Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Advances in the assessment and control of the effector functions of therapeutic antibodies

Abstract

The Fc (crystallizable fragment) region of therapeutic antibodies can have an important role in their safety and efficacy. Although much is known about the structure–activity relationship of antibodies and the factors that influence Fc effector functions, a process has not yet been defined to clearly delineate how Fc functionality should be assessed and controlled during antibody development and manufacturing. In this article, we summarize the current knowledge of antibody Fc functionality, provide a strategy for assessing the effector functions of different classes of therapeutic antibodies (including Fc fusion proteins) and propose a path for routine testing and controls for manufacturers of antibody products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of therapeutic antibodies based on their putative mechanisms of action.
Figure 2: Assessment and control strategies for effector functions.

Similar content being viewed by others

References

  1. Lee, J. I., Zhang, L., Men, A. Y., Kenna, L. S. & Huang, S. M. CYP-mediated therapeutic protein–drug interactions — clinical findings, proposed mechanisms and regulatory implications. Clin. Pharmacokinet. 49, 295–310 (2010).

    Article  CAS  Google Scholar 

  2. Reichert, J. M. Antibodies to watch in 2010. MAbs 2, 84–100 (2010).

    Article  Google Scholar 

  3. Chan, A. C. & Carter, P. J. Therapeutic antibodies for autoimmunity and inflammation. Nature Rev. Immunol. 10, 301–316 (2010).

    Article  CAS  Google Scholar 

  4. Raju, T. S. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol. 20, 471–478 (2008).

    Article  CAS  Google Scholar 

  5. Siberil, S. et al. FcγR: the key to optimize therapeutic antibodies? Crit. Rev. Oncol. Hematol. 62, 26–33 (2007).

    Article  Google Scholar 

  6. Nimmerjahn, F. & Ravetch, J. Fcγ receptors as regulators of immune responses. Nature Rev. Immunol. 8, 34–47 (2008).

    Article  CAS  Google Scholar 

  7. Ferrara, C. et al. The carbohydrate at FcγRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J. Biol. Chem. 281, 5032–5036 (2006).

    Article  CAS  Google Scholar 

  8. Wernersson, S. et al. IgG-mediated enhancement of antibody responses is low in Fc receptor γ chain-deficient mice and increased in FcγRII-deficient mice. J. Immunol. 163, 618–622 (1999).

    CAS  PubMed  Google Scholar 

  9. Hazenbos, W. L. et al. Impaired IgG-dependent anaphylaxis and arthus reaction in Fcγ RIII (CD16) deficient mice. Immunity 5, 181–188 (1996).

    Article  CAS  Google Scholar 

  10. Lazar, G. A. et al. Engineered antibody Fc variants with enhanced effector function. Proc. Natl Acad. Sci. USA 103, 4005–4010 (2006).

    Article  CAS  Google Scholar 

  11. Cartron, G., Watier, H., Golay, J. & Solal-Celigny, P. From the bench to the bedside: ways to improve rituximab efficacy. Blood 104, 2635–2642 (2004).

    Article  CAS  Google Scholar 

  12. Weng, W. K. & Levy, R. Two immunoglobulin G Fc receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940–3947 (2003).

    Article  CAS  Google Scholar 

  13. Gennari, R. et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin. Cancer Res. 10, 5650–5655 (2004).

    Article  CAS  Google Scholar 

  14. Musolino, A. et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol. 26, 1789–1796 (2008).

    Article  CAS  Google Scholar 

  15. Idusogie, E. E. et al. Engineered antibodies with increased activity to recruit complement. J. Immunol. 166, 2571–2575 (2001).

    Article  CAS  Google Scholar 

  16. Dall'Acqua, W. F., Cook, K. E., Damschroder, M. M., Woods, R. M. & Wu, H. Modulation of the effector functions of a human IgG1 through engineering of its hinge region. J. Immunol. 177, 1129–1138 (2006).

    Article  CAS  Google Scholar 

  17. Roopenian, D. C. & Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nature Rev. Immunol. 7, 715–725 (2007).

    Article  CAS  Google Scholar 

  18. Jefferis, R. Antibody therapeutics: isotype and glycoform selection. Expert Opin. Biol. Ther. 7, 1401–1413 (2007).

    Article  CAS  Google Scholar 

  19. Jefferis, R. Glycosylation as a strategy to improve antibody-based therapeutics. Nature Rev. Drug Discov. 8, 226–234 (2009).

    Article  CAS  Google Scholar 

  20. Sondermann, P., Huber, R., Oosthuizen, V. & Jacob, U. The 3.2-Å crystal structure of the human IgG1 Fc fragment–FcγRIII complex. Nature 406, 267–273 (2000).

    Article  CAS  Google Scholar 

  21. Durocher, Y. & Butler, M. Expression systems for therapeutic glycoprotein production. Curr. Opin. Biotechnol. 20, 700–707 (2009).

    Article  CAS  Google Scholar 

  22. Jefferis, R. Glycosylation of recombinant antibody therapeutics. Biotechnol. Prog. 21, 11–16 (2005).

    Article  CAS  Google Scholar 

  23. Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).

    Article  CAS  Google Scholar 

  24. Shinkawa, T. et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473 (2003).

    Article  CAS  Google Scholar 

  25. Niwa, R. et al. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. J. Immunol. Methods 306, 151–160 (2005).

    Article  CAS  Google Scholar 

  26. Ferrara, C. et al. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous β1 4-N-acetylglucosaminyltransferase III and Golgi α-mannosidase II. Biotechnol. Bioeng. 93, 851–861 (2006).

    Article  CAS  Google Scholar 

  27. Peipp, M. et al. Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood 112, 2390–2399 (2008).

    Article  CAS  Google Scholar 

  28. Hodoniczky, J., Zheng, Y. Z. & James, D. C. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol. Prog. 21, 1644–1652 (2005).

    Article  CAS  Google Scholar 

  29. Houde, D., Peng, Y., Berkowitz, S. A. & Engen, J. R. Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol. Cell. Proteomics 9, 1716–1728 (2010).

    Article  CAS  Google Scholar 

  30. Anthony, R. M. et al. Recaptulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008).

    Article  CAS  Google Scholar 

  31. Scallon, B., Tam, S. H., McCarthy, S. G., Cai, A. N. & Raju, T. S. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol. Immunol. 44, 1524–1534 (2007).

    Article  CAS  Google Scholar 

  32. Nimmerjahn, F., Anthony, R. M. & Ravetch, J. V. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc. Natl Acad. Sci. USA 104, 8433–8437 (2007).

    Article  CAS  Google Scholar 

  33. Liu, X. Y., Pop, L. M. & Vitetta, V. S. Engineering therapeutic monoclonal antibodies. Immunol. Rev. 222, 9–27 (2008).

    Article  CAS  Google Scholar 

  34. Presta, L. G. Molecular engineering and design of therapeutic antibodies. Curr. Opin. Immunol. 20, 460–470 (2008).

    Article  CAS  Google Scholar 

  35. Umana, P. et al. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody dependent cellular cytotoxic activity. Nature Biotech. 17, 176–180 (1999).

    Article  CAS  Google Scholar 

  36. Ghaderi, D. et al. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nature Biotech. 28, 863–867 (2010).

    Article  CAS  Google Scholar 

  37. Chung, C. H. et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1,3-galactose. N. Engl. J. Med. 358, 1109–1117 (2008).

    Article  CAS  Google Scholar 

  38. Chen, X., Liu, Y. D. & Flynn, G. C. The effect of Fc glycan forms on human IgG2 antibody clearance in humans. Glycobiology 19, 240–249 (2009).

    Article  CAS  Google Scholar 

  39. Kanda, Y. et al. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccarides: the high-mannose, hybrid and complex types. Glycobiology 17, 104–118 (2007).

    Article  CAS  Google Scholar 

  40. Jones, A. J. et al. Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology 17, 529–540 (2007).

    Article  CAS  Google Scholar 

  41. Salfeld, J. G. Isotype selection in antibody engineering. Nature Biotech. 25, 1369–1372 (2007).

    Article  CAS  Google Scholar 

  42. Schrama, D., Reisfeld, R. A. & Becker, J. C. Antibody targeted drugs as cancer therapeutics. Nature Rev. Drug Discov. 5, 147–159 (2006).

    Article  CAS  Google Scholar 

  43. Schenerman, M. A., Axley, M. J., Oliver, C. N., Ram, K. & Wasserman, G. F. in Quality by Design for Biopharmaceuticals: Principles and Case Studies (eds Rathore, A. S. & Mhatre, R.) 53–84 (Wiley Series in Biotechnology and Bioengineering, Hoboken, New Jersey, 2009).

    Book  Google Scholar 

  44. Tai, Y. T. et al. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res. 65, 5898–5906 (2005).

    Article  CAS  Google Scholar 

  45. Tai, Y. T. et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 112, 1329–1337 (2007).

    Article  Google Scholar 

  46. Gómez-Román, V. R. et al. A simplified method for the rapid fluorometric assessment of antibody-dependent cell-mediated cytotoxicity. J. Immunol. Methods 308, 53–67 (2006).

    Article  Google Scholar 

  47. Bracher, M. et al. Three-colour flow cytometric method to measure antibody-dependent tumour cell killing by cytotoxicity and phagocytosis. J. Immunol. Methods 323, 160–171 (2007).

    Article  CAS  Google Scholar 

  48. Kolber, M. A. et al. Measurement of cytotoxicity by target cell release and retention of the fluorescent dye bis-carboxyethyl-carboxyfluorescein (BCECF). J. Immunol. Methods 108, 255–264 (1988).

    Article  CAS  Google Scholar 

  49. Maley, D. T. & Simon, P. Cytotoxicity assays using cryopreserved target cells pre-labeled with the fluorescent marker europium. J. Immunol. Methods 134, 61–70 (1990).

    Article  CAS  Google Scholar 

  50. Wang, Y., Fei, D., Vanderlaan, M. & Song, A. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 7, 335–345 (2004).

    Article  CAS  Google Scholar 

  51. Wallace, P. K. et al. Bispecific antibody-targeted phagocytosis of HER-2/neu expressing tumor cells by myeloid cells activated in vivo. J. Immunol. Methods 248, 167–182 (2001).

    Article  CAS  Google Scholar 

  52. Zhao, X. et al. Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia. Haematologica 95, 71–78 (2009).

    Article  Google Scholar 

  53. Konishi, E., Kitai, Y. & Kondo, T. Utilization of complement-dependent cytotoxicity to measure low levels of antibodies: application to nonstructural protein 1 in a model of Japanese encephalitis virus. Clin. Vaccine Immunol. 15, 88–94 (2008).

    Article  CAS  Google Scholar 

  54. Prang, N. et al. Cellular and complement-dependent cytotoxicity of Ep-CAM-specific monoclonal antibody MT201 against breast cancer cell lines. Br. J. Cancer 92, 342–349 (2005).

    Article  CAS  Google Scholar 

  55. Pathan, N. I. et al. Mediation of apoptosis by and antitumor activity of lumiliximab in chronic lymphocytic leukemia cells and CD23+ lymphoma cell lines. Blood 111, 1594–1602 (2008).

    Article  CAS  Google Scholar 

  56. Blanquet-Grossard, F., Thielens, N. M., Vendrely, C., Jamin, M. & Arlaud, G. J. Complement protein C1q recognizes a conformationally modified form of the prion protein. Biochemistry 44, 4349–4356 (2005).

    Article  CAS  Google Scholar 

  57. Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99, 754–758 (2002).

    Article  CAS  Google Scholar 

  58. Anolik, J. H. et al. The relationship of FcγRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum. 48, 455–459 (2003).

    Article  CAS  Google Scholar 

  59. Kim, D. H. et al. FCGR3A gene polymorphisms may correlate with response to frontline R-CHOP therapy for diffuse large B-cell lymphoma. Blood 108, 2720–2725 (2006).

    Article  CAS  Google Scholar 

  60. Dall'Ozzo, S. et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration–effect relationship. Cancer Res. 64, 4664–4669 (2004).

    Article  CAS  Google Scholar 

  61. Beck, A. et al. Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr. Pharm. Biotechnol. 9, 482–501 (2008).

    Article  CAS  Google Scholar 

  62. Gennaro, L. A. & Salas-Solano, O. On-line CE-LIF-MS technology for the direct characterization of N-linked glycans from therapeutic antibodies. Anal. Chem. 80, 3838–3845 (2008).

    Article  CAS  Google Scholar 

  63. Arora, T. et al. Differences in binding and effector functions between classes of TNF antagonists. Cytokine 45, 124–131 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Rong Jiang.

Ethics declarations

Competing interests

Xu-Rong Jiang is employed by MedImmune, a wholly-owned subsidiary of AstraZeneca, and owns AstraZeneca stocks.

An Song is employed by Genentech, a member of the Roche Group and owns Roche stock.

Svetlana Bergelson is employed by Biogen Idec and owns Biogen Idec stock.

Thomas Arroll is employed by Amgen and owns Amgen stock.

Bhavin Parekh is employed by Eli Lilly and Company and owns Eli Lilly stock.

Kimberly May is employed by Merck & Co. and owns Merck stock.

Shan Chung is employed by Genentech, a member of the Roche Group, and owns Roche stock.

Robert Strouse is an employee of MedImmune, a wholly-owned subsidiary of AstraZeneca. He owns stocks in AstraZeneca.

Anthony Mire-Sluis is employed by Amgen and owns Amgen stock.

Mark Schenerman is employed by MedImmune, a wholly-owned subsidiary of AstraZeneca, and owns AstraZeneca stocks.

Related links

Related links

FURTHER INFORMATION

Drugs@FDA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, XR., Song, A., Bergelson, S. et al. Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat Rev Drug Discov 10, 101–111 (2011). https://doi.org/10.1038/nrd3365

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3365

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research