Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell death assays for drug discovery

Key Points

  • In response to cytotoxic insults, cells die by different subroutines that are mainly based on apoptosis and necrosis and often preceded by a global cytoprotective response centred on autophagy. Thus, cell-based tests that measure cell death-related phenomena must answer two critical questions: do the cells die and, if so, through which lethal pathway do they die?

  • Cells should be considered as dead when they fulfil at least one of the following criteria: the plasma membrane has lost its integrity, the cell has fragmented into apoptotic bodies, or the corpse or its fragments have been taken up by neighbouring cells.

  • Cell death assays fall into two major groups: assays that measure bona fide cell death and tests that quantify biochemical processes that are viewed as surrogate viability markers.

  • Apoptosis assays can be grossly subdivided into two categories: methods that detect events occurring in most (if not all) instances of apoptotic cell death and tests that measure pathway-specific processes, which depend on the apoptosis-initiating stimulus and the precise cellular context of lethal signalling.

  • Autophagy can be quantified by steady-state assessment of the subcellular morphology, long-lived molecule content and the lipidation status of the autophagosomal membrane protein LC3. In addition, flux measurements allow discrimination between efficient and stalled autophagic degradation. Efficient autophagic degradation generally exerts cytoprotective functions, whereas stalled autophagic degradation frequently represents a pathological event.

  • Necrotic cell death can be differentiated from other cell death subroutines by monitoring the kinetics of appearance of common markers, such as disintegration of the plasma membrane.

  • Sophisticated mitotic catastrophe assays are based on fluorescent biosensor cell lines that are assessed by robotized video microscopy and automated image analysis, both of which allow us to monitor several indicators of the nuclear status and establish cell fate profiles.

  • It can be anticipated that the combination of ever more sophisticated high-content and high-throughput microscopy methods with microfluidic devices or on-chip technologies will accelerate the cell-based identification of cell death-modulatory drugs.

Abstract

Cell death has an important role in many human diseases, and strategies aimed at modulating the associated pathways have been successfully applied to treat various disorders. Indeed, several clinically promising cytotoxic and cytoprotective agents with potential applications in cancer, ischaemic and neurodegenerative diseases have recently been identified by high-throughput screening (HTS), based on appropriate cell death assays. Given that different cell death modalities may be dysregulated in different diseases, it is becoming increasingly clear that such assays need to not only quantify the extent of cell death, but they must also be able to distinguish between the various pathways. Here, we systematically describe approaches to accurately quantify distinct cell death pathways, discuss their advantages and pitfalls, and focus on those techniques that are amenable to HTS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular characteristics of autophagy, apoptosis and necrosis.
Figure 2: Apoptosis assays amenable for high-throughput screening.
Figure 3: Autophagy assays.
Figure 4: Imaging necrosis.
Figure 5: Cell fate profiling.

Similar content being viewed by others

References

  1. Brown, J. M. & Attardi, L. D. The role of apoptosis in cancer development and treatment response. Nature Rev. Cancer 5, 231–237 (2005).

    Article  Google Scholar 

  2. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chem. Biol. 1, 112–119 (2005). Based on HTS of a small-molecule library, this article identifies necrostatin 1 as a specific inhibitor of necroptosis that works through the inhibition of RIPK1.

    Article  CAS  Google Scholar 

  3. Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3–11 (2009). This article provides up-to-date guidelines for the use of cell death-related terminology in scientific publications, as provided by the Nomenclature Committee on Cell Death, an organization comprising reputed researchers in the field of cell death worldwide.

    Article  CAS  PubMed  Google Scholar 

  4. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Rev. Mol. Cell Biol. 11, 700–714 (2010). This review provides the first detailed analysis of the molecular mechanisms that underlie programmed necrosis and its pathophysiological implications.

    Article  CAS  Google Scholar 

  5. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grumati, P. et al. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nature Med. 16, 1313–1320 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med. 13, 54–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Zitvogel, L., Kepp, O. & Kroemer, G. Decoding cell death signals in inflammation and immunity. Cell 140, 798–804 (2010). A comprehensive review summarizing the latest insights in the field of immunogenic cell death.

    Article  CAS  PubMed  Google Scholar 

  9. Guidicelli, G. et al. The necrotic signal induced by mycophenolic acid overcomes apoptosis-resistance in tumor cells. PLoS One 4, e5493 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Galluzzi, L. et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ. 16, 1093–1107 (2009). This review provides a comprehensive set of guidelines for assessing cell death in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  11. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008). This review provides a comprehensive set of guidelines for measuring autophagy in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  12. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kerr, J. F. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J. Pathol. Bacteriol. 90, 419–435 (1965).

    Article  CAS  PubMed  Google Scholar 

  14. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Castedo, M. et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene 23, 2825–2837 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Gilmore, A. P. Anoikis. Cell Death Differ. 12 (Suppl. 2), 1473–1477 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Brennan, M. A. & Cookson, B. T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. NY Acad. Sci. 1147, 233–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Gilloteaux, J. et al. Cancer cell necrosis by autoschizis: synergism of antitumor activity of vitamin C: vitamin K3 on human bladder carcinoma T24 cells. Scanning 20, 564–575 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Schweichel, J. U. & Merker, H. J. The morphology of various types of cell death in prenatal tissues. Teratology 7, 253–266 (1973).

    Article  CAS  PubMed  Google Scholar 

  22. Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nature Rev. Mol. Cell Biol. 9, 1004–1010 (2008).

    Article  CAS  Google Scholar 

  23. Berry, D. L. & Baehrecke, E. H. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131, 1137–1148 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lemasters, J. J. et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366, 177–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Berridge, M. V., Herst, P. M. & Tan, A. S. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev. 11, 127–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Hitomi, J. et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311–1323 (2008). This was the first time systems biology was applied to compare necroptosis to apoptosis in murine cells. Genome-wide RNAi-based screens coupled to in silico and in vitro analyses allowed the delineation of a signalling network that regulates the molecular bifurcation between necroptosis and apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arora, S. et al. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma. Mol. Cancer 9, 218 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zeng, F. Y., Cui, J., Liu, L. & Chen, T. PAX3–FKHR sensitizes human alveolar rhabdomyosarcoma cells to camptothecin-mediated growth inhibition and apoptosis. Cancer Lett. 284, 157–164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Atienza, J. M., Zhu, J., Wang, X., Xu, X. & Abassi, Y. Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J. Biomol. Screen. 10, 795–805 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Solly, K., Wang, X., Xu, X., Strulovici, B. & Zheng, W. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev. Technol. 2, 363–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Xing, J. Z. et al. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem. Res. Toxicol. 18, 154–161 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Xia, M. et al. Compound cytotoxicity profiling using quantitative high-throughput screening. Environ. Health Perspect. 116, 284–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Metivier, D. et al. Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol. Lett. 61, 157–163 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Shiau, A. K., Massari, M. E. & Ozbal, C. C. Back to basics: label-free technologies for small molecule screening. Comb. Chem. High Throughput Screen. 11, 231–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Lipinski, M. M. et al. A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Dev. Cell 18, 1041–1052 (2010). This screen identifies multiple starvation-independent autophagy-relevant genes. This paper is also a good example of the use of secondary HTS to characterize autophagy flux and upstream autophagic pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Buttner, S. et al. Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J. Cell Biol. 175, 521–525 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nature Cell Biol. 11, 1305–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Chew, S. K. et al. Genome-wide silencing in Drosophila captures conserved apoptotic effectors. Nature 460, 123–127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stilwell, G. E., Saraswati, S., Littleton, J. T. & Chouinard, S. W. Development of a Drosophila seizure model for in vivo high-throughput drug screening. Eur. J. Neurosci. 24, 2211–2222 (2006).

    Article  PubMed  Google Scholar 

  41. Evensen, L., Link, W. & Lorens, J. B. Imaged-based high-throughput screening for anti-angiogenic drug discovery. Curr. Pharm. Des. 16, 3958–3963 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Rev. Mol. Cell Biol. 8, 741–752 (2007).

    Article  CAS  Google Scholar 

  43. Galluzzi, L. et al. No death without life: vital functions of apoptotic effectors. Cell Death Differ. 15, 1113–1123 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Yi, C. H. & Yuan, J. The Jekyll and Hyde functions of caspases. Dev. Cell 16, 21–34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cen, H., Mao, F., Aronchik, I., Fuentes, R. J. & Firestone, G. L. DEVD-NucView488: a novel class of enzyme substrates for real-time detection of caspase-3 activity in live cells. FASEB J. 22, 2243–2252 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Tyas, L., Brophy, V. A., Pope, A., Rivett, A. J. & Tavare, J. M. Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer. EMBO Rep. 1, 266–270 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bouchier-Hayes, L. et al. Characterization of cytoplasmic caspase-2 activation by induced proximity. Mol. Cell 35, 830–840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yi, C. H. et al. A genome-wide RNAi screen reveals multiple regulators of caspase activation. J. Cell Biol. 179, 619–626 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Coleman, M. L. et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nature Cell Biol. 3, 339–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Chekeni, F. B. et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martin, S. J. et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Zwaal, R. F., Comfurius, P. & Bevers, E. M. Surface exposure of phosphatidylserine in pathological cells. Cell. Mol. Life Sci. 62, 971–988 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Fischer, K. et al. Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells. Blood 108, 4094–4101 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007). This review provides a comprehensive analysis of the mitochondrial pathway of cell death and its multifaceted implications in human physiology and pathology.

    Article  CAS  PubMed  Google Scholar 

  56. Galluzzi, L. et al. Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12, 803–813 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Zamzami, N. et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J. Exp. Med. 182, 367–377 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Campalans, A., Amouroux, R., Bravard, A., Epe, B. & Radicella, J. P. UVA irradiation induces relocalisation of the DNA repair protein hOGG1 to nuclear speckles. J. Cell Sci. 120, 23–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Lipinski, M. M. et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proc. Natl Acad. Sci. USA 107, 14164–14169 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Clarke, M. C., Savill, J., Jones, D. B., Noble, B. S. & Brown, S. B. Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. J. Cell Biol. 160, 577–587 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Campello, S. & Scorrano, L. Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep. 11, 678–684 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jakobs, S. High resolution imaging of live mitochondria. Biochim. Biophys. Acta 1763, 561–575 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Zoratti, M. & Szabo, I. The mitochondrial permeability transition. Biochim. Biophys. Acta 1241, 139–176 (1995).

    Article  PubMed  Google Scholar 

  65. Stavrovskaya, I. G. et al. Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. J. Exp. Med. 200, 211–222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lim, T. S., Davila, A., Wallace, D. C. & Burke, P. Assessment of mitochondrial membrane potential using an on-chip microelectrode in a microfluidic device. Lab. Chip 10, 1683–1688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deniaud, A. et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27, 285–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Hampton, M. B., Zhivotovsky, B., Slater, A. F., Burgess, D. H. & Orrenius, S. Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts. Biochem. J. 329, 95–99 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jiang, X. et al. Distinctive roles of PHAP proteins and prothymosin-α in a death regulatory pathway. Science 299, 223–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Kim, H. E., Jiang, X., Du, F. & Wang, X. PHAPI, CAS, and Hsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol. Cell 30, 239–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Santamaria, B. et al. A nanoconjugate Apaf-1 inhibitor protects mesothelial cells from cytokine-induced injury. PLoS One 4, e6634 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hoffman, G. R., Moerke, N. J., Hsia, M., Shamu, C. E. & Blenis, J. A high-throughput, cell-based screening method for siRNA and small molecule inhibitors of mTORC1 signaling using the in cell western technique. Assay Drug Dev. Technol. 8, 186–199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. MacDonald, M. L. et al. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nature Chem. Biol. 2, 329–337 (2006).

    Article  CAS  Google Scholar 

  76. Galluzzi, L. et al. miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res. 70, 1793–1803 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Sirisoma, N. et al. Discovery of 2-chloro-N-(4-methoxyphenyl)-N-methylquinazolin-4-amine (EP128265, MPI-0441138) as a potent inducer of apoptosis with high in vivo activity. J. Med. Chem. 51, 4771–4779 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Irshad, S., Mahul-Mellier, A. L., Kassouf, N., Lemarie, A. & Grimm, S. Isolation of ORCTL3 in a novel genetic screen for tumor-specific apoptosis inducers. Cell Death Differ. 16, 890–898 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Martins, I. et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 13 Dec 2010 (doi:10.1038/onc.2010.500).

  80. Madeo, F., Tavernarakis, N. & Kroemer, G. Can autophagy promote longevity? Nature. Cell Biol. 12, 842–846 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Amaravadi, R. K. et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest. 117, 326–336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ni, H. M. et al. Dissecting the dynamic turnover of GFP–LC3 in the autolysosome. Autophagy 7, 54–70 (2011).

    Article  CAS  Google Scholar 

  83. Shintani, T. & Klionsky, D. J. Autophagy in health and disease: a double-edged sword. Science 306, 990–995 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Williams, A. et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nature Chem. Biol. 4, 295–305 (2008).

    Article  CAS  Google Scholar 

  85. Zhang, L. et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl Acad. Sci. USA 104, 19023–19028 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Criollo, A. et al. The IKK complex contributes to the induction of autophagy. EMBO J. 29, 619–631 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Farkas, T., Hoyer-Hansen, M. & Jaattela, M. Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux. Autophagy 5, 1018–1025 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Ju, J. S. et al. Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters. Autophagy 5, 511–519 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Shvets, E., Fass, E. & Elazar, Z. Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy 4, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. He, P. et al. High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy 5, 52–60 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Balgi, A. D. et al. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One 4, e7124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nature Chem. Biol. 3, 331–338 (2007). This paper describes a successful small-molecule screen for autophagy in yeast, which identified three conserved novel autophagy enhancers (from a library of 50,729 compounds) that act independently or downstream of the rapamycin target in human cells.

    Article  CAS  Google Scholar 

  93. Kanki, T. et al. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol. Biol. Cell 20, 4730–4738 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tian, Y. et al. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141, 1042–1055 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Arsham, A. M. & Neufeld, T. P. A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy–lysosome pathway. PLoS One 4, e6068 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Morvan, J. et al. In vitro reconstitution of fusion between immature autophagosomes and endosomes. Autophagy 5, 676–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Koga, H., Kaushik, S. & Cuervo, A. M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052–3065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ichimura, Y. et al. In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J. Biol. Chem. 279, 40584–40592 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Whitehurst, A. W. et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446, 815–819 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Bianchi, M. E., Beltrame, M. & Paonessa, G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243, 1056–1059 (1989).

    Article  CAS  PubMed  Google Scholar 

  101. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Bonaldi, T. et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22, 5551–5560 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bell, C. W., Jiang, W., Reich, C. F., & Pisetsky, D. S. The extracellular release of HMGB1 during apoptotic cell death. Am. J. Physiol. Cell Physiol. 291, C1318–C1325 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Christofferson, D. E. & Yuan, J. Cyclophilin A release as a biomarker of necrotic cell death. Cell Death Differ. 17, 1942–1943 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Handschumacher, R. E., Harding, M. W., Rice, J., Drugge, R. J. & Speicher, D. W. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226, 544–547 (1984).

    Article  CAS  PubMed  Google Scholar 

  106. Li, J. et al. Strategy for discovering chemical inhibitors of human cyclophilin A: focused library design, virtual screening, chemical synthesis and bioassay. J. Comb. Chem. 8, 326–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Ni, S. et al. Discovering potent small molecule inhibitors of cyclophilin A using de novo drug design approach. J. Med. Chem. 52, 5295–5298 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Kullertz, G., Luthe, S. & Fischer, G. Semiautomated microtiter plate assay for monitoring peptidylprolyl cis/trans isomerase activity in normal and pathological human sera. Clin. Chem. 44, 502–508 (1998).

    CAS  PubMed  Google Scholar 

  109. Mori, T. et al. Use of a real-time fluorescence monitoring system for high-throughput screening for prolyl isomerase inhibitors. J. Biomol. Screen. 14, 419–424 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Jin, Z. G. et al. Cyclophilin A is a proinflammatory cytokine that activates endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24, 1186–1191 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chem. Biol. 4, 313–321 (2008).

    Article  CAS  Google Scholar 

  112. Christofferson, D. E. & Yuan, J. Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol. 22, 263–268 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kirkegaard, T. et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 463, 549–553 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Vakifahmetoglu, H., Olsson, M. & Zhivotovsky, B. Death through a tragedy: mitotic catastrophe. Cell Death Differ. 15, 1153–1162 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Vitale, I. et al. Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos. EMBO J. 29, 1272–1284 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Weaver, B. A. & Cleveland, D. W. Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell 8, 7–12 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Olsson, M. et al. DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis. Oncogene 28, 1949–1959 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Tu, S. et al. In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nature Cell Biol. 8, 72–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Vakifahmetoglu, H. et al. DNA damage induces two distinct modes of cell death in ovarian carcinomas. Cell Death Differ. 15, 555–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Rello-Varona, S. et al. An automated fluorescence videomicroscopy assay for the detection of mitotic catastrophe. Cell Death Dis. 1, e25 (2010). This was the first approach towards an automated high-throughput image-based assessment of mitotic catastrophe by means of fluorescent biosensors utilized in robotized microscopy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  Google Scholar 

  122. Duan, Z., Choy, E. & Hornicek, F. J. NSC23925, identified in a high-throughput cell-based screen, reverses multidrug resistance. PLoS One 4, e7415 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yoon, I. S., Au, Q., Barber, J. R., Ng, S. C. & Zhang, B. Development of a high-throughput screening assay for cytoprotective agents in rotenone-induced cell death. Anal. Biochem. 407, 205–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Muzzey, D. & van Oudenaarden, A. Quantitative time-lapse fluorescence microscopy in single cells. Annu. Rev. Cell Dev. Biol. 25, 301–327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Conrad, C. & Gerlich, D. W. Automated microscopy for high-content RNAi screening. J. Cell Biol. 188, 453–461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhao, L. et al. Analysis of nonadherent apoptotic cells by a quantum dots probe in a microfluidic device for drug screening. Anal. Chem. 81, 7075–7080 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Malo, N., Hanley, J. A., Cerquozzi, S., Pelletier, J. & Nadon, R. Statistical practice in high-throughput screening data analysis. Nature Biotech. 24, 167–175 (2006).

    Article  CAS  Google Scholar 

  128. Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol. 6, 1221–1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nature Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Juhasz, G. & Neufeld, T. P. Autophagy: a forty-year search for a missing membrane source. PLoS Biol. 4, e36 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lum, J. J., DeBerardinis, R. J. & Thompson, C. B. Autophagy in metazoans: cell survival in the land of plenty. Nature Rev. Mol. Cell Biol. 6, 439–448 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.K. is supported by the Ligue Nationale contre le Cancer (Equipes labellisée), the Agence Nationale pour la Recherche (ANR), the European Commission (Active p53, Apo-Sys, ChemoRes, ApopTrain and ArtForce), the Fondation pour la Recherche Médicale (FRM), the Institut National du Cancer (INCa), Cancéropôle Ile-de-France and the AXA Chair for Longevity Research. J.Y. is supported by a US National Institutes of Health Director's Pioneer Award, grants from the National Institute of Aging (USA) and the National Cancer Institute (USA). We are indebted to S. Shen for providing fluorescence microscopy images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junying Yuan or Guido Kroemer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information Table S1

Recent successful high-throughput cell-based assays for the detection of cell death/survival-related variables (PDF 435 kb)

Related links

Related links

FURTHER INFORMATION

Author's homepage

Glossary

Apoptotic bodies

Membrane-surrounded vesicles that are shed from dying cells during the late stages of apoptosis, and that may include portions of the nucleus and/or seemingly normal organelles.

Autophagic cell death

For a long time, this term has erroneously been used to indicate cell death that manifests with autophagic vacuolization; thus implying that cell death is mediated by rather than accompanied by autophagy.

Caspases

Cysteine proteases that cleave their substrate after an aspartic acid residue. Caspases have a critical role in both the initiation (caspase 2, caspase 8, caspase 9 and caspase10) and execution (caspase 3, caspase 6 and caspase 7) of apoptosis.

Necroptosis

A regulated form of necrosis that requires the catalytic activity of receptor-interacting protein kinase 1 (RIPK1) and RIPK3.

Anoikis

A particular form of apoptosis that is triggered by the detachment of cells from the extracellular matrix.

Entosis

A recently discovered and debated cell death mode in which one cell engulfs one of its live neighbours, which may then die within the phagosome.

Pyroptosis

A pyrogenic cell death modality that is accompanied by the activation of caspase 1 and the secretion of the pro-inflammatory cytokine interleukin-1β. Pyroptosis can manifest with features of apoptosis or necrosis.

Parthanatos

Caspase-independent cell death induced by poly(ADP-ribose) polymerase 1 and mediated by apoptosis-inducing factor.

Autoschizis

A cell death modality that is initiated in certain cancer cells by combinatorial treatment with vitamins C and K3, and leads to the self-excision of cytoplasmic portions.

Intrinsic apoptosis

Intracellular stress is sensed by mitochondria, which undergo mitochondrial membrane permeabilization and hence activate caspase-dependent and caspase-independent cell death executioner mechanisms.

Extrinsic apoptosis

Apoptosis can be initiated by extracellular molecules that bind to 'death' receptors (for example, FAS), in turn activating the caspase 8–caspase 3 cascade.

Necrostatin 1

The tryptophan-based molecule 5-(1H-indol-3-ylmethyl)-3-methyl-2-thioxo-4-imidazolidi-none that was first identified as a specific and potent inhibitor of necroptosis.

Micronucleation and multinucleation

The presence of multiple nuclei often derives from mitotic problems — for instance, from chromosomes or chromosomal fragments that have not been evenly distributed at anaphase — or from deficient cytokinesis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kepp, O., Galluzzi, L., Lipinski, M. et al. Cell death assays for drug discovery. Nat Rev Drug Discov 10, 221–237 (2011). https://doi.org/10.1038/nrd3373

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3373

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research