & Reynolds, J. J. Purification of rabbit bone inhibitor of collagenase. Biochem. J. 195, 159–165 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murphy, G., Cawston, T. E. & Reynolds, J. J. An inhibitor of collagenase from human amniotic fluid. Purification, characterization and action on metalloproteinases. Biochem. J. 195, 167–170 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hayakawa, T., Yamashita, K., Kishi, J. & Harigaya, K. Tissue inhibitor of metalloproteinases from human bone marrow stromal cell line KM 102 has erythroid-potentiating activity, suggesting its possibly bifunctional role in the hematopoietic microenvironment. FEBS Lett. 268, 125–128 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Gurney, M. E., Heinrich, S. P., Lee, M. R. & Yin, H. S. Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. Science 234, 566–574 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe, H., Takehana, K., Date, M., Shinozaki, T. & Raz, A. Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer Res. 56, 2960–2963 (1996).

    CAS  PubMed  Google Scholar 

  41. Yakirevich, E. & Naot, Y. Cloning of a glucose phosphate isomerase/neuroleukin-like sperm antigen involved in sperm agglutination. Biol. Reprod. 62, 1016–1023 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Faik, P., Walker, J. I., Redmill, A. A. & Morgan, M. J. Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3′ sequences. Nature 332, 455–457 (1988).

    Article  PubMed  Google Scholar 

  43. Baumann, M. & Brand, K. Purification and characterization of phosphohexose isomerase from human gastrointestinal carcinoma and its potential relationship to neuroleukin. Cancer Res. 48, 7018–7021 (1988).

    CAS  PubMed  Google Scholar 

  44. Goulet, B. et al. A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol. Cell 14, 207–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Goulet, B. et al. Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Mol. Cancer Res. 5, 899–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Schulz, R. Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu. Rev. Pharmacol. Toxicol. 47, 211–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Strongin, A. Y. Mislocalization and unconventional functions of cellular MMPs in cancer. Cancer Metastasis Rev. 25, 87–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Ip, Y. C., Cheung, S. T. & Fan, S. T. Atypical localization of membrane type 1-matrix metalloproteinase in the nucleus is associated with aggressive features of hepatocellular carcinoma. Mol. Carcinog. 46, 225–230 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Si-Tayeb, K. et al. Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis. Am. J. Pathol. 169, 1390–1401 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eguchi, T. et al. Novel transcription-factor-like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene. Mol. Cell Biol. 28, 2391–2413 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hashimoto, G. et al. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J. Biol. Chem. 277, 36288–36295 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Tam, E. M., Morrison, C. J., Wu, Y. I., Stack, M. S. & Overall, C. M. Membrane protease proteomics: isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc. Natl Acad. Sci. USA 101, 6917–6922 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dean, R. A. et al. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol. Cell Biol. 27, 8454–8465 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Golubkov, V. S. et al. Membrane type-1 matrix metalloproteinase (MT1-MMP) exhibits an important intracellular cleavage function and causes chromosome instability. J. Biol. Chem. 280, 25079–25086 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. McCulloch, D. R., Akl, P., Samaratunga, H., Herington, A. C. & Odorico, D. M. Expression of the disintegrin metalloprotease, ADAM-10, in prostate cancer and its regulation by dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor in the prostate cancer cell model LNCaP. Clin. Cancer Res. 10, 314–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Arima, T. et al. Nuclear translocation of ADAM-10 contributes to the pathogenesis and progression of human prostate cancer. Cancer Sci. 98, 1720–1726 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Brix, K., Lemansky, P. & Herzog, V. Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology 137, 1963–1974 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Bryant, D. M. & Stow, J. L. Nuclear translocation of cell-surface receptors: lessons from fibroblast growth factor. Traffic 6, 947–954 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Czupalla, C. et al. Proteomic analysis of lysosomal acid hydrolases secreted by osteoclasts. Implications for lytic enzyme transport and bone metabolism. Mol. Cell. Proteomics 5, 134–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Cardone, R. A., Casavola, V. & Reshkin, S. J. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nature Rev. Cancer 5, 786–795 (2005).

    Article  CAS  Google Scholar 

  61. Wartha, F., Beiter, K., Normark, S. & Henriques-Normark, B. Neutrophil extracellular traps: casting the NET over pathogenesis. Curr. Opin. Microbiol. 10, 52–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Med. 13, 463–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Gupta, A. K., Hasler, P., Holzgreve, W. & Hahn, S. Neutrophil NETs: a novel contributor to preeclampsia-associated placental hypoxia? Semin. Immunopathol. 29, 163–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Taghbalout, A. & Rothfield, L. RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton. Proc. Natl Acad. Sci. USA 104, 1667–1672 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Knull, H. R. & Walsh, J. L. Association of glycolytic enzymes with the cytoskeleton. Curr. Top. Cell Regul. 33, 15–30 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Nickel, W. Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6, 607–614 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Shin, B. K. et al. Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J. Biol. Chem. 278, 7607–7616 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Eustace, B. K. & Jay, D. G. Extracellular roles for the molecular chaperone, hsp90. Cell Cycle 3, 1098–1100 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Pratt, W. B., Morishima, Y. & Osawa, Y. The hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J. Biol. Chem. 283, 22885–22889 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ray, I., Chauhan, A., Wegiel, J. & Chauhan, V. P. Gelsolin inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils. Brain Res. 853, 344–351 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Fishel, M. L. & Kelley, M. R. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol. Aspects Med. 28, 375–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, S., Irani, K., Heffron, S. E., Jurnak, F. & Meyskens, F. L. Jr. Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor. Mol. Cancer Ther. 4, 1923–1935 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Overall, C. M. & Kleifeld, O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nature Rev. Cancer 6, 227–239 (2006).

    Article  CAS  Google Scholar 

  75. Mayer, M. P., Prodromou, C. & Frydman, J. The Hsp90 mosaic: a picture emerges. Nature Struct. Mol. Biol. 16, 2–6 (2009).

    Article  CAS  Google Scholar 

  76. Mann, M. Functional and quantitative proteomics using SILAC. Nature Rev. Mol. Cell Biol. 7, 952–958 (2006).

    Article  CAS  Google Scholar 

  77. McQuibban, G. A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Vergote, D. et al. Proteolytic processing of SDF-1α reveals a change in receptor specificity mediating HIV-associated neurodegeneration. Proc. Natl Acad. Sci. USA 103, 19182–19187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Autelitano, D. J. et al. The cryptome: a subset of the proteome, comprising cryptic peptides with distinct bioactivities. Drug Discov. Today 11, 306–314 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Pike, S. E. et al. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J. Exp. Med. 188, 2349–2356 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ehlers, M. R. & Riordan, J. F. Membrane proteins with soluble counterparts: role of proteolysis in the release of transmembrane proteins. Biochemistry 30, 10065–10074 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Werb, Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 91, 439–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Noel, A. et al. Membrane associated proteases and their inhibitors in tumour angiogenesis. J. Clin. Pathol. 57, 577–584 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cauwe, B., Steen, P. E. & Opdenakker, G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol. 42, 113–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Carl-McGrath, S., Lendeckel, U., Ebert, M. & Rocken, C. Ectopeptidases in tumour biology: a review. Histol. Histopathol. 21, 1339–1353 (2006).

    CAS  PubMed  Google Scholar 

  87. Roy., R., Zhang, B. & Moses, M. A. Making the cut: protease-mediated regulation of angiogenesis. Exp. Cell Res. 312, 608–622 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Wakasugi, K. & Schimmel, P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 284, 147–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Schluesener, H. Tyrosyl-tRNA synthetase: a housekeeping protein and an attractive harbinger of cellular death. Angew. Chem. Int. Ed. Engl. 38, 3635–3637 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Vong, L. et al. Annexin 1 cleavage in activated neutrophils: a pivotal role for proteinase 3. J. Biol. Chem. 282, 29998–30004 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Dean, R. A. & Overall, C. M. Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Mol. Cell. Proteomics 6, 611–623 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Zolla, L. Proteomics studies reveal important information on small molecule therapeutics: a case study on plasma proteins. Drug Discov. Today 13, 1042–1051 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kolch, W., Mischak, H. & Pitt, A. R. The molecular make-up of a tumour: proteomics in cancer research. Clin. Sci. (Lond.) 108, 369–383 (2005).

    Article  CAS  Google Scholar 

  94. Witzmann, F. A. & Grant, R. A. Pharmacoproteomics in drug development. Pharmacogenomics J. 3, 69–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nature Biotech. 25, 1035–1044 (2007).

    Article  CAS  Google Scholar 

  96. Chapal, N. et al. Pharmacoproteomic approach to the study of drug mode of action, toxicity, and resistance: applications in diabetes and cancer. Fundam. Clin. Pharmacol. 18, 413–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, Y., Dai, Z., Sadee, W. & Hancock, W. S. A pharmacoproteomics study of the cancer cell line EKVX using capillary-LC/MS/MS. Mol. Pharm. 3, 566–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Sung, F. L. et al. Pharmacoproteomics study of cetuximab in nasopharyngeal carcinoma. J. Proteome Res. 5, 3260–3267 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Stockwin, L. H. et al. Proteomic analysis identifies oxidative stress induction by adaphostin. Clin. Cancer Res. 13, 3667–3681 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Milli, A. et al. A proteomic approach for evaluating the cell response to a novel histone deacetylase inhibitor in colon cancer cells. Biochim. Biophys. Acta 1784, 1702–1710 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Lin, Z., Crockett, D. K., Jenson, S. D., Lim, M. S. & Elenitoba-Johnson, K. S. Quantitative proteomic and transcriptional analysis of the response to the p38 mitogen-activated protein kinase inhibitor SB203580 in transformed follicular lymphoma cells. Mol. Cell Proteomics 3, 820–833 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, S. J. & Wang, J. Y. Exploiting the promiscuity of imatinib. J. Biol. 8, 30 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Youn, J. H. & Shin, J. S. Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J. Immunol. 177, 7889–7897 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Oh, Y. J. et al. HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J. Immunol. 182, 5800–5809 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Lopéz-Otín, C. & Overall, C. M. Protease degradomics: a new challenge for proteomics. Nature Rev. Mol. Cell Biol. 3, 509–519 (2002).

    Article  CAS  Google Scholar 

  106. Schilling, O. & Overall, C. M. Proteomic discovery of protease substrates. Curr. Opin. Chem. Biol. 11, 36–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Doucet, A. & Overall, C. M. Protease proteomics: revealing protease in vivo functions using systems biology approaches. Mol. Aspects Med. 29, 339–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Cohen, A. A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Song, D. et al. Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer. Mol. Cancer Ther. 7, 3275–3284 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Maloney, A. et al. Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 67, 3239–3253 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Schumacher, J. A., Crockett, D. K., Elenitoba-Johnson, K. S. & Lim, M. S. Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Proteomics 7, 2603–2616 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Clarke, P. A. et al. Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene 19, 4125–4133 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Liotta, L. A. et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 67–68 (1980).

    Article  CAS  PubMed  Google Scholar 

  114. Fingleton, B. in The Cancer Degradome: Proteases and Cancer Biology (eds Edwards, D., Hoyer-Hansen, G., Blasi, F. & Sloane, B. F.) 759–786 (Springer, New York, 2008).

    Book  Google Scholar 

  115. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Fingleton, B. MMPs as therapeutic targets — still a viable option? Semin. Cell Dev. Biol. 19, 61–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Zucker, S., Cao, J. & Chen, W. T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19, 6642–6650 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. McCawley, L. J. & Matrisian, L. M. Matrix metalloproteinases: they're not just for matrix anymore! Curr. Opin. Cell Biol. 13, 534–540 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Barbolina, M. V. & Stack, M. S. Membrane type 1-matrix metalloproteinase: substrate diversity in pericellular proteolysis. Semin. Cell Dev. Biol. 19, 24–33 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Overall, C. M. Dilating the degradome: matrix metalloproteinase 2 (MMP-2) cuts to the heart of the matter. Biochem. J. 383, e5–e7 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Page-McCaw, A., Ewald, A. J. & Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nature Rev. Mol. Cell Biol. 8, 221–233 (2007).

    Article  CAS  Google Scholar 

  122. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).

    Article  CAS  Google Scholar 

  123. Overall, C. M. & Kleifeld, O. Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br. J. Cancer 94, 941–946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Balbin, M. et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nature Genet. 35, 252–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Cox, J. H. & Overall, C. M. in The Cancer Degradome: Proteases and Cancer Biology (eds Edwards, D., Hoyer-Hansen, G., Blasi, F. & Sloane, B. F.) 519–540 (Springer, New York, 2008).

    Book  Google Scholar 

  127. Hautamaki, R. D., Kobayashi, D. K., Senior, R. M. & Shapiro, S. D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Houghton, A. M. et al. Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res. 66, 6149–6155 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nature Med. 13, 156–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Frazier, K., Williams, S., Kothapalli, D., Klapper, H. & Grotendorst, G. R. Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J. Invest. Dermatol. 107, 404–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Chaqour, B. & Goppelt-Struebe, M. Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 273, 3639–3649 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Chen, C. C., Chen, N. & Lau, L. F. The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J. Biol. Chem. 276, 10443–10452 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Overall, C. M. & Lopéz- Otín, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Rev. Cancer 2, 657–672 (2002).

    Article  CAS  Google Scholar 

  134. Wang, H., Zhu, S., Zhou, R., Li, W. & Sama, A. E. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev. Mol. Med. 10, e32 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Vaughan, C. K., Piper, P. W., Pearl, L. H. & Prodromou, C. A common conformationally coupled ATPase mechanism for yeast and human cytoplasmic HSP90s. FEBS J. 276, 199–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pearl, L. H., Prodromou, C. & Workman, P. The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem. J. 410, 439–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Chandarlapaty, S. et al. SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase-dependent cancers. Clin. Cancer Res. 14, 240–248 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dickey, C. A. et al. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J. Clin. Invest. 117, 648–658 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Falsone, S. F., Gesslbauer, B., Tirk, F., Piccinini, A. M. & Kungl, A. J. A proteomic snapshot of the human heat shock protein 90 interactome. FEBS Lett. 579, 6350–6354 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Zhao, R. et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715–727 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Millson, S. H. et al. A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot. Cell 4, 849–860 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Toogun, O. A., Dezwaan, D. C. & Freeman, B. C. The hsp90 molecular chaperone modulates multiple telomerase activities. Mol. Cell Biol. 28, 457–467 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Meyer-Siegler, K. et al. A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl Acad. Sci. USA 88, 8460–8464 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hegmans, J. P. et al. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am. J. Pathol. 164, 1807–1815 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kang, B. H. et al. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131, 257–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Chiosis, G., Vilenchik, M., Kim, J. & Solit, D. Hsp90: the vulnerable chaperone. Drug Discov. Today 9, 881–888 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Shooter, K. V., Goodwin, G. H. & Johns, E. W. Interactions of a purified non-histone chromosomal protein with DNA and histone. Eur. J. Biochem. 47, 263–270 (1974).

    Article  CAS  PubMed  Google Scholar 

  148. Parkkinen, J. & Rauvala, H. Interactions of plasminogen and tissue plasminogen activator (t-PA) with amphoterin. Enhancement of t-PA-catalyzed plasminogen activation by amphoterin. J. Biol. Chem. 266, 16730–16735 (1991).

    CAS  PubMed  Google Scholar 

  149. Andersson, U. et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 192, 565–570 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gong, Q. et al. Protective effect of antagonist of high-mobility group BOX 1 on lipopolysaccharide-induced acute lung injury in mice. Scand. J. Immunol. 69, 29–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Pisetsky, D. S., Erlandsson-Harris, H. & Andersson, U. High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res. Ther. 10, 209 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang, H., Yang, H. & Tracey, K. J. Extracellular role of HMGB1 in inflammation and sepsis. J. Intern. Med. 255, 320–331 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Fossati, S. & Chiarugi, A. Relevance of high-mobility group protein BOX 1 to neurodegeneration. Int. Rev. Neurobiol. 82, 137–148 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Yang, H. et al. Reversing established sepsis with antagonists of endogenous high-mobility group BOX 1. Proc. Natl Acad. Sci. USA 101, 296–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Abraham, E., Arcaroli, J., Carmody, A., Wang, H. & Tracey, K. J. HMG-1 as a mediator of acute lung inflammation. J. Immunol. 165, 2950–2954 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Lange, S. S., Mitchell, D. L. & Vasquez, K. M. High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage. Proc. Natl Acad. Sci. USA 105, 10320–10325 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Stros, M., Bacikova, A., Polanska, E., Stokrova, J. & Strauss, F. HMGB1 interacts with human topoisomerase IIα and stimulates its catalytic activity. Nucleic Acids Res. 35, 5001–5013 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mouri, F. et al. Intracellular HMGB1 transactivates the human IL1B gene promoter through association with an Ets transcription factor PU.1. Eur. J. Haematol. 80, 10–19 (2008).

    CAS  PubMed  Google Scholar 

  159. Park, J. S. et al. High mobility group BOX 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol. 290, C917–C924 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Yu, M. et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26, 174–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Park, J. S. et al. Activation of gene expression in human neutrophils by high mobility group BOX 1 protein. Am. J. Physiol. Cell Physiol. 284, C870–C879 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Salmivirta, M., Rauvala, H., Elenius, K. & Jalkanen, M. Neurite growth-promoting protein (amphoterin, p30) binds syndecan. Exp. Cell Res. 200, 444–451 (1992).

    Article  CAS  PubMed  Google Scholar 

  163. Parkkinen, J. et al. Amphoterin, the 30-kDa protein in a family of HMG1-type polypeptides. Enhanced expression in transformed cells, leading edge localization, and interactions with plasminogen activation. J. Biol. Chem. 268, 19726–19738 (1993).

    CAS  PubMed  Google Scholar 

  164. Huttunen, H. J., Fages, C., Kuja-Panula, J., Ridley, A. J. & Rauvala, H. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res. 62, 4805–4811 (2002).

    CAS  PubMed  Google Scholar 

  165. Taguchi, A. et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405, 354–360 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Pedrazzi, M. et al. Selective proinflammatory activation of astrocytes by high-mobility group BOX 1 protein signaling. J. Immunol. 179, 8525–8532 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Sgarra, R. et al. Interaction proteomics of the HMGA chromatin architectural factors. Proteomics 8, 4721–4732 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Pierantoni, G. M. et al. Identification of new high mobility group A1 associated proteins. Proteomics 7, 3735–3742 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Yang, H., Wang, H., Czura, C. J. & Tracey, K. J. The cytokine activity of HMGB1. J. Leukoc. Biol. 78, 1–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, Research0034 (2002).

  171. Mansur, N. R., Meyer-Siegler, K., Wurzer, J. C. & Sirover, M. A. Cell cycle regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in normal human cells. Nucleic Acids Res. 21, 993–998 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ishitani, R. et al. Proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase: a possible site of action of antiapoptotic drugs. Prog. Neuropsychopharmacol Biol. Psychiatry 27, 291–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Park, S. G., Ewalt, K. L. & Kim, S. Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: new perspectives on housekeepers. Trends Biochem. Sci. 30, 569–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Prudovsky, I. et al. Secretion without Golgi. J. Cell Biochem. 103, 1327–1343 (2007).

    Article  CAS  Google Scholar 

  175. Keller, S., Sanderson, M. P., Stoeck, A. & Altevogt, P. Exosomes: from biogenesis and secretion to biological function. Immunol. Lett. 107, 102–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Fevrier, B. & Raposo, G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol. 16, 415–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Blott, E. J. & Griffiths, G. M. Secretory lysosomes. Nature Rev. Mol. Cell Biol. 3, 122–131 (2002).

    Article  CAS  Google Scholar 

  178. Hugel, B., Martinez, M. C., Kunzelmann, C. & Freyssinet, J. M. Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20, 22–27 (2005).

    CAS  Google Scholar 

  179. Cleves, A. E. & Kelly, R. B. Rehearsing the ABCs. Protein translocation. Curr. Biol. 6, 276–278 (1996).

    Article  CAS  PubMed  Google Scholar 

  180. Munro, S. & Pelham, H. R. A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899–907 (1987).

    Article  CAS  PubMed  Google Scholar 

  181. von Heijne, G. Signal sequences. The limits of variation. J. Mol. Biol. 184, 99–105 (1985).

    Article  CAS  PubMed  Google Scholar 

  182. Dingwall, C. & Laskey, R. A. Nuclear targeting sequences — a consensus? Trends Biochem. Sci. 16, 478–481 (1991).

    Article  CAS  PubMed  Google Scholar 

  183. Kosugi, S., Hasebe, M., Tomita, M. & Yanagawa, H. Nuclear export signal consensus sequences defined using a localization-based yeast selection system. Traffic 9, 2053–2062 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Omura, T. Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria. J. Biochem. 123, 1010–1016 (1998).

    Article  CAS  PubMed  Google Scholar 

  185. Subramani, S., Koller, A. & Snyder, W. B. Import of peroxisomal matrix and membrane proteins. Annu. Rev. Biochem. 69, 399–418 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Kwiatkowski, D. J., Mehl, R. & Yin, H. L. Genomic organization and biosynthesis of secreted and cytoplasmic forms of gelsolin. J. Cell Biol. 106, 375–384 (1988).

    Article  CAS  PubMed  Google Scholar 

  187. McCaw, B. J. et al. Identification and characterization of mErk5-T, a novel Erk5/Bmk1 splice variant. Gene 345, 183–190 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Raynal, P., Kuijpers, G., Rojas, E. & Pollard, H. B. A rise in nuclear calcium translocates annexins IV and V to the nuclear envelope. FEBS Lett. 392, 263–268 (1996).

    Article  CAS  PubMed  Google Scholar 

  189. Wiest, D. L., Burgess, W. H., McKean, D., Kearse, K. P. & Singer, A. The molecular chaperone calnexin is expressed on the surface of immature thymocytes in association with clonotype-independent CD3 complexes. EMBO J. 14, 3425–3433 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Godde, N. J., D'Abaco, G. M., Paradiso, L. & Novak, U. Efficient ADAM22 surface expression is mediated by phosphorylation-dependent interaction with 14-3-3 protein family members. J. Cell Sci. 119, 3296–3305 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Ashery, U., Yizhar, O., Rotblat, B. & Kloog, Y. Nonconventional trafficking of Ras associated with Ras signal organization. Traffic 7, 119–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Paukku, K. & Silvennoinen, O. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev. 15, 435–455 (2004).

    Article  CAS  PubMed  Google Scholar 

  193. Constantinides, S. M. & Deal, W. C. Jr. Reversible dissociation of tetrameric rabbit muscle glyceraldehyde 3-phosphate dehydrogenase into dimers or monomers by adenosine triphosphate. J. Biol. Chem. 244, 5695–5702 (1969).

    CAS  PubMed  Google Scholar 

  194. Hirano, W., Gotoh, I., Uekita, T. & Seiki, M. Membrane-type 1 matrix metalloproteinase cytoplasmic tail binding protein-1 (MTCBP-1) acts as an eukaryotic aci-reductone dioxygenase (ARD) in the methionine salvage pathway. Genes Cells 10, 565–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Uekita, T. et al. Membrane-type 1 matrix metalloproteinase cytoplasmic tail-binding protein-1 is a new member of the Cupin superfamily. A possible multifunctional protein acting as an invasion suppressor down-regulated in tumors. J. Biol. Chem. 279, 12734–12743 (2004).

    Article  CAS  PubMed  Google Scholar 

  196. Parrott, A. M., Walsh, M. R., Reichman, T. W. & Mathews, M. B. RNA binding and phosphorylation determine the intracellular distribution of nuclear factors 90 and 110. J. Mol. Biol. 348, 281–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Coppolino, M. G. & Dedhar, S. Ligand-specific, transient interaction between integrins and calreticulin during cell adhesion to extracellular matrix proteins is dependent upon phosphorylation/dephosphorylation events. Biochem. J. 340 (Pt 1), 41–50 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Deora, A. B., Kreitzer, G., Jacovina, A. T. & Hajjar, K. A. An annexin 2 phosphorylation switch mediates p11-dependent translocation of annexin 2 to the cell surface. J. Biol. Chem. 279, 43411–43418 (2004).

    Article  CAS  PubMed  Google Scholar 

  199. Salmena, L. & Pandolfi, P. P. Changing venues for tumour suppression: balancing destruction and localization by monoubiquitylation. Nature Rev. Cancer 7, 409–413 (2007).

    Article  CAS  Google Scholar 

  200. Brown, M. S. & Goldstein, J. L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl Acad. Sci. USA 96, 11041–11048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  202. Cao, X. & Sudhof, T. C. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  203. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  204. Struhl, G. & Adachi, A. Nuclear access and action of notch in vivo. Cell 93, 649–660 (1998).

    Article  CAS  PubMed  Google Scholar 

  205. Garton, K. J. et al. Tumor necrosis factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. 276, 37993–38001 (2001).

    CAS  PubMed  Google Scholar 

  206. Hoyer-Hansen, G. et al. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J. Biol. Chem. 267, 18224–18229 (1992).

    CAS  PubMed  Google Scholar 

  207. Andolfo, A. et al. Metalloproteases cleave the urokinase-type plasminogen activator receptor in the D1-D2 linker region and expose epitopes not present in the intact soluble receptor. Thromb. Haemost. 88, 298–306 (2002).

    Article  CAS  PubMed  Google Scholar 

  208. Giri, J. G. et al. Elevated levels of shed type II IL-1 receptor in sepsis. Potential role for type II receptor in regulation of IL-1 responses. J. Immunol. 153, 5802–5809 (1994).

    CAS  PubMed  Google Scholar 

  209. Crowe, P. D. et al. A metalloprotease inhibitor blocks shedding of the 80-kD TNF receptor and TNF processing in T lymphocytes. J. Exp. Med. 181, 1205–1210 (1995).

    Article  CAS  PubMed  Google Scholar 

  210. Lum, L. et al. Evidence for a role of a tumor necrosis factor-α (TNF-α)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J. Biol. Chem. 274, 13613–13618 (1999).

    Article  CAS  PubMed  Google Scholar 

  211. Yamashita, R. et al. Extracellular proteome of human hepatoma cell, HepG2 analyzed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. Mol. Cell Biochem. 298, 83–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  212. Ahram, M., Adkins, J. N., Auberry, D. L., Wunschel, D. S. & Springer, D. L. A proteomic approach to characterize protein shedding. Proteomics 5, 123–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  213. Mbeunkui, F., Metge, B. J., Shevde, L. A. & Pannell, L. K. Identification of differentially secreted biomarkers using LC-MS/MS in isogenic cell lines representing a progression of breast cancer. J. Proteome Res. 6, 2993–3002 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Anderson, N. L. et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol. Cell Proteomics 3, 311–326 (2004).

    Article  CAS  PubMed  Google Scholar 

  215. Pardo, M. et al. The characterization of the invasion phenotype of uveal melanoma tumour cells shows the presence of MUC18 and HMG-1 metastasis markers and leads to the identification of DJ-1 as a potential serum biomarker. Int. J. Cancer 119, 1014–1022 (2006).

    Article  CAS  PubMed  Google Scholar 

  216. Dacheux, J. L., Belghazi, M., Lanson, Y. & Dacheux, F. Human epididymal secretome and proteome. Mol. Cell Endocrinol. 250, 36–42 (2006).

    Article  CAS  PubMed  Google Scholar 

  217. Dupont, A. et al. The proteome and secretome of human arterial smooth muscle cells. Proteomics 5, 585–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  218. Coppinger, J. A. et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103, 2096–2104 (2004).

    Article  CAS  PubMed  Google Scholar 

  219. Chevallet, M., Diemer, H., Van Dorssealer, A., Villiers, C. & Rabilloud, T. Toward a better analysis of secreted proteins: the example of the myeloid cells secretome. Proteomics 7, 1757–1770 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Dupont, A. et al. Two-dimensional maps and databases of the human macrophage proteome and secretome. Proteomics 4, 1761–1778 (2004).

    Article  CAS  PubMed  Google Scholar 

  221. Lafon-Cazal, M. et al. Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome. J. Biol. Chem. 278, 24438–24448 (2003).

    Article  CAS  PubMed  Google Scholar 

  222. Wang, P. et al. Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell. Mol. Life Sci. 61, 2405–2417 (2004).

    CAS  PubMed  Google Scholar 

  223. Wu, C. C. et al. Cancer cell-secreted proteomes as a basis for searching potential tumor markers: nasopharyngeal carcinoma as a model. Proteomics 5, 3173–3182 (2005).

    Article  CAS  PubMed  Google Scholar 

  224. Thery, C. et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166, 7309–7318 (2001).

    Article  CAS  PubMed  Google Scholar 

  225. Gasteiger, E. et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Jacob, R. J. & Cramer, R. PIGOK: linking protein identity to gene ontology and function. J. Proteome Res. 5, 3429–3432 (2006).

    Article  CAS  PubMed  Google Scholar 

  227. Emans, N. et al. Annexin II is a major component of fusogenic endosomal vesicles. J. Cell Biol. 120, 1357–1369 (1993).

    Article  CAS  PubMed  Google Scholar 

  228. Mickleburgh, I. et al. Annexin A2 binds to the localization signal in the 3′ untranslated region of c-myc mRNA. FEBS J. 272, 413–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  229. Filipenko, N. R., MacLeod, T. J., Yoon, C. S. & Waisman, D. M. Annexin A2 is a novel RNA-binding protein. J. Biol. Chem. 279, 8723–8731 (2004).

    Article  CAS  PubMed  Google Scholar 

  230. Boyko, V. et al. A major cellular substrate for protein kinases, annexin II, is a DNA-binding protein. FEBS Lett. 345, 139–142 (1994).

    Article  CAS  PubMed  Google Scholar 

  231. Liu, J. & Vishwanatha, J. K. Regulation of nucleo-cytoplasmic shuttling of human annexin A2: a proposed mechanism. Mol. Cell Biochem. 303, 211–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  232. Eberhard, D. A., Karns, L. R., VandenBerg, S. R. & Creutz, C. E. Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11 binding. J. Cell Sci. 114, 3155–3166 (2001).

    CAS  PubMed  Google Scholar 

  233. Siever, D. A. & Erickson, H. P. Extracellular annexin II. Int. J. Biochem. Cell Biol. 29, 1219–1223 (1997).

    Article  CAS  PubMed  Google Scholar 

  234. Keller, M., Ruegg, A., Werner, S. & Beer, H. D. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831 (2008).

    Article  CAS  PubMed  Google Scholar 

  235. Coppolino, M. G. & Dedhar, S. Calreticulin. Int. J. Biochem. Cell Biol. 30, 553–558 (1998).

    Article  CAS  PubMed  Google Scholar 

  236. Johnson, S., Michalak, M., Opas, M. & Eggleton, P. The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol. 11, 122–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  237. Funasaka, T. & Raz, A. The role of autocrine motility factor in tumor and tumor microenvironment. Cancer Metastasis Rev. 26, 725–735 (2007).

    Article  PubMed  Google Scholar 

  238. Ghiran, I., Klickstein, L. B. & Nicholson-Weller, A. Calreticulin is at the surface of circulating neutrophils and uses CD59 as an adaptor molecule. J. Biol. Chem. 278, 21024–21031 (2003).

    Article  CAS  PubMed  Google Scholar 

  239. Orr, A. W. et al. Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly. J. Cell Biol. 161, 1179–1189 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Pike, S. E. et al. Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood 94, 2461–2468 (1999).

    CAS  PubMed  Google Scholar 

  241. Dupuis, M., Schaerer, E., Krause, K. H. & Tschopp, J. The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J. Exp. Med. 177, 1–7 (1993).

    Article  CAS  PubMed  Google Scholar 

  242. Mitola, S. et al. Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine. J. Immunol. 176, 12–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  243. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  244. Taniguchi, N. et al. Stage-specific secretion of HMGB1 in cartilage regulates endochondral ossification. Mol. Cell Biol. 27, 5650–5663 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Gardella, S. et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 3, 995–1001 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Jin, Z. G. et al. Cyclophilin A is a proinflammatory cytokine that activates endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24, 1186–1191 (2004).

    Article  CAS  PubMed  Google Scholar 

  247. Dhar-Chowdhury, P. et al. The glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, and pyruvate kinase are components of the KATP channel macromolecular complex and regulate its function. J. Biol. Chem. 280, 38464–38470 (2005).

    Article  CAS  PubMed  Google Scholar 

  248. Liu, Q. Y., Corjay, M., Feuerstein, G. Z. & Nambi, P. Identification and characterization of triosephosphate isomerase that specifically interacts with the integrin αIIb cytoplasmic domain. Biochem. Pharmacol. 72, 551–557 (2006).

    Article  CAS  PubMed  Google Scholar 

  249. Estey, T., Piatigorsky, J., Lassen, N. & Vasiliou, V. ALDH3A1: a corneal crystallin with diverse functions. Exp. Eye Res. 84, 3–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  250. Butler, G. S. & Overall, C. M. Updated biological roles for matrix metalloproteinases and new “intracellular” substrates revealed by degradomics. Biochemistry (9 Oct 2009) (doi:10.1021/bi901656f).

Download references

Acknowledgements

C.M.O. is supported by a Canada Research Chair in Metalloproteinase Proteomics and Systems Biology. This research was supported by grants from the Canadian Institutes of Health Research, the National Cancer Institute of Canada (with funds raised by the Canadian Cancer Association), a Special Program Grant from the Canadian Breast Cancer Research Alliance Metastasis, and a Centre Grant from the Michael Smith Research Foundation to the University of British Columbia Centre for Blood Research.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

The Overall laboratory homepage

ExPASy website

Gene Ontology

HSP90 interactors

Index of HSP90 inhibitors emerging as treatments

PIGOK website

Glossary

Drug target

A molecule that is known to be involved in disease against which a drug is designed to block these pathological actions.

Pharmacoproteomics

The proteomic characterization of the effects of a drug on a system.

Anti-target

A molecule that must be therapeutically spared owing to host-protective effects in a disease, or the blockade of which produces unacceptable side effects.

Counter-target

A molecule that might reduce the efficiency of a drug.

Off-target

A molecule that interacts with a drug but is not the intended target of the drug.

Shotgun proteomics

High-throughput proteomics using high-performance liquid chromatography and mass spectrometry to identify peptides generated from a proteome — for example, by trypsin — from which the protein components are identified.

Chemical proteomics

The identification of small-molecule interactors in a complex sample using affinity capture.

Target refinement

By mapping the network in which a drug target lies, alternative targets at different points in the pathway, which have the desired effect but with greater specificity, may be selected.

Degradomics

The identification of all proteases, their substrates and inhibitors by genomics and proteomics techniques.

Secretome

The portion of the proteome that is secreted.

Sheddase

A protease that releases or 'sheds' all or a portion of a protein to the extracellular milieu.

Neoproteins

Functional proteins that are released from a larger protein by specific proteolysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, G., Overall, C. Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov 8, 935–948 (2009). https://doi.org/10.1038/nrd2945

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing