Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New avenues for anti-epileptic drug discovery and development

Key Points

  • Despite the introduction of over 15 third-generation anti-epileptic drugs (AEDs) during the past three decades, current medications cannot control seizures in 20–30% of patients and there remains an absence of epilepsy therapies that prevent or cure the disease.

  • The consequences of the standstill in the development of more efficacious drugs for the treatment of epilepsy are several-fold, including the loss of interest of pharmaceutical companies in developing novel AEDs.

  • However, our understanding of the mechanisms mediating epilepsy development as well as the causes of drug resistance have recently grown substantially, providing opportunities for the discovery and development of more efficacious anti-epileptic and anti-epileptogenic drugs.

  • In this article, we discuss how previous preclinical models and clinic trial designs may have hampered the discovery of improved treatments and suggest a promising potential of new target-driven approaches, comparative preclinical proof-of-concept studies and innovative clinical trials designs for the identification of future treatments that target remaining unmet medical need in epilepsy.

  • The successful identification and implementation of the tools for future AED discovery and development will critically depend on new concepts for a joint endeavour between academia and industry.

  • New AEDs with superior efficacy against the relevant standard of care for drug-resistant epilepsy or with the ability to markedly alter the course or the prognosis of epilepsy address major unmet medical needs and offer a promising business opportunity that could revitalize joint AED discovery and development efforts between academia and the pharmaceutical industry.

Abstract

Despite the introduction of over 15 third-generation anti-epileptic drugs, current medications fail to control seizures in 20–30% of patients. However, our understanding of the mechanisms mediating the development of epilepsy and the causes of drug resistance has grown substantially over the past decade, providing opportunities for the discovery and development of more efficacious anti-epileptic and anti-epileptogenic drugs. In this Review we discuss how previous preclinical models and clinical trial designs may have hampered the discovery of better treatments. We propose that future anti-epileptic drug development may be improved through a new joint endeavour between academia and the industry, through the identification and application of tools for new target-driven approaches, and through comparative preclinical proof-of-concept studies and innovative clinical trials designs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Novel anti-epileptic or anti-epileptogenic drug targets.
Figure 3: Possible determinants of AED resistance in human and experimental epilepsies.
Figure 4: Roadmap for the discovery and development of medications for drug-resistant epilepsy and for epilepsy prevention or disease modification.

Similar content being viewed by others

References

  1. Schmidt, D. & Sillanpää, M. Evidence-based review on the natural history of the epilepsies. Curr. Opin. Neurol. 25, 159–163 (2012).

    Article  PubMed  Google Scholar 

  2. Berg, A. T. et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51, 676–685 (2010).

    Article  PubMed  Google Scholar 

  3. Tellez-Zenteno, J. F., Patten, S. B., Jette, N., Williams, J. & Wiebe, S. Psychiatric comorbidity in epilepsy: a population-based analysis. Epilepsia 48, 2336–2344 (2007).

    PubMed  Google Scholar 

  4. Löscher, W. & Schmidt, D. Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 52, 657–678 (2011). This is the first review to show that modern AEDs fail to address important unmet treatment needs of patients with epilepsy.

    Article  PubMed  Google Scholar 

  5. Sillanpää, M. & Schmidt, D. Natural history of treated childhood-onset epilepsy: prospective, long-term population-based study. Brain 129, 617–624 (2006). The study identified four clinically important seizure outcome patterns of new-onset epilepsy and the factors that allow their early prediction.

    Article  PubMed  Google Scholar 

  6. Brodie, M. J., Barry, S. J., Bamagous, G. A., Norrie, J. D. & Kwan, P. Patterns of treatment response in newly diagnosed epilepsy. Neurology 78, 1548–1554 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Temkin, N. R. Preventing and treating posttraumatic seizures: the human experience. Epilepsia 50 (Suppl. 2), 10–13 (2009).

    Article  PubMed  Google Scholar 

  8. Schmidt, D. Is antiepileptogenesis a realistic goal in clinical trials? Concerns and new horizons. Epilept. Disord. 14, 105–113 (2012).

    Google Scholar 

  9. Blumenfeld, H. et al. Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia 49, 400–409 (2008). This is the first study to show the anti-epileptogenic activity of an AED in a genetic model of epilepsy.

    Article  CAS  PubMed  Google Scholar 

  10. Russo, E. et al. Comparison of the antiepileptogenic effects of an early long-term treatment with ethosuximide or levetiracetam in a genetic animal model of absence epilepsy. Epilepsia 51, 1560–1569 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Marson, A. G. et al. The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet 369, 1000–1015 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marson, A. G. et al. The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. Lancet 369, 1016–1026 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trinka, E. et al. KOMET: an unblinded, randomised, two parallel-group, stratified trial comparing the effectiveness of levetiracetam with controlled-release carbamazepine and extended-release sodium valproate as monotherapy in patients with newly diagnosed epilepsy. J. Neurol. Neurosurg. Psychiatry 84, 1138–1147 (2013).

    Article  PubMed  Google Scholar 

  14. Brodie, M. J. et al. Enzyme induction with antiepileptic drugs: cause for concern? Epilepsia 54, 11–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Beyenburg, S., Stavem, K. & Schmidt, D. Placebo-corrected efficacy of modern antiepileptic drugs for refractory epilepsy: systematic review and meta-analysis. Epilepsia 51, 7–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. White, H. S., Smith-Yockman, M., Srivastava, A. & Wilcox, K. S. in Models of seizures & epilepsy (eds Pitkänen, A., Schwartzkroin, P. A. & Moshé, S. L.) 539–549 (Elsevier, 2006).

    Book  Google Scholar 

  17. Bialer, M. & White, H. S. Key factors in the discovery and development of new antiepileptic drugs. Nature Rev. Drug Discov. 9, 68–82 (2010).

    Article  CAS  Google Scholar 

  18. Perucca, E., French, J. & Bialer, M. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol. 6, 793–804 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Putnam, T. J. & Merritt, H. H. Experimental determination of the anticonvulsant properties of some phenyl derivatives. Science 85, 525–526 (1937).

    Article  CAS  PubMed  Google Scholar 

  20. Toman, J. E. P., Swinyard, E. A. & Goodman, L. S. Properties of maximal seizures and their alteration by anticonvulsant drugs and other agents. J. Neurophysiol. 9, 231–239 (1946).

    Article  CAS  PubMed  Google Scholar 

  21. Löscher, W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20, 359–368 (2011).

    Article  PubMed  Google Scholar 

  22. Everett, G. M. & Richards, R. K. Comparative anticonvulsive action of 3,5,5-trimethyloxazolidine-2,4-dione (Tridione), dilantin and phenobarbital. J. Pharmacol. Exp. Ther. 81, 402–407 (1944).

    CAS  Google Scholar 

  23. Swinyard, E. A. Laboratory assay of clinically effective antiepileptic drugs. J. Am. Pharm. Assoc. 38, 201–204 (1949).

    Article  CAS  Google Scholar 

  24. Swinyard, E. A., Brown, W. C. & Goodman, L. S. Comparative assay of antiepileptic drugs in mice and rats. J. Pharmacol. Exp. Ther. 106, 319–330 (1952).

    CAS  PubMed  Google Scholar 

  25. Barton, M. E., Klein, B. D., Wolf, H. H. & White, H. S. Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res. 47, 217–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Cossart, R., Bernard, C. & Ben-Ari, Y. Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends Neurosci. 28, 108–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Perucca, E. What clinical trial designs have been used to test antiepileptic drugs and do we need to change them? Epilept. Disord. 14, 124–131 (2012).

    Google Scholar 

  28. Friedman, D. & French, J. A. Clinical trials for therapeutic assessment of antiepileptic drugs in the 21st century: obstacles and solutions. Lancet Neurol. 11, 827–834 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Krall, R. L., Penry, J. K., Kupferberg, H. J. & Swinyard, E. A. Antiepileptic drug development: I. History and a program for progress. Epilepsia 19, 393–408 (1978).

    Article  CAS  PubMed  Google Scholar 

  30. Krall, R. L., Penry, J. K., White, B. G., Kupferberg, H. J. & Swinyard, E. A. Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 19, 409–428 (1978).

    Article  CAS  PubMed  Google Scholar 

  31. Klitgaard, H. & Verdru, P. Levetiracetam — the first SV2A ligand for the treatment of epilepsy. Expert Opin. Drug Discov. 2, 1537–1545 (2008).

    Article  Google Scholar 

  32. Srivastava, A. K. & White, H. S. Carbamazepine, but not valproate, displays pharmacoresistance in lamotrigine-resistant amygdala kindled rats. Epilepsy Res. 104, 26–34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mattson, R. H., Cramer, J. A. & Collins, J. F. A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic- clonic seizures in adults. The Department of Veterans Affairs Epilepsy Cooperative Study No. 264 Group. N. Engl. J. Med. 327, 765–771 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Privitera, M. D. et al. Topiramate, carbamazepine and valproate monotherapy: double-blind comparison in newly diagnosed epilepsy. Acta Neurol. Scand. 107, 165–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Semah, F. et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51, 1256–1262 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Wheless, J. W., Clarke, D. F., Arzimanoglou, A. & Carpenter, D. Treatment of pediatric epilepsy: European expert opinion, 2007. Epilept. Disord. 9, 353–412 (2007).

    Google Scholar 

  37. Halford, J. J. et al. A randomized, double-blind, placebo-controlled study of the efficacy, safety, and tolerability of adjunctive carisbamate treatment in patients with partial-onset seizures. Epilepsia 52, 816–825 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Baulac, M., Leon, T., O'Brien, T. J., Whalen, E. & Barrett, J. A comparison of pregabalin, lamotrigine, and placebo as adjunctive therapy in patients with refractory partial-onset seizures. Epilepsy Res. 91, 10–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Ryvlin, P., Cucherat, M. & Rheims, S. Risk of sudden unexpected death in epilepsy in patients given adjunctive antiepileptic treatment for refractory seizures: a meta-analysis of placebo-controlled randomised trials. Lancet Neurol. 10, 961–968 (2011).

    Article  PubMed  Google Scholar 

  40. Schmidt, D., Beyenburg, S., D'Souza, J. & Stavem, K. Clinical features associated with placebo response in refractory focal epilepsy. Epilepsy Behav. 27, 393–398 (2013).

    Article  PubMed  Google Scholar 

  41. Enck, P., Bingel, U., Schedlowski, M. & Rief, W. The placebo response in medicine: minimize, maximize or personalize? Nature Rev. Drug Discov. 12, 191–204 (2013).

    Article  CAS  Google Scholar 

  42. Sillanpää, M. & Schmidt, D. Early seizure frequency and aetiology predict long-term medical outcome in childhood-onset epilepsy. Brain 132, 989–998 (2009).

    Article  PubMed  Google Scholar 

  43. Schiller, Y. & Najjar, Y. Quantifying the response to antiepileptic drugs: effect of past treatment history. Neurology 70, 54–65 (2008).

    Article  PubMed  Google Scholar 

  44. Go, C. Y. et al. Evidence-based guideline update: medical treatment of infantile spasms. Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 78, 1974–1980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Plosker, G. L. Stiripentol: in severe myoclonic epilepsy of infancy (dravet syndrome). CNS Drugs 26, 993–1001 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Glauser, T. et al. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia 54, 551–563 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Löscher, W. & Brandt, C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol. Rev. 62, 668–700 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pitkänen, A. & Lukasiuk, K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 10, 173–186 (2011).

    Article  PubMed  Google Scholar 

  49. Eastman, C. L. et al. Antiepileptic and antiepileptogenic performance of carisbamate after head injury in the rat: blind and randomized studies. J. Pharmacol. Exp. Ther. 336, 779–790 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Russo, E. et al. mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacology 69, 25–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Sloviter, R. S. & Bumanglag, A. V. Defining “epileptogenesis” and identifying “antiepileptogenic targets” in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology 69, 3–15 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rogawski, M. A. & Löscher, W. The neurobiology of antiepileptic drugs. Nature Rev. Neurosci. 5, 553–564 (2004).

    Article  CAS  Google Scholar 

  53. Löscher, W. & Schmidt, D. Epilepsy: perampanel — new promise for refractory epilepsy? Nature Rev. Neurol. 8, 661–662 (2012).

    Article  Google Scholar 

  54. Brodie, M. et al. Antiepileptic drug therapy: does mechanism of action matter? Epilepsy Behav. 21, 490 (2011).

    Article  PubMed  Google Scholar 

  55. Perucca, E. The pharmacology of new antiepileptic drugs: does a novel mechanism of action really matter? CNS Drugs 25, 907–912 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Schmidt, D. Antiepileptic drug discovery: does mechanism of action matter? Epilepsy Behav. 21, 342–343 (2011).

    Article  PubMed  Google Scholar 

  57. Loeb, J. A. Identifying targets for preventing epilepsy using systems biology. Neurosci. Lett. 497, 205–212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Inoki, K., Corradetti, M. N. & Guan, K. L. Dysregulation of the TSC–mTOR pathway in human disease. Nature Genet. 37, 19–24 (2005). This study describes the emerging evidence for a functional relationship between the mTOR signalling pathway and several genetic diseases.

    Article  CAS  PubMed  Google Scholar 

  59. Vezzani, A. Before epilepsy unfolds: finding the epileptogenesis switch. Nature Med. 18, 1626–1627 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Ryther, R. C. & Wong, M. Mammalian target of rapamycin (mTOR) inhibition: potential for antiseizure, antiepileptogenic, and epileptostatic therapy. Curr. Neurol. Neurosci. Rep. 12, 410–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Zeng, L. H., Xu, L., Gutmann, D. H. & Wong, M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol. 63, 444–453 (2008). This study describes the anti-epileptogenic or disease-modifying activity of the mTOR inhibitor rapamycin in a model of tuberous sclerosis, which stimulated clinical trials with this drug.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cohen, I., Navarro, V., Clemenceau, S., Baulac, M. & Miles, R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298, 1418–1421 (2002). This important study identifies a subpopulation of excitatory pyramidal neurons displaying depolarizing GABA responses in the subicular zone of the hippocampus as the likely pacemaker neurons that initiate epileptic discharges.

    Article  CAS  PubMed  Google Scholar 

  63. Löscher, W., Puskarjov, M. & Kaila, K. Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 69, 62–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Dzhala, V. I. et al. NKCC1 transporter facilitates seizures in the developing brain. Nature Med. 11, 1205–1213 (2005). This paper provides experimental evidence that the NKCC1 inhibitor bumetanide could be useful in the treatment of neonatal seizures.

    Article  CAS  PubMed  Google Scholar 

  65. Koyama, R. et al. GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy. Nature Med. 18, 1271–1278 (2012). This paper provides the first experimental evidence that bumetanide exerts an anti-epileptogenic effect: that is, it prevents the development of epilepsy after complex febrile seizures.

    Article  CAS  PubMed  Google Scholar 

  66. Brandt, C., Nozadze, M., Heuchert, N., Rattka, M. & Löscher, W. Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy. J. Neurosci. 30, 8602–8612 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Eftekhari, S. et al. Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy. Epilepsia 54, e9–e12 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Vezzani, A., Balosso, S. & Ravizza, T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav. Immun. 22, 797–803 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Vezzani, A., French, J., Bartfai, T. & Baram, T. Z. The role of inflammation in epilepsy. Nature Rev. Neurol. 7, 31–40 (2011).

    Article  CAS  Google Scholar 

  70. Vezzani, A., Friedman, A. & Dingledine, R. J. The role of inflammation in epileptogenesis. Neuropharmacology 69, 16–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Vezzani, A. & Baram, T. Z. New roles for interleukin-1 beta in the mechanisms of epilepsy. Epilepsy Curr. 7, 45–50 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rasmussen, T., Olszewski, J. & Lloyd-Smith, D. Focal seizures due to chronic localized encephalitis. Neurology 8, 435–445 (1958).

    Article  CAS  PubMed  Google Scholar 

  73. Vezzani, A., Maroso, M., Balosso, S., Sanchez, M. A. & Bartfai, T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav. Immun. 25, 1281–1289 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Maroso, M. et al. Interleukin-1beta biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 8, 304–315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bialer, M. et al. Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res. 103, 2–30 (2013).

    Article  PubMed  Google Scholar 

  76. Vezzani, A. et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc. Natl Acad. Sci. USA 97, 11534–11539 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vezzani, A. et al. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 43 (Suppl. 5), 30–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Librizzi, L., Noe, F., Vezzani, A., De Curtis, M. & Ravizza, T. Seizure-induced brain-borne inflammation sustains seizure recurrence and blood–brain barrier damage. Ann. Neurol. 72, 82–90 (2012). This paper describes how the human recombinant IL-1βR antagonist anakinra terminates seizures, prevents their recurrence and resolves seizure-associated BBB breakdown in an animal model, supporting the use of specific anti-inflammatory drugs for the treatment of refractory seizures.

    Article  PubMed  Google Scholar 

  79. Maroso, M. et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nature Med. 16, 413–419 (2010). This study indicates that TLR4 and high-mobility group box protein 1 contribute to the generation and perpetuation of epileptic activity and might form novel targets for the treatment of pharmacoresistant seizures.

    Article  CAS  PubMed  Google Scholar 

  80. Fabene, P. F. et al. A role for leukocyte–endothelial adhesion mechanisms in epilepsy. Nature Med. 14, 1377–1383 (2008). This paper proposes a novel target (factors involved in leukocyte–endothelial interactions, such as VLA4) for the prevention and treatment of epilepsy; VLA4 is successfully being targeted in the treatment of multiple sclerosis.

    Article  CAS  PubMed  Google Scholar 

  81. Fabene, P. F., Laudanna, C. & Constantin, G. Leukocyte trafficking mechanisms in epilepsy. Mol. Immunol. 55, 100–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Sotgiu, S., Murrighile, M. R. & Constantin, G. Treatment of refractory epilepsy with natalizumab in a patient with multiple sclerosis. Case report. BMC Neurol. 10, 84 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Friedman, A., Kaufer, D. & Heinemann, U. Blood–brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res. 85, 142–149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shlosberg, D., Benifla, M., Kaufer, D. & Friedman, A. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nature Rev. Neurol. 6, 393–403 (2010).

    Article  CAS  Google Scholar 

  85. Heinemann, U., Kaufer, D. & Friedman, A. Blood–brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia 60, 1251–1257 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Frigerio, F. et al. Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. Epilepsia 53, 1887–1897 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cacheaux, L. P. et al. Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. J. Neurosci. 29, 8927–8935 (2009). This paper identifies the TGFβ pathway as a novel putative epileptogenic signalling cascade and a therapeutic target for the prevention of injury-induced epilepsy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kobow, K. et al. Finding a better drug for epilepsy: antiepileptogenesis targets. Epilepsia 53, 1868–1876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roopra, A., Dingledine, R. & Hsieh, J. Epigenetics and epilepsy. Epilepsia 53 (Suppl. 9), 2–10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McClelland, S. et al. Neuron-restrictive silencer factor-mediated hyperpolarization-activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Ann. Neurol. 70, 454–464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jimenez-Mateos, E. M. et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nature Med. 18, 1087–1094 (2012). This paper describes the upregulation of microRNA-134, a brain-specific, activity-regulated microRNA, in epileptic tissue and shows that silencing of microRNA-134 renders mice refractory to seizures and hippocampal injury caused by status epilepticus.

    Article  CAS  PubMed  Google Scholar 

  92. Kobow, K. & Blumcke, I. The emerging role of DNA methylation in epileptogenesis. Epilepsia 53 (Suppl. 9), 11–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Mazzuferi, M. et al. Nrf2 defense pathway: experimental evidence for its protective role in epilepsy. Ann. Neurol. http://dx.doi.org/10.1002/ana.23940 (2013).

  94. Winden, K. D. et al. A systems level, functional genomics analysis of chronic epilepsy. PLoS ONE 6, e20763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kraft, A. D., Lee, J. M., Johnson, D. A., Kan, Y. W. & Johnson, J. A. Neuronal sensitivity to kainic acid is dependent on the Nrf2-mediated actions of the antioxidant response element. J. Neurochem. 98, 1852–1865 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Scannevin, R. H. et al. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J. Pharmacol. Exp. Ther. 341, 274–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genet. 37, 710–717 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Lukasiuk, K., Dabrowski, M., Adach, A. & Pitkanen, A. Epileptogenesis-related genes revisited. Prog. Brain Res. 158, 223–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Bertram, E. H., Zhang, D. X., Mangan, P., Fountain, N. & Rempe, D. Functional anatomy of limbic epilepsy: a proposal for central synchronization of a diffusely hyperexcitable network. Epilepsy Res. 32, 194–205 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Engel, J. et al. Connectomics and epilepsy. Curr. Opin. Neurol. 26, 186–194 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wiebe, S. & Jette, N. Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nature Rev. Neurol. 8, 669–677 (2012).

    Article  CAS  Google Scholar 

  102. Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nature Chem. Biol. 4, 682–690 (2008).

    Article  CAS  Google Scholar 

  103. Ainsworth, C. Networking for new drugs. Nature Med. 17, 1166–1168 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Margineanu, D. G. Systems biology impact on antiepileptic drug discovery. Epilepsy Res. 98, 104–115 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Löscher, W., Rundfeldt, C. & Hönack, D. Low doses of NMDA receptor antagonists synergistically increase the anticonvulsant effect of the AMPA receptor antagonist NBQX in the kindling model of epilepsy. Eur. J. Neurosci. 5, 1545–1550 (1993).

    Article  PubMed  Google Scholar 

  106. Löscher, W. & Ebert, U. Basic mechanisms of seizure propagation: targets for rational drug design and rational polypharmacy. Epilepsy Res. Suppl. 11, 17–44 (1996).

    PubMed  Google Scholar 

  107. Kwon, Y. S. et al. Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in the immature brain. J. Neuroinflamm. 10, 30 (2013).

    Article  CAS  Google Scholar 

  108. Löscher, W. & Potschka, H. Drug resistance in brain diseases and the role of drug efflux transporters. Nature Rev. Neurosci. 6, 591–602 (2005).

    Article  CAS  Google Scholar 

  109. Löscher, W. & Langer, O. Imaging of P-glycoprotein function and expression to elucidate mechanisms of pharmacoresistance in epilepsy. Curr. Top. Med. Chem. 10, 1785–1791 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Feldmann, M. & Koepp, M. P-glycoprotein imaging in temporal lobe epilepsy: in vivo PET experiments with the Pgp substrate [11C]-verapamil. Epilepsia 53 (Suppl. 6), 60–63 (2012).

    Article  PubMed  Google Scholar 

  111. Feldmann, M. et al. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol. 12, 777–785 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Autry, A. R., Trevathan, E., Van Naarden, B. K. & Yeargin-Allsopp, M. Increased risk of death among children with Lennox–Gastaut syndrome and infantile spasms. J. Child Neurol. 25, 441–447 (2010).

    Article  PubMed  Google Scholar 

  113. Briggs, D. E., Lee, C. M., Spiegel, K. & French, J. A. Reduction of secondarily generalized tonic-clonic (SGTC) seizures with pregabalin. Epilepsy Res. 82, 86–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Schmidt, D. & Löscher, W. Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia 46, 858–877 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Remy, S. & Beck, H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain 129, 18–35 (2006).

    Article  PubMed  Google Scholar 

  116. Schmidt, D. & Löscher, W. New developments in antiepileptic drug resistance: an integrative view. Epilepsy Curr. 9, 47–52 (2009).

    Article  PubMed  Google Scholar 

  117. Potschka, H. Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv. Drug Deliv. Rev. 64, 943–952 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Brandt, C., Bethmann, K., Gastens, A. M. & Löscher, W. The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol. Dis. 24, 202–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Löscher, W., Luna-Tortos, C., Römermann, K. & Fedrowitz, M. Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected. Curr. Pharm. Des. 17, 2808–2828 (2011).

    Article  PubMed  Google Scholar 

  120. Zhang, C., Kwan, P., Zuo, Z. & Baum, L. The transport of antiepileptic drugs by P-glycoprotein. Adv. Drug Deliv. Rev. 64, 930–942 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Löscher, W., Klotz, U., Zimprich, F. & Schmidt, D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 50, 1–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Kaminski, R. M., Matagne, A., Patsalos, P. N. & Klitgaard, H. Benefit of combination therapy in epilepsy: a review of the preclinical evidence with levetiracetam. Epilepsia 50, 387–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Lason, W., Dudra-Jastrzebska, M., Rejdak, K. & Czuczwar, S. J. Basic mechanisms of antiepileptic drugs and their pharmacokinetic/pharmacodynamic interactions: an update. Pharmacol. Rep. 63, 271–292 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Czuczwar, S. J. et al. Pharmacodynamic interactions between antiepileptic drugs: preclinical data based on isobolography. Expert Opin. Drug Metab. Toxicol. 5, 131–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Brodie, M. J. & Sills, G. J. Combining antiepileptic drugs — rational polytherapy? Seizure 20, 369–375 (2011).

    Article  PubMed  Google Scholar 

  126. Perucca, E. & Meador, K. J. Adverse effects of antiepileptic drugs. Acta Neurol. Scand. Suppl. 181, 30–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Schmidt, D. Drug treatment of epilepsy: options and limitations. Epilepsy Behav. 15, 56–65 (2009).

    Article  PubMed  Google Scholar 

  128. Meldrum, B. Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs. Epilepsy Res. 50, 33–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Löscher, W. & Hönack, D. Responses to NMDA receptor antagonists altered by epileptogenesis. Trends Pharmacol. Sci. 12, 52 (1991).

    Article  PubMed  Google Scholar 

  130. Löscher, W. & Schmidt, D. Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? Epilepsy Res. 17, 95–134 (1994).

    Article  PubMed  Google Scholar 

  131. Klitgaard, H., Matagne, A. & Lamberty, Y. Use of epileptic animals for adverse effect testing. Epilepsy Res. 50, 55–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Bowden, C. L. & Singh, V. Lamotrigine (Lamictal IR) for the treatment of bipolar disorder. Expert Opin. Pharmacother. 13, 2565–2571 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Mula, M., Kanner, A. M., Schmitz, B. & Schachter, S. Antiepileptic drugs and suicidality: an expert consensus statement from the Task Force on Therapeutic Strategies of the ILAE Commission on Neuropsychobiology. Epilepsia 54, 199–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Rogawski, M. A. & Löscher, W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nature Med. 10, 685–692 (2004). This paper describes a concept for explaining the therapeutic effects of AEDs in neuropathic pain, bipolar disorders, migraine and other non-epileptic diseases.

    Article  CAS  PubMed  Google Scholar 

  135. Bialer, M. et al. Progress report on new antiepileptic drugs: a summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res. 92, 89–124 (2010).

    Article  PubMed  Google Scholar 

  136. Kanner, A. M. Can neurobiological pathogenic mechanisms of depression facilitate the development of seizure disorders? Lancet Neurol. 11, 1093–1102 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Rocha, L. et al. Dopamine abnormalities in the neocortex of patients with temporal lobe epilepsy. Neurobiol. Dis. 45, 499–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Szot, P. Common factors among Alzheimer's disease, Parkinson's disease, and epilepsy: possible role of the noradrenergic nervous system. Epilepsia 53 (Suppl. 1), 61–66 (2012).

    Article  PubMed  Google Scholar 

  139. Engel, J. Jr. Biomarkers in epilepsy: introduction. Biomark. Med. 5, 537–544 (2011).

    Article  PubMed  Google Scholar 

  140. Simonato, M. et al. Finding a better drug for epilepsy: preclinical screening strategies and experimental trial design. Epilepsia 53, 1860–1867 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Engel, J. Jr., Bragin, A., Staba, R. & Mody, I. High-frequency oscillations: what is normal and what is not? Epilepsia 50, 598–604 (2009).

    Article  PubMed  Google Scholar 

  142. Kobeissy, F. H. et al. Leveraging biomarker platforms and systems biology for rehabilomics and biologics effectiveness research. PM & R 3, S139–S147 (2011).

    Article  Google Scholar 

  143. Hampel, H., Lista, S. & Khachaturian, Z. S. Development of biomarkers to chart all Alzheimer's disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement. 8, 312–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Kola, I. The state of innovation in drug development. Clin. Pharmacol. Ther. 83, 227–230 (2008). This paper describes how innovation in drug development necessitates the availability of robust and objective biomarkers for carrying out early proof-of-concept studies.

    Article  CAS  PubMed  Google Scholar 

  145. Munos, B. Lessons from 60 years of pharmaceutical innovation. Nature Rev. Drug Discov. 8, 959–968 (2009).

    Article  CAS  Google Scholar 

  146. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov. 9, 203–214 (2010). This is an important review on the challenges facing the pharmaceutical industry and how to address them.

    Article  CAS  Google Scholar 

  147. Kwan, P. et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51, 1069–1077 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Löscher, W. & Rundfeldt, C. Kindling as a model of drug-resistant partial epilepsy: selection of phenytoin-resistant and nonresistant rats. J. Pharmacol. Exp. Ther. 258, 483–489 (1991). This is the first paper to demonstrate that it is possible to select pharmacoresistant rats from epilepsy models and to use such animals for studying the mechanisms of resistance to epilepsy.

    PubMed  Google Scholar 

  149. Brandt, C., Volk, H. A. & Löscher, W. Striking differences in individual anticonvulsant response to phenobarbital in rats with spontaneous seizures after status epilepticus. Epilepsia 45, 1488–1497 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Rogawski, M. A. The intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs. Epilepsia 54 (Suppl. 2), 32–39 (2013).

    Google Scholar 

  151. Leber, P. D. Hazards of inference: the active control investigation. Epilepsia 30 (Suppl. 1), S57–S63 (1989).

    Article  PubMed  Google Scholar 

  152. Herman, S. T. Clinical trials for prevention of epileptogenesis. Epilepsy Res. 68, 35–38 (2006).

    Article  PubMed  Google Scholar 

  153. Sloviter, R. S. Progress on the issue of excitotoxic injury modification versus real neuroprotection; implications for post-traumatic epilepsy. Neuropharmacology 61, 1048–1050 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Mani, R., Pollard, J. & Dichter, M. A. Human clinical trials in antiepileptogenesis. Neurosci. Lett. 497, 251–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Goddard, G. V., McIntyre, D. C. & Leech, C. K. A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25, 295–330 (1969).

    Article  CAS  PubMed  Google Scholar 

  156. Ben Ari, Y., Tremblay, E., Ottersen, O. P. & Naquet, R. Evidence suggesting secondary epileptogenic lesion after kainic acid: pre treatment with diazepam reduces distant but not local brain damage. Brain Res. 165, 362–365 (1979).

    Article  CAS  PubMed  Google Scholar 

  157. Vergnes, M. et al. Spontaneous paroxysmal electroclinical patterns in rat: a model of generalized non-convulsive epilepsy. Neurosci. Lett. 33, 97–101 (1982).

    Article  CAS  PubMed  Google Scholar 

  158. Cavalheiro, E. A. et al. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32, 778–782 (1991).

    Article  CAS  PubMed  Google Scholar 

  159. Toman, J. E. P., Fine, E. A., Everett, G. M. & Henrie, L. M. Experimental psychomotor seizure in laboratory animals. Electroencephalogr. Clin. Neurophysiol. 3, 102 (1951).

    Article  Google Scholar 

  160. Löscher, W. in Models of seizures & epilepsy (eds Pitkänen, A., Schwartzkroin, P. A. & Moshé, S. L.) 551–566 (Elsevier, 2006).

    Book  Google Scholar 

  161. Abou-Khalil, B. & Schmidt, D. in Handbook of Clinical Neurology Vol. 108 Part I. I. (eds Stefan, H. & Theodore, W. H.) 723–739 (Elsevier, 2012).

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to A. Vezzani, L. Kramer, E. Perucca and M. Rogawski for their comments and constructive criticisms on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Löscher.

Ethics declarations

Competing interests

H.K. is an employee of UCB Pharma.

R.E.T. is an employee of Janssen Pharmaceuticals R&D.

W.L. and D.S. declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Epilepsy

A chronic brain disorder that is characterized by partial or generalized spontaneous (unprovoked) recurrent epileptic seizures and, often, comorbidities such as anxiety and depression.

Epileptogenesis

The gradual process (also termed latent period) by which epilepsy develops in the normal brain following brain insults or gene mutations.

Anti-epileptic drugs

(AEDs). Also termed anticonvulsant or anti-seizure drugs. Compounds that, when administered systemically in animal models or to patients, inhibit or control seizures that are associated with epilepsy or other conditions.

MES seizure test

(Maximal electroshock seizure test). A model in which a short (0.2-second) transcorneal or transauricular application of a 50 or 60 Hz electrical stimulus in rodents induces generalized tonic–clonic seizures that are mediated by brainstem structures.

Pentylenetetrazole

(PTZ). A chemical convulsant that, when administered systemically to rodents, induces characteristic myoclonic and clonic convulsions that are mediated by forebrain structures.

Amygdala kindling

Repeated administration of an initially subconvulsive electrical stimuli via a depth electrode in the amygdala, which induces seizures that progressively increase in severity and duration; once established, the increased susceptibility to the induction of kindled seizures is a permanent phenomenon.

GAERS rat

(Genetic absence epileptic rat from Strasbourg). A genetic rat model that displays characteristic 6–7 Hz spike-wave electrographic seizures and a pharmacological profile that is consistent with generalized absence epilepsy.

6-Hz psychomotor seizure model

A seizure model in which a prolonged (4-second) transcorneal application of a 6-Hz electrical stimulus in mice induces limbic seizures that are characterized by a stun, vibrissae chomping, forelimb clonus and a Straub tail; these seizures are resistant to phenytoin and some other anti-epileptic drugs.

Non-inferiority trial design

A clinical trial design that determines whether a test compound is inferior to another compound; the lower limit (95% confidence interval) of a test compound's treatment efficacy or effectiveness is to be compared to a preset lower boundary of efficacy or effectiveness relative to the adequate comparator's point estimate of efficacy or effectiveness.

Anti-epileptogenic drugs

Compounds that, when administered systemically in animal models or to patients immediately following a brain insult, prevent or reduce the long-term consequences of the insult after washout, including the development of epilepsy, neurodegeneration and cognitive or behavioural alterations.

Ictogenesis

The complex mechanisms that initiate and maintain a seizure, involving the transition from the interictal (or pre-ictal) to ictal state with abnormal, excessive, hypersynchronous discharges from an aggregate of central nervous system neurons.

Disease-modifying drugs

Compounds that alter the development or progression of epilepsy by affecting the underlying pathophysiology and natural history of the disease, thus altering the severity of epilepsy or the development of pharmacoresistance, neurodegeneration and cognitive or behavioural alterations.

Temporal lobe epilepsy

A common, difficult-to-treat type of epilepsy that is characterized by simple partial or complex partial seizures originating from medial or lateral temporal lobe regions such as the hippocampus or amygdala.

Blood–brain barrier

(BBB). A dynamic interface that separates the brain from the circulatory system and protects the brain from potentially harmful chemicals, while regulating the transport of essential molecules and maintaining a stable environment. It is formed by highly specialized endothelial cells that line brain capillaries and are connected by extensive tight junctions that restrict paracellular penetration of compounds.

Comparator drug

A current standard-of-care drug given at a recommended daily dose for the same setting as the intended use of the test drug with an absolute minimum point estimate for an efficacy or effectiveness of 50%; this prevents the use of well tolerated but inefficacious drugs as comparators.

P-glycoprotein

A well-characterized efflux transporter that transports a variety of substrates across extra- and intracellular membranes, including endothelial cells of the blood–brain barrier, and protects cells from intoxication by potentially harmful lipophilic compounds, thereby restricting the distribution of many therapeutically used drugs.

Active-control trial

A clinical trial design comparing the outcome of an experimental compound to a drug whose efficacy has been established.

Superiority trials

Studies that are designed to detect a difference in the primary outcome (that is, efficacy and/or effectiveness) between the study treatment and the comparator using an intent-to-treat analysis; the limit of a >20% absolute (rather than relative) difference is arbitrary, context-specific, and subject to change with time.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löscher, W., Klitgaard, H., Twyman, R. et al. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 12, 757–776 (2013). https://doi.org/10.1038/nrd4126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing