Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging targets in neuroinflammation-driven chronic pain

Key Points

  • Chronic pain cannot be effectively treated using current drugs such as opioids and non-steroidal anti-inflammatory drugs (NSAIDs).

  • Inflammation is intimately linked to the development of acute pain. Neuroinflammation within the peripheral nervous system and central nervous system is responsible for generating and sustaining the sensitization of nociceptive neurons that leads to chronic pain.

  • Therefore, targeting the processes and molecules that are involved in neuroinflammation could lead to better treatments for chronic pain.

  • Emerging targets include chemokines that mediate interactions between neurons and glial cells, lipid mediators that act on neurons and glia to resolve inflammation, as well as other molecules that modulate neuroinflammation, such as proteases and WNT signalling molecules.

  • Here, we highlight the key role of these targets in the development of chronic pain and discuss the key advantages, potential disadvantages and challenges associated with therapeutically targeting them.

Abstract

Current analgesics predominately modulate pain transduction and transmission in neurons and have limited success in controlling disease progression. Accumulating evidence suggests that neuroinflammation, which is characterized by infiltration of immune cells, activation of glial cells and production of inflammatory mediators in the peripheral and central nervous system, has an important role in the induction and maintenance of chronic pain. This Review focuses on emerging targets — such as chemokines, proteases and the WNT pathway — that promote spinal cord neuroinflammation and chronic pain. It also highlights the anti-inflammatory and pro-resolution lipid mediators that act on immune cells, glial cells and neurons to resolve neuroinflammation, synaptic plasticity and pain. Targeting excessive neuroinflammation could offer new therapeutic opportunities for chronic pain and related neurological and psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inflammation elicits pain via inflammatory mediators and peripheral sensitization.
Figure 2: Neuroinflammation in the spinal cord drives chronic pain via neuron–glia interactions and central sensitization.
Figure 3: Biosynthetic pathways of PRLMs: resolvins and protectin, and the mechanisms of action of protectin D1.
Figure 4: Protectin D1 protects against neuropathic pain and prevents nerve injury-induced spinal LTP and neuroinflammation in mice.

Similar content being viewed by others

References

  1. Johannes, C. B., Le, T. K., Zhou, X., Johnston, J. A. & Dworkin, R. H. The prevalence of chronic pain in United States adults: results of an Internet-based survey. J. Pain 11, 1230–1239 (2010).

    Article  PubMed  Google Scholar 

  2. Stein, C., Millan, M. J. & Herz, A. Unilateral inflammation of the hindpaw in rats as a model of prolonged noxious stimulation: alterations in behavior and nociceptive thresholds. Pharmacol. Biochem. Behav. 31, 455–451 (1988).

    Article  Google Scholar 

  3. Svensson, C. I., Zattoni, M. & Serhan, C. N. Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing. J. Exp. Med. 204, 245–252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Honore, P. et al. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 98, 585–598 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, Q. et al. Peripheral TGF-β1 signaling is a critical event in bone cancer-induced hyperalgesia in rodents. J. Neurosci. 33, 19099–19111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Costigan, M., Scholz, J. & Woolf, C. J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bennett, G. J. & Xie, Y. K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87–107 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, S. H. & Chung, J. M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50, 355–363 (1992).

    Article  CAS  Google Scholar 

  10. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gold, M. S., Levine, J. D. & Correa, A. M. Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J. Neurosci. 18, 10345–10355 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aley, K. O. & Levine, J. D. Role of protein kinase A in the maintenance of inflammatory pain. J. Neurosci. 19, 2181–2186 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Woolf, C. J. Evidence for a central component of post-injury pain hypersensitivity. Nature 306, 686–688 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Ossipov, M. H., Dussor, G. O. & Porreca, F. Central modulation of pain. J. Clin. Invest. 120, 3779–3787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52–57 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park, C. K. et al. Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82, 47–54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Hylden, J. L., Nahin, R. L., Traub, R. J. & Dubner, R. Expansion of receptive fields of spinal lamina I projection neurons in rats with unilateral adjuvant-induced inflammation: the contribution of dorsal horn mechanisms. Pain 37, 229–243 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Ji, R. R., Baba, H., Brenner, G. J. & Woolf, C. J. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nature Neurosci. 2, 1114–1119 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, X. J. et al. Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nature Med. 14, 1325–1332 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Karim, F., Wang, C. C. & Gereau, R. W. Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J. Neurosci. 21, 3771–3779 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Christianson, C. A. et al. Spinal TLR4 mediates the transition to a persistent mechanical hypersensitivity after the resolution of inflammation in serum-transferred arthritis. Pain 152, 2881–2891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao, Y. J. & Ji, R. R. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol. Ther. 126, 56–68 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kawasaki, Y., Zhang, L., Cheng, J. K. & Ji, R. R. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α in regulating synaptic and neuronal activity in the superficial spinal cord. J. Neurosci. 28, 5189–5194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rivest, S. Regulation of innate immune responses in the brain. Nature Rev. Immunol. 9, 429–439 (2009).

    Article  CAS  Google Scholar 

  26. Grace, P. M., Hutchinson, M. R., Maier, S. F. & Watkins, L. R. Pathological pain and the neuroimmune interface. Nature Rev. Immunol. 14, 217–231 (2014).

    Article  CAS  Google Scholar 

  27. Kigerl, K. A. et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29, 13435–13444 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Costigan, M. et al. T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J. Neurosci. 29, 14415–14422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Old, E. A. et al. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J. Clin. Invest. 124, 2023–2036 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ellis, A. & Bennett, D. L. Neuroinflammation and the generation of neuropathic pain. Br. J. Anaesth. 111, 26–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Ji, R. R., Berta, T. & Nedergaard, M. Glia and pain: is chronic pain a gliopathy? Pain 154 (Suppl. 1), 10–28 (2013).

    Article  Google Scholar 

  32. Raghavendra, V., Tanga, F. & DeLeo, J. A. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exp. Ther. 306, 624–630 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, J. & De Koninck, Y. Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J. Neurochem. 97, 772–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Katsura, H. et al. Activation of Src-family kinases in spinal microglia contributes to mechanical hypersensitivity after nerve injury. J. Neurosci. 26, 8680–8690 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uceyler, N. et al. Small fibre pathology in patients with fibromyalgia syndrome. Brain 136, 1857–1867 (2013).

    Article  PubMed  Google Scholar 

  36. Shi, Y., Gelman, B. B., Lisinicchia, J. G. & Tang, S. J. Chronic-pain-associated astrocytic reaction in the spinal cord dorsal horn of human immunodeficiency virus-infected patients. J. Neurosci. 32, 10833–10840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xanthos, D. N. & Sandkuhler, J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nature Rev. Neurosci. 15, 43–53 (2014).

    Article  CAS  Google Scholar 

  38. Hathway, G. J., Vega-Avelaira, D., Moss, A., Ingram, R. & Fitzgerald, M. Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain 144, 110–118 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wen, Y. R. et al. Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model. Anesthesiology 107, 312–321 (2007).

    Article  PubMed  Google Scholar 

  40. White, F. A., Bhangoo, S. K. & Miller, R. J. Chemokines: integrators of pain and inflammation. Nature Rev. Drug Discov. 4, 834–844 (2005).

    Article  CAS  Google Scholar 

  41. Zhang, J. et al. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J. Neurosci. 27, 12396–12406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Echeverry, S., Shi, X. Q., Rivest, S. & Zhang, J. Peripheral nerve injury alters blood-spinal cord barrier functional and molecular integrity through a selective inflammatory pathway. J. Neurosci. 31, 10819–10828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beggs, S., Liu, X. J., Kwan, C. & Salter, M. W. Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier. Mol. Pain 6, 74 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. McMahon, S. B. & Malcangio, M. Current challenges in glia-pain biology. Neuron 64, 46–54 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Schafers, M., Geis, C., Svensson, C. I., Luo, Z. D. & Sommer, C. Selective increase of tumour necrosis factor-alpha in injured and spared myelinated primary afferents after chronic constrictive injury of rat sciatic nerve. Eur. J. Neurosci. 17, 791–804 (2003).

    Article  PubMed  Google Scholar 

  47. Xu, J. T., Xin, W. J., Zang, Y., Wu, C. Y. & Liu, X. G. The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain 123, 306–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Berta, T. et al. Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-α secretion. J. Clin. Invest. 124, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, R. X. et al. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain 118, 125–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Clark, A. K. et al. P2X7-dependent release of interleukin-1β and nociception in the spinal cord following lipopolysaccharide. J. Neurosci. 30, 573–582 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miyoshi, K., Obata, K., Kondo, T., Okamura, H. & Noguchi, K. Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J. Neurosci. 28, 12775–12787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, M. L. et al. Role of P2X7 receptor-mediated IL-18/IL-18R signaling in morphine tolerance: multiple glial-neuronal dialogues in the rat spinal cord. J. Pain 13, 945–958 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Imai, S. et al. Epigenetic transcriptional activation of monocyte chemotactic protein 3 contributes to long-lasting neuropathic pain. Brain 136, 828–843 (2013).

    Article  PubMed  Google Scholar 

  54. Gao, Y. J. et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J. Neurosci. 29, 4096–4108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, Z. J., Cao, D. L., Zhang, X., Ji, R. R. & Gao, Y. J. Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain 154, 2185–2197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lever, I. J. et al. Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. J. Neurosci. 21, 4469–4477 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Ferrini, F. et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl homeostasis. Nature Neurosci. 16, 183–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Madiai, F. et al. Upregulation of FGF-2 in reactive spinal cord astrocytes following unilateral lumbar spinal nerve ligation. Exp. Brain Res. 148, 366–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Milligan, E. D. et al. Intrathecal polymer-based interleukin-10 gene delivery for neuropathic pain. Neuron Glia Biol. 2, 293–308 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sloane, E. M. et al. Long-term control of neuropathic pain in a non-viral gene therapy paradigm. Gene Ther. 16, 470–475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Echeverry, S., Shi, X. Q. & Zhang, J. Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain 135, 37–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Tsuda, M. et al. JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain 134, 1127–1139 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang, H., Nei, H. & Dougherty, P. M. A p38 mitogen-activated protein kinase-dependent mechanism of disinhibition in spinal synaptic transmission induced by tumor necrosis factor-α. J. Neurosci. 30, 12844–12855 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garraway, S. M., Petruska, J. C. & Mendell, L. M. BDNF sensitizes the response of lamina II neurons to high threshold primary afferent inputs. Eur. J. Neurosci. 18, 2467–2476 (2003).

    Article  PubMed  Google Scholar 

  66. Park, C. K. et al. Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J. Neurosci. 31, 15072–15085 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zeilhofer, H. U., Benke, D. & Yevenes, G. E. Chronic pain states: pharmacological strategies to restore diminished inhibitory spinal pain control. Annu. Rev. Pharmacol. Toxicol. 52, 111–133 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Lu, Y. et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J. Clin. Invest. 123, 4050–4062 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guo, W. et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J. Neurosci. 27, 6006–6018 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Calvo, M. et al. Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury. J. Neurosci. 30, 5437–5450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oh, S. B. et al. Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J. Neurosci. 21, 5027–5035 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Verge, G. M. et al. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur. J. Neurosci. 20, 1150–1160 (2004).

    Article  PubMed  Google Scholar 

  73. Clark, A. K. et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl Acad. Sci. USA 104, 10655–10660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhuang, Z. Y. et al. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav. Immun. 21, 642–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Milligan, E. D. et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur. J. Neurosci. 20, 2294–2302 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Dorgham, K. et al. An engineered CX3CR1 antagonist endowed with anti-inflammatory activity. J. Leukoc. Biol. 86, 903–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Abbadie, C. et al. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc. Natl Acad. Sci. USA 100, 7947–7952 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thacker, M. A. et al. CCL2 is a key mediator of microglia activation in neuropathic pain states. Eur. J. Pain 13, 263–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Guo, W., Wang, H., Zou, S., Dubner, R. & Ren, K. Chemokine signaling involving chemokine (C-C motif) ligand 2 plays a role in descending pain facilitation. Neurosci. Bull. 28, 193–207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Z. J. et al. Chemokine CCL2 and its receptor CCR2 in the medullary dorsal horn are involved in trigeminal neuropathic pain. J. Neuroinflamm. 9, 136 (2012).

    CAS  Google Scholar 

  81. Menetski, J. et al. Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses. Neuroscience 149, 706–714 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Omari, K. M., John, G., Lango, R. & Raine, C. S. Role for CXCR2 and CXCL1 on glia in multiple sclerosis. Glia 53, 24–31 (2006).

    Article  PubMed  Google Scholar 

  83. Li, H., Xie, W., Strong, J. A. & Zhang, J. M. Systemic antiinflammatory corticosteroid reduces mechanical pain behavior, sympathetic sprouting, and elevation of proinflammatory cytokines in a rat model of neuropathic pain. Anesthesiology 107, 469–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Pineau, I., Sun, L., Bastien, D. & Lacroix, S. Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav. Immun. 24, 540–553 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Zhao, P., Waxman, S. G. & Hains, B. C. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J. Neurosci. 27, 8893–8902 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Biber, K. et al. Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J. 30, 1864–1873 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tsuda, M. et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424, 778–783 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Bhangoo, S. K. et al. CXCR4 chemokine receptor signaling mediates pain hypersensitivity in association with antiretroviral toxic neuropathy. Brain Behav. Immun. 21, 581–591 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kiguchi, N., Maeda, T., Kobayashi, Y., Fukazawa, Y. & Kishioka, S. Macrophage inflammatory protein-1α mediates the development of neuropathic pain following peripheral nerve injury through interleukin-1β up-regulation. Pain 149, 305–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Matsushita, K. et al. Chemokine (C-C motif) receptor 5 is an important pathological regulator in the development and maintenance of neuropathic pain. Anesthesiology 120, 1491–1503 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Weitzenfeld, P. & Ben-Baruch, A. The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett. http://dx.doi.org/10.1016/j.canlet.2013.10.006 (2013).

  92. White, F. A. et al. Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc. Natl Acad. Sci. USA 102, 14092–14097 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kalliomaki, J. et al. A randomized, double-blind, placebo-controlled trial of a chemokine receptor 2 (CCR2) antagonist in posttraumatic neuralgia. Pain 154, 761–767 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Padi, S. S. et al. Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation. Pain 153, 95–106 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Virtala, R., Ekman, A. K., Jansson, L., Westin, U. & Cardell, L. O. Airway inflammation evaluated in a human nasal lipopolysaccharide challenge model by investigating the effect of a CXCR2 inhibitor. Clin. Exp. Allergy 42, 590–596 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Lazaar, A. L. et al. SB-656933, a novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans. Br. J. Clin. Pharmacol. 72, 282–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Holz, O. et al. SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur. Respir. J. 35, 564–570 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Xu, Z. Z. et al. Neuroprotectin/protectin D1 protects neuropathic pain in mice after nerve trauma. Ann. Neurol. 74, 490–495 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu, Z. Z. et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nature Med. 16, 592–597 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Connor, K. M. et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nature Med. 13, 868–873 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Ji, R. R., Xu, Z. Z., Strichartz, G. & Serhan, C. N. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 34, 599–609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Serhan, C. N. et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025–1037 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hong, S., Gronert, K., Devchand, P. R., Moussignac, R. L. & Serhan, C. N. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J. Biol. Chem. 278, 14677–14687 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Arita, M. et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc. Natl Acad. Sci. USA 102, 7671–7676 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Seki, H. et al. The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. J. Immunol. 184, 836–843 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Duffield, J. S. et al. Resolvin D series and protectin D1 mitigate acute kidney injury. J. Immunol. 177, 5902–5911 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Mukherjee, P. K., Marcheselli, V. L., Serhan, C. N. & Bazan, N. G. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl Acad. Sci. USA 101, 8491–8496 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lukiw, W. J. et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest. 115, 2774–2783 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bazan, N. G. Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer's disease. J. Lipid Res. 50, S400–S405 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bazan, N. G., Calandria, J. M. & Serhan, C. N. Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J. Lipid Res. 51, 2018–2031 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Palacios-Pelaez, R., Lukiw, W. J. & Bazan, N. G. Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative disease. Mol. Neurobiol. 41, 367–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Serhan, C. N. et al. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J. Immunol. 176, 1848–1859 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Samad, T. A. et al. Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410, 471–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Arita, M. et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178, 3912–3917 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Krishnamoorthy, S. et al. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl Acad. Sci. USA 107, 1660–1665 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kehlet, H., Jensen, T. S. & Woolf, C. J. Persistent postsurgical pain: risk factors and prevention. Lancet 367, 1618–1625 (2006).

    Article  PubMed  Google Scholar 

  117. Bian, D., Nichols, M. L., Ossipov, M. H., Lai, J. & Porreca, F. Characterization of the antiallodynic efficacy of morphine in a model of neuropathic pain in rats. Neuroreport 6, 1981–1984 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Kohno, T. et al. Peripheral axonal injury results in reduced μ opioid receptor pre- and post-synaptic action in the spinal cord. Pain 117, 77–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Boucher, T. J. et al. Potent analgesic effects of GDNF in neuropathic pain states. Science 290, 124–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Gardell, L. R. et al. Multiple actions of systemic artemin in experimental neuropathy. Nature Med. 9, 1383–1389 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Xu, Z. Z., Berta, T. & Ji, R. R. Resolvin E1 inhibits neuropathic pain and spinal cord microglial activation following peripheral nerve injury. J. Neuroimmune Pharmacol. 8, 37–41 (2013).

    Article  PubMed  Google Scholar 

  122. Tsujino, H. et al. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: a novel neuronal marker of nerve injury. Mol. Cell Neurosci. 15, 170–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Park, C. K. et al. Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1. J. Neurosci. 31, 18433–18438 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lima-Garcia, J. F. et al. The precursor of resolvin D series and aspirin-triggered resolvin D1 display anti-hyperalgesic properties in adjuvant-induced arthritis in rats. Br. J. Pharmacol. 164, 278–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Patapoutian, A., Tate, S. & Woolf, C. J. Transient receptor potential channels: targeting pain at the source. Nature Rev. Drug Discov. 8, 55–68 (2009).

    Article  CAS  Google Scholar 

  126. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Chen, Y. et al. Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion. Pain 154, 1295–1304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Patwardhan, A. M. et al. Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. J. Clin. Invest. 120, 1617–1626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sisignano, M., Bennett, D. L., Geisslinger, G. & Scholich, K. TRP-channels as key integrators of lipid pathways in nociceptive neurons. Prog. Lipid Res. 53, 93–107 (2013).

    Article  PubMed  CAS  Google Scholar 

  130. Bang, S. et al. Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociception. Br. J. Pharmacol. 161, 707–720 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Serhan, C. N. et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 26, 1755–1765 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Finnerup, N. B., Sindrup, S. H. & Jensen, T. S. The evidence for pharmacological treatment of neuropathic pain. Pain 150, 573–581 (2010).

    Article  PubMed  Google Scholar 

  133. Sommer, C. & Birklein, F. Fighting off pain with resolvins. Nature Med. 16, 518–520 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Nikolajsen, L., Ilkjaer, S., Christensen, J. H., Kroner, K. & Jensen, T. S. Randomised trial of epidural bupivacaine and morphine in prevention of stump and phantom pain in lower-limb amputation. Lancet 350, 1353–1357 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Ramsden, C. E. et al. Targeted alteration of dietary n-3 and n-6 fatty acids for the treatment of chronic headaches: a randomized trial. Pain 154, 2441–2451 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Chiang, N., Bermudez, E. A., Ridker, P. M., Hurwitz, S. & Serhan, C. N. Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. Proc. Natl Acad. Sci. USA 101, 15178–15183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Morris, T. et al. Effects of low-dose aspirin on acute inflammatory responses in humans. J. Immunol. 183, 2089–2096 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Kawasaki, Y. et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nature Med. 14, 331–336 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Clark, A. K. & Malcangio, M. Microglial signalling mechanisms: cathepsin S and fractalkine. Exp. Neurol. 234, 283–292 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Guo, S. L. et al. Cystatin C in cerebrospinal fluid is upregulated in elderly patients with chronic osteoarthritis pain and modulated through matrix metalloproteinase 9-specific pathway. Clin. J. Pain 30, 331–339 (2013).

    Article  Google Scholar 

  141. Christianson, C. A. et al. Spinal matrix metalloproteinase 3 mediates inflammatory hyperalgesia via a tumor necrosis factor-dependent mechanism. Neuroscience 200, 199–210 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Zhao, B. Q. et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nature Med. 12, 441–445 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Bissett, D. et al. Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. J. Clin. Oncol. 23, 842–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Miller, K. D. et al. A randomized phase II feasibility trial of BMS-275291 in patients with early stage breast cancer. Clin. Cancer Res. 10, 1971–1975 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Hu, J., Van den Steen, P. E., Sang, Q. X. & Opdenakker, G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nature Rev. Drug Discov. 6, 480–498 (2007).

    Article  CAS  Google Scholar 

  146. Williams, J. M. et al. Evaluation of metalloprotease inhibitors on hypertension and diabetic nephropathy. Am. J. Physiol. Renal Physiol. 300, F983–F998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Clark, A. K., Yip, P. K. & Malcangio, M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J. Neurosci. 29, 6945–6954 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang, Y. K. et al. WNT signaling underlies the pathogenesis of neuropathic pain in rodents. J. Clin. Invest. 123, 2268–2286 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tang, S. J. Synaptic activity-regulated Wnt signaling in synaptic plasticity, glial function and chronic pain. CNS Neurol. Disord. Drug Targets 22 Dec 2013 [epub ahead of print].

  150. Yuan, S., Shi, Y. & Tang, S. J. Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain. J. Neuroimmune. Pharmacol. 7, 904–913 (2012).

    Article  PubMed  Google Scholar 

  151. Shi, Y., Shu, J., Gelman, B. B., Lisinicchia, J. G. & Tang, S. J. Wnt signaling in the pathogenesis of human HIV-associated pain syndromes. J. Neuroimmune. Pharmacol. 8, 956–964 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Chen, J., Park, C. S. & Tang, S. J. Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J. Biol. Chem. 281, 11910–11916 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Watkins, L. R. & Maier, S. F. Glia: a novel drug discovery target for clinical pain. Nature Rev. Drug Discov. 2, 973–985 (2003).

    Article  CAS  Google Scholar 

  154. Woolf, C. J. Overcoming obstacles to developing new analgesics. Nature Med. 16, 1241–1247 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Mogil, J. S. Animal models of pain: progress and challenges. Nature Rev. Neurosci. 10, 283–294 (2009).

    Article  CAS  Google Scholar 

  156. King, T. et al. Unmasking the tonic-aversive state in neuropathic pain. Nature Neurosci. 12, 1364–1366 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Morgan, P. et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov. Today 17, 419–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Chiang, N. et al. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484, 524–528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Morita, M. et al. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell 153, 112–125 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W. & Pardo, C. A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Polgar, E., Gray, S., Riddell, J. S. & Todd, A. J. Lack of evidence for significant neuronal loss in laminae I-III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain 111, 144–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Scholz, J. et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J. Neurosci. 25, 7317–7323 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Vereker, E., O'Donnell, E. & Lynch, M. A. The inhibitory effect of interleukin-1β on long-term potentiation is coupled with increased activity of stress-activated protein kinases. J. Neurosci. 20, 6811–6819 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ren, W. J. et al. Peripheral nerve injury leads to working memory deficits and dysfunction of the hippocampus by upregulation of TNF-α in rodents. Neuropsychopharmacology 36, 979–992 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liu, Y. L. et al. Tumor necrosis factor-α induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn in rats with nerve injury: the role of NF-kappa B, JNK and p38 MAPK. Neuropharmacology 52, 708–715 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Choi, J. I., Svensson, C. I., Koehrn, F. J., Bhuskute, A. & Sorkin, L. S. Peripheral inflammation induces tumor necrosis factor dependent AMPA receptor trafficking and Akt phosphorylation in spinal cord in addition to pain behavior. Pain 149, 243–253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hess, A. et al. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc. Natl Acad. Sci. USA 108, 3731–3736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Calvo, M. & Bennett, D. L. The mechanisms of microgliosis and pain following peripheral nerve injury. Exp. Neurol. 234, 271–282 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Garrison, C. J., Dougherty, P. M., Kajander, K. C. & Carlton, S. M. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res. 565, 1–7 (1991).

    Article  CAS  PubMed  Google Scholar 

  170. Raghavendra, V., Tanga, F. Y. & DeLeo, J. A. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur. J. Neurosci. 20, 467–473 (2004).

    Article  PubMed  Google Scholar 

  171. Colburn, R. W. et al. Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J. Neuroimmunol. 79, 163–175 (1997).

    Article  CAS  PubMed  Google Scholar 

  172. Moss, A. et al. Spinal microglia and neuropathic pain in young rats. Pain 128, 215–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Ji, R. R., Gereau, R. W., Malcangio, M. & Strichartz, G. R. MAP kinase and pain. Brain Res. Rev. 60, 135–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  174. Zhuang, Z. Y., Gerner, P., Woolf, C. J. & Ji, R. R. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 114, 149–159 (2005).

    Article  PubMed  Google Scholar 

  175. Zhuang, Z. Y. et al. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J. Neurosci. 26, 3551–3560 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Obata, K. et al. Roles of extracellular signal-regulated protein kinases 5 in spinal microglia and primary sensory neurons for neuropathic pain. J. Neurochem. 102, 1569–1584 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Tozaki-Saitoh, H. et al. P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J. Neurosci. 28, 4949–4956 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kobayashi, K. et al. P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J. Neurosci. 28, 2892–2902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kobayashi, K., Yamanaka, H., Yanamoto, F., Okubo, M. & Noguchi, K. Multiple P2Y subtypes in spinal microglia are involved in neuropathic pain after peripheral nerve injury. Glia 60, 1529–1539 (2012).

    Article  PubMed  Google Scholar 

  180. Sorge, R. E. et al. Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nature Med. 18, 595–599 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Cotrina, M. L., Lin, J. H., Lopez-Garcia, J. C., Naus, C. C. & Nedergaard, M. ATP-mediated glia signaling. J. Neurosci. 20, 2835–2844 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chen, M. J. et al. Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia 60, 1660–1670 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Zhang, F. et al. Selective activation of microglia in spinal cord but not higher cortical regions following nerve injury in adult mouse. Mol. Pain 4, 15 (2008).

    PubMed  PubMed Central  Google Scholar 

  184. Sung, B., Lim, G. & Mao, J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J. Neurosci. 23, 2899–2910 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tsuda, M., Inoue, K. & Salter, M. W. Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci. 28, 101–107 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by US National Institutes of Health (NIH) grants R01DE17794 (The National Institute of Dental and Craniofacial Research; NIDCR) and R01DE22743 (NIDCR) to R.-R.J., R21NS082985 (The National Institute of Neurological Disorders and Stroke; NINDS) to Z.-Z.X., Transformative R01NS67686 (NINDS) to R.-R.J and Charles N. Serhan, and the National Natural Science Foundation of China grant (NSFC 31171062, 31371121) to Y.J.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Rong Ji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Mechanical allodynia

A painful response to a normally innocuous mechanical stimulation. It is also regarded as a cardinal feature of chronic pain.

Trigeminal ganglia

The location of cell bodies of primary sensory neurons, including nociceptive and touch neurons that innervate the orofacial area.

Trigeminal nucleus

A collection of cell bodies located in the brainstem that receive sensory inputs from the orofacial area.

Inflammation

A biological response of vascular tissue to harmful stimuli, such as tissue injury, infection or irritants. The classical signs of acute inflammation — which is protective and promotes healing — are pain, heat, redness, swelling and loss of function.

Primary afferent neurons

Sensory neurons that carry sensory information from the periphery to the central nervous system.

Chemokines

A family of about 50 small, secreted cytokines that act on G protein-coupled receptors. They can be classified into four subfamilies: the C family, the CC family, the CXC family and the CX3C family.

Primary sensory neurons

Neurons with cell bodies located in the dorsal root and trigeminal ganglia. Their peripheral terminals innervate skin and muscle and their central axons terminate in the spinal cord and trigeminal nucleus.

Mitogen-activated protein kinases

(MAPKs). The MAPK family consists of extracellular signal-regulated kinase 1 (ERK1), ERK2, p38 MAPK, JUN N-terminal kinase (JNK) and ERK5, and is activated by phosphorylation. MAPKs have important roles in intracellular signalling in neurons and glia and in the genesis of pain hypersensitivity.

Neuroinflammation

Local inflammation in the peripheral and central nervous system, which is more efficient at driving chronic pain than systemic inflammation.

Glial mediators

Molecules that are produced and secreted by glial cells, including small molecules (for example, glutamate, ATP and nitric oxide) and large molecules (for example, pro-inflammatory cytokines and chemokines, as well as growth factors). They can modulate nociceptor excitability and nociceptive synaptic transmission.

Glial activation

The process of transcriptional and/or translational changes (gene expression), post-translational changes (phosphorylation), morphological changes and the proliferation of glial cells in the peripheral nervous system (PNS) and central nervous system (CNS), which is implicated in the development and maintenance of chronic pain. Glial cells have different activation states.

Neurogenic inflammation

Inflammation that is triggered by the activation of primary afferent neurons and the subsequent local release of inflammatory mediators, such as substance P and calcitonin gene-related peptide. Neurogenic inflammation is responsible for the pathogenesis of migraine.

Dorsal root ganglion

(DRG). A sensory ganglion of the dorsal root that lies alongside the spinal cord. It is the location of cell bodies of primary sensory neurons, including nociceptive and touch neurons that innervate differ parts of the body.

C-fibres

Small-diameter unmyelinated afferent nerve fibres that have low conduction velocity and carry sensory pain information from the periphery to the central nervous system. They can be activated by capsaicin, an ingredient that gives rise to the hot sensation caused by eating chilli peppers.

Anion reversal potential

The membrane potential at which there is no net flow of a particular anion ion (Cl) from one side of the membrane to the other. After nerve injury, a decrease in the Cl anion reversal potential (a shift to less negative potentials) reduces glycine and/or GABAA (γ-aminobutyric acid type A) receptor-mediated hyperpolarization, leading to the genesis of neuropathic pain.

Gate control mechanism

A mechanism proposed by Ronald Melzack and Patrick Wall during the early 1960s, which suggests that the spinal cord dorsal horn contains a neural circuit that undergoes excitatory and inhibitory modulation that serves as a gate that either allows or blocks the transmission of pain signals to the brain.

Spinal nerve ligation

A form of nerve injury that is used to induce long-lasting neuropathic pain in rodents.

Satellite cells

Glial cells that surround neurons in the dorsal root and trigeminal ganglia. Like astrocytes, these cells express glial fibrillary acidic protein (GFAP) and contribute to the pathogenesis of pain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, RR., Xu, ZZ. & Gao, YJ. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 13, 533–548 (2014). https://doi.org/10.1038/nrd4334

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4334

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research