Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Apoptosis-based therapies

Key Points

  • Physiological cell death, or apoptosis, has an important role in several normal processes, ranging from fetal development to ageing, and defects in the physiological pathways for apoptosis have a role in many diseases. Too little or too much cell death contributes to about half of the main medical illnesses for which adequate therapy or prevention is lacking. Consequently, great interest has emerged in devising therapeutic strategies for modulating the key molecules that make life-or-death decisions in cells.

  • Apoptosis is caused by proteases known as 'caspases' — cysteine aspartyl-specific proteases. Among all the apoptosis-based drug targets, strategies that target caspases are at the forefront for blocking apoptosis in numerous diseases. Proof-of-concept data have been obtained in animal models, using peptidyl inhibitors of caspases that have shown substantial protection in rodent models of stroke.

  • Several caspase activation pathways are known, including: the formation of a death-induced signalling complex (DISC) that contains members of the tumour-necrosis factor (TNF) family of cytokine receptors; the release of cytochrome c from mitochondria; and the injection of apoptosis-inducing proteases, such as granzyme B, into immune cells through perforin channels.

  • Regulatory molecules of caspases, such as apoptosis-activating factor 1 (APAF1), have nucleotide-binding domains. APAF1 also contains a caspase-associated recruitment domain (CARD), which binds specifically to a complementary CARD within the prodomain of procaspase-9. To the extent that selective inhibitors of caspase-9 might be difficult to generate, drugs that attack the nucleotide-binding domain of APAF1 might represent a viable alternative.

  • Inhibitor-of-apoptosis proteins (IAPs) keep caspases in check. Some IAPs are overexpressed in cancers, and are associated with resistance to apoptosis. Among these are survivin and melanoma IAP (MLIAP), which are expressed at low levels in normal adult tissues, but are found at high levels in certain types of tumour. Interest has arisen in strategies for interfering with IAP function, so that caspases can be freed to induce apoptosis of cancer cells. Antisense experiments have also helped to validate certain IAPs as potential drug targets for cancer.

  • BCL2-family proteins regulate the release of cytochrome c and other proteins from mitochondria, with pro-apoptotic BCL2-family proteins promoting, and anti-apoptotic family members suppressing, protein release by affecting the permeability of mitochondrial membranes. Several approaches have been proposed for exploiting BCL2-family proteins for therapeutic gain. Strategies for generating small-molecule inhibitors of members of the BCL2 family, based on functional and structural studies of their dimerization, have been investigated. Compounds have been reported that bind to anti-apoptotic BCL2 or BCL-XL and promote apoptosis of cancer cells.

  • Opportunities exist to indirectly affect apoptosis by modulating inputs into cell-death pathways through protein kinases, protein phosphatases, transcription factors and cell-surface receptors for cytokines, neurotrophins, cardiotrophins and growth factors. Although many signal-transducing proteins ultimately link to apoptosis pathways at some level, there are a few candidate drug discovery targets that directly modulate the expression or function of core death-machinery genes and proteins.

  • Advances in understanding the molecular mechanisms of apoptosis proteins have revealed strategies for potential therapeutic intervention in a wide range of ailments in which cell survival and death are unbalanced. Some of these strategies have progressed to clinical testing in humans, and will undoubtedly teach us much about the prospects for modulating apoptosis as a therapeutic approach.

Abstract

Many of today's medical illnesses can be attributed directly or indirectly to problems with apoptosis — a programmed cell-suicide mechanism. Disorders in which defective regulation of apoptosis contributes to disease pathogenesis or progression can involve either cell accumulation, in which cell eradication or cell turnover is impaired, or cell loss, in which the cell-suicide programme is inappropriately triggered. Identification of the genes and gene products that are responsible for apoptosis, together with emerging information about the mechanisms of action and structures of apoptotic regulatory and effector proteins, has laid a foundation for the discovery of drugs, some of which are now undergoing evaluation in human clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caspase activation pathways.
Figure 2: CARD-carrying proteins with NB domains.
Figure 3: IAP antagonists.
Figure 4: Network of BCL2 proteins.
Figure 5: Inputs into the core cell-death machinery.

Similar content being viewed by others

References

  1. Engelberg-Kulka, H. & Glaser, G. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53, 43–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Reed, J. C. Mechanisms of apoptosis. Am. J. Pathol. 157, 1415–1430 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thornberry, N. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Li, P. et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80, 401–411 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Bergeron, L. et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev. 12, 1304–1314 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Ona, V. O. et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 399, 263–267 (1999).This paper showed that caspase inhibition could slow the progression of a chronic neurodegenerative disease in an animal model, and therefore strengthened the cause-and-effect linkage between caspases and severity or kinetics of neurodegeneration.

    Article  CAS  PubMed  Google Scholar 

  9. Endres, M. et al. Attentuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J. Cereb. Blood Flow Metab. 18, 238–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Holly, T. A. et al. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31, 1709–1715 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Wiessner, C., Sauer, D., Alaimo, D. & Allegrini, P. R. Protective effect of a caspase inhibitor in models for cerebral ischemia in vitro and in vivo. Cell. Mol. Biol. 46, 53–62 (2000). | PubMed |

    CAS  PubMed  Google Scholar 

  12. Rabuffetti, M. et al. Inhibition of caspase-1-like activity by Ac-Tyr-Val-Ala-Asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. J. Neurosci. 20, 4398–4404 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, M. et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288, 335–339 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, D. et al. Potent and selective nonpeptide inhibitors of caspases 3 and 7. J. Med. Chem. 44, 2015–2026 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Nicholson, D. W. From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Reed, J. C. & Tomaselli, K. Drug discovery opportunities from apoptosis research. Curr. Opin. Biotechnol. 11, 586–592 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).The first paper to describe the 'apoptosome' —a holoenzyme complex that maintains caspase-9 in an active conformation — and define its minimal components: APAF1, caspase-9 and cytochrome c.

    Article  CAS  PubMed  Google Scholar 

  19. Qin, H. et al. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399, 549–557 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Saleh, A., Srinivasula, S., Acharya, S., Fishel, R. & Alnemri, E. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274, 17941–17945 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Salvesen, G. S. & Dixit, V. M. Caspase activation: the induced-proximity model. Proc. Natl Acad. Sci. USA 96, 10964–10967 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Chou, J., Matsuo, H., Duan, H. & Wagner, G. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 94, 171–180 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Yeh, W. et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, J., Cado, C., Chen, A., Kabra, N. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort 1. Nature 392, 296–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kuang, A. A., Diehl, G. E., Zhang, J. & Winoto, A. FADD is required for DR4- and DR5-mediated apoptosis: lack of TRAIL-induced apoptosis in FADD-deficient mouse embryonic fibroblasts. J. Biol. Chem. 275, 25065–25068 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Deveraux, Q. & Reed, J. IAP family proteins: suppressors of apoptosis. Genes Dev. 13, 239–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. La Casse, E. C., Baird, S., Korneluk, R. G. & MacKenzie, A. E. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17, 3247–3259 (1998).

    Article  Google Scholar 

  31. Fesik, S. W. Insights into programmed cell death through structural biology. Cell 103, 273–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, Y., Fang, S., Jensen, J., Weissman, A. & Ashwell, J. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Ambrosini, G., Adida, C. & Altieri, D. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med. 3, 917–921 (1997).The first report of the IAP-family member survivin, and the first study to show that some IAPs are over-produced in cancers.

    Article  CAS  PubMed  Google Scholar 

  34. Vucic, D., Stennicke, H. R., Pisabarro, M. T., Salvesen, G. S. & Dixit, V. M. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr. Biol. 10, 1359–1366 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, J. et al. Down-regulation of survivin by antisense oligonucleotides increases apoptosis, inhibits cytokinesis and anchorage-independent growth. Neoplasia 2, 235–241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holcik, M. et al. The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice display increased vulnerability to kainic acid-induced injury. Proc. Natl Acad. Sci. USA 97, 2286–2290 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, D. G. et al. Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nature Med. 3, 997–1004 (1997).An early study that shows that gene-transfer-mediated elevations in the expression of IAP-family proteins can provide neuroprotection in vivo . This paper applied NAIP (the first human IAP to be discovered) in an animal model of cerebral ischaemia.

    Article  CAS  PubMed  Google Scholar 

  38. Xu, D. et al. Attenuation of ischemia-induced cellular and behavioral deficits by X chromosome-linked inhibitor of apoptosis protein overexpression in the rat hippocampus. J. Neurosci. 19, 5026–5033 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adams, J. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Gross, A., McDonnell, J. & Korsmeyer, S. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Huang, D. C. & Strasser, A. BH3-only proteins — essential initiators of apoptotic cell death. Cell 103, 839–842 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Dubois-Dauphin, M., Frankowski, H., Tsujimoto, Y., Huarte, J. & Martinou, J.-C. Neonatal motoneurons overexpressing the Bcl-2 protooncogene in transgenic mice are protected from axotomy-induced cell death. Proc. Natl Acad. Sci. USA 91, 3309–3313 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cenni, M. C. et al. Long-term survival of retinal ganglion cells following optic nerve section in adult Bcl-2 transgenic mice. Eur. J. Neurosci. 8, 1735–1745 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Linnik, M. D., Zahos, P., Geschwind, M. D. & Federoff, H. J. Expression of Bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke 26, 1670–1674 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Kostic, V., Jackson-Lewis, V., de Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277, 559–562 (1997).This report provided direct evidence that an apoptosis-blocking protein (BCL2) could prolong survival in an animal model of a chronic neurodegenerative disease, and therefore strengthened the cause-and-effect linkage between the apoptotic machinery and severity or kinetics of neurodegeneration.

    Article  CAS  PubMed  Google Scholar 

  46. Haldar, S., Jena, N. & Croce, C. M. Inactivation of Bcl-2 by phosphorylation. Proc. Natl Acad. Sci. USA 92, 4507–4511 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng, E. et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966–1968 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Sagot, S. et al. Polymer encapsulated cell lines genetically engineered to release ciliary neurotrophic factor can slow down progressive motor neuronopathy in the mouse. Eur. J. Neurosci. 7, 1313–1322 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Sattler, M. et al. Structure of Bcl-XL–Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).The three-dimensional structure of BCL-X L bound to an inhibitory BH3 peptide laid the foundation for subsequent attempts to screen for, or derive by rational means, small-molecule antagonists of BCL2-family proteins.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, J.-L. et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl Acad. Sci. USA 97, 7124–7129 (2000).This paper provided the first evidence that small-molecule inhibitors of BCL2 could be produced.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Degterev, A. et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-XL . Nature Cell Biol. 3, 173–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Tzung, S. et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nature Cell Biol. 3, 183–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Kroemer, G. & Reed, J. C. Mitochondrial control of cell death. Nature Med. 6, 513–519 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Bernardi, P. et al. The mitochondrial permeability transition. Biofactors 8, 273–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Sagot, Y. et al. An orally active anti-apoptotic molecule (CGP3466B) preserves mitochondria and enhances survival in an animal model of motoneuron disease. Br. J. Pharmacol. 131, 721–728 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kragten, E. et al. Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the anti-apoptotic compounds CGP3466 and R-(−)-deprenyl. J. Biol. Chem. 273, 5821–5826 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Tatton, W. G. & Chalmers-Redman, R. M. E. Modulation of gene expression rather than monoamine oxidase inhibition (−)-deprenyl-related compounds in controlling neurodegeneration. Neurology 47, S171–S183 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Yang, D. D. et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865–870 (1997).This work used a Jnk3 knockout mouse to validate this protein kinase as a potential drug discovery target for neuronal cell death.

    Article  CAS  PubMed  Google Scholar 

  59. Ichijo, H. et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275, 90–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Geleziunas, R., Xu, W., Takeda, K., Ishijo, H. & Greene, W. C. HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature 410, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Kissil, J. L. & Kimchi, A. Death-associated proteins: from gene identification to the analysis of their apoptotic and tumour suppressive functions. Mol. Med. Today 4, 268–274 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Datta, S., Brunet, A. & Greenberg, M. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, H.-G. et al. Calcineurin promotes apoptosis by dephosphorylating BAD. Science 284, 339–343 (1998).

    Article  Google Scholar 

  64. Kaul, M., Garden, G. A. & Lipton, S. A. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410, 988–994 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Di Cristafano, A. & Pandolfi, P. P. The multiple roles of PTEN in tumor suppression. Cell 100, 387–390 (2000).

    Article  Google Scholar 

  66. Kim, A. H., Khursigara, G., Sun, X., Franke, T. F. & Chao, M. V. AKT1 phosphorylates and negatively regulates ASK1. Mol. Cell. Biol. 21, 893–901 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pekarsky, Y. et al. Akt phosphorylates and regulates the orphan nuclear receptor Nur77. Proc. Natl Acad. Sci. USA 98, 3690–3694 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292, 1728–1731 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Lietzke, S. E. et al. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol. Cell 6, 385–394 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Neshat, M. S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA 98, 10314–10319 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Silverman, N. & Maniatis, T. NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev. 15, 2321–2342 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Lee, H. H., Dadgostar, H., Cheng, Q., Shu, J. & Cheng, G. NF-κB-mediated up-regulation of BCL-x and BFL-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc. Natl Acad. Sci. USA 96, 9136–9141 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chu, Z. L. et al. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control. Proc. Natl Acad. Sci. USA 94, 10057–10062 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stehlik, C. et al. Nuclear factor (NF)-κB-regulated X-chromosome-linked IAP gene expression protects endothelial cells from tumor necrosis factor-α-induced apoptosis. J. Exp. Med. 188, 211–216 (1998).This investigation showed a direct link between NF-κB and the expression of IAP-family genes, indicating that the induction of IAP expression represents an important mechanism by which NF-κB prevents TNFα-induced apoptosis in normal cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rossi, A. et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403, 103–108 (2000).Shows that certain types of prostaglandins (cyclopentone-type) directly inhibit IKKs. The study provided insights into the anti-inflammatory properties of some prostaglandins, and proposed routes to the discovery of small-molecule antagonists of IKKs.

    Article  CAS  PubMed  Google Scholar 

  76. Holmes-McNary, M. & Baldwin, A. S. J. Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IκB kinase. Cancer Res. 60, 3477–3483 (2000).

    CAS  PubMed  Google Scholar 

  77. Sporn, M. B., Suh, N. & Mangelsdorf, D. J. Prospects for prevention and treatment of cancer with SPARMs (selective PPARγ modulators). Trends Mol. Med. 7, 395–400 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Adams, J., Palombella, V. J. & Elliott, P. J. Proteasome inhibition: a new strategy in cancer treatment. Invest. New Drugs 18, 109–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Thompson, W. J., et al. Exisulind induction of apoptosis involves guanosine 3′,5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated β-catenin. Cancer Res. 60, 3338–3342 (2000).

    CAS  PubMed  Google Scholar 

  80. Goluboff, E. T. et al. Safety and efficacy of Exisulind for treatment of recurrent prostate cancer after radical prostatectomy. J. Urol. 166, 882–886 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Pratt, M. A. C. et al. Bcl-2 is required to prevent estrogen withdrawal-induced human breast cancer tumour regression. FEBS Lett. 440, 403–408 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Andreeff, M. et al. Expression of Bcl-2 family genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid. Leukemia 13, 1881–1892 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Blutt, S. E., McDonnell, T. J., Polek, T. C. & Weigel, N. L. Calcitriol-induced apoptosis in LNCaP cells is blocked by overexpression of Bcl-2. Endocrinology 141, 10–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Sheng, H., Shao, J., Morrow, J. D., Beauchamp, R. D. & DuBois, R. N. Modulation of apoptosis and Bcl-2 expression by progtaglandin E2 in human colon cancer cells. Cancer Res. 58, 362–366 (1998).

    CAS  PubMed  Google Scholar 

  85. Tsujii, M. & DuBois, R. N. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83, 493–501 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, L., Yu, J., Park, B. H., Kinzler, K. W. & Vogelstein, B. Role of BAX in the apoptotic response to anticancer agents. Science 290, 989–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Sun, M. et al. Phosphatidylinositol-3-OH kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor-α (ERα) via interaction between ERα and PI3K. Cancer Res. 61, 5985–5991 (2001).

    CAS  PubMed  Google Scholar 

  88. Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730 (2001).A study that provided in vivo evidence that steroid-hormone receptors can have transcription-independent mechanisms linked to apoptosis regulation.

    CAS  PubMed  Google Scholar 

  89. Li, H. et al. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289, 1159–1164 (2000).Showed that steroid/retinoid-family transcription factors can function outside the nucleus to regulate apoptosis, indicating opportunities for the development of small-molecule drugs that modulate this non-nuclear, non-transcriptional activity.

    Article  CAS  PubMed  Google Scholar 

  90. Brenner, C. & Kroemer, G. Apoptosis. Mitochondria — the death signal integrators. Science 289, 1150–1151 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Richon, V. M., Zhou, X., Rifkind, R. A. & Marks, P. A. Histone deacetylase inhibitors: development of suberoylanilide hydroxamic acid (SAHA) for the treatment of cancers. Blood Cells Mol. Dis. 27, 260–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Grooteclaes, M. L. & Frisch, S. M. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19, 3823–3828 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Bischoff, J. R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996).Revealed that a mutant adenovirus only replicates in p53-deficient cells, setting the stage for subsequent clinical trials that were intended to exploit this property for treating cancer patients with p53-deficient tumours.

    Article  CAS  PubMed  Google Scholar 

  94. Khuri, F. R. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med. 6, 879–885 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of human BAX gene. Cell 80, 293–299 (1995).This report provided the first evidence that p53 directly binds to the promoter of a pro-apoptotic gene ( BAX ) and induces its transcription, thereby providing the first direct link between p53 and the apoptosis machinery. Subsequently, p53 was shown to directly transactivate several pro-apoptotic genes, including other members of the BCL2 family and some of the TNF-family of death receptors.

    Article  CAS  PubMed  Google Scholar 

  96. Oda, E. et al. NOXA, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Owen-Schaub, L. B. et al. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol. Cell. Biol. 15, 3032–3040 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu, G. S. et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Genet. 17, 141–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Roth, J. A., Swisher, S. G. & Meyn, R. E. p53 tumor suppressor gene therapy for cancer. Oncology 13, 148–154 (1999).

    CAS  PubMed  Google Scholar 

  102. Foster, B., Coffey, H., Morin, M. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Komarov, P. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733–1737 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Ashkenazi, A. & Dixit, V. M. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 11, 255–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Pedersen, I. M., Buhl, A. M., Klausen, P., Geisler, C. H. & Jurlander, J. The chimeric anti-CD20 antibody Rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 MAP-kinase dependent mechanism. Blood (in the press).

  106. Byrd, J. C. et al. The mechanism of tumor cell clearance by Rituximab in vivo in patients with B-cell chronic lymphocytic leukemia involves apoptosis via a caspase-9 pathway. Blood (in the press).

  107. Gutheil, J. C. et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin αvβ3 . Clin. Cancer Res. 6, 3056–3061 (2000).

    CAS  PubMed  Google Scholar 

  108. Digicaylioglu, M. & Lipton, S. A. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades. Nature 412, 641–647 (2001).This paper showed a neuroprotective effect for erythropoietin, indicating possibilities of a new clinical application for this growth factor.

    Article  CAS  PubMed  Google Scholar 

  109. Ray, J. & Gage, P. H. Construction of cells expressing neurotrophins. Methods Mol. Biol. 169, 115–133 (2001).

    CAS  PubMed  Google Scholar 

  110. Paris, F. et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293, 293–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Gottlieb, R., Giesing, H., Zhu, J., Engler, R. & Babior, B. Cell acidification in apoptosis: granulocyte colony-stimulating factor delays programmed cell death in neutrophils by up-regulating the vacuolar H+-ATPase. Proc. Natl Acad. Sci. USA 92, 5965–5968 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sun, J. et al. A new family of 10 murine ovalbumin serpins includes two homologs of proteinase inhibitor 8 and two homologs of the granzyme B inhibitor (proteinase inhibitor 9). J. Biol. Chem. 272, 15434–15441 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403, 98–103 (2000).Suggested a pathway that links stress in the endoplasmic reticulum (ER) to caspase activation.

    Article  CAS  PubMed  Google Scholar 

  114. Mancini, M. et al. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J. Cell Biol. 149, 603–612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, Z.-G. et al. PML is essential for multiple apoptotic pathways. Nature Genet. 20, 266–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Hess, J. L. & Korsmeyer, S. J. Life, death and nuclear spots. Nature Genet. 20, 220–222 (1998).Provided in vivo evidence that the nuclear protein PML modulates the apoptosis-sensitivity of cells.

    Article  CAS  PubMed  Google Scholar 

  117. Riedl, S. J. et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791–800 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. SMAC, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).References 118 and 119 describe the discovery of a mitochondrial protein that is released into the cytosol during apoptosis, and which binds and inhibits IAP-family proteins. Subsequent structural studies of these endogenous IAP antagonists indicated a possible way of discovering small-molecule mimics.

    Article  CAS  PubMed  Google Scholar 

  120. Suzuki, Y. et al. A serine protease HTRA2/Omi, which is released from the mitochondria and interacts with XIAP, induces caspase-independent cell death. Mol. Cell 8, 613–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Srinivasula, S. M. et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank R. Cornell and A. Sawyer for manuscript preparation, and G. Salvesen and S. Frisch for helpful discussions.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASES

FlyBase

Grim

Hid

Reaper

 InterPro

BIR

CARD

DED

FKHD

 LocusLink

ABL

AKT1

AKT2

Akt2

AKT3

androgen receptor

APAF1

APR

ASK1

BAD

BAK

basic fibroblast growth factor

BAX

BCL2

BCL10

BCL-XL

BCR

BFL1

BID

calcineurin

calmodulin

CARD4

caspase 1

caspase 2

caspase 3

caspase 4

caspase 5

caspase 7

caspase 8

caspase 9

caspase 10

caspase 12

COX2

cyclophilin

cytochrome c

G-CSF

DAP kinase

DCR1

DCR2

DEFCAP

DR4

DR5

EGF receptor

ERBB2

FADD

FAS

FASL

FRAP

GAPDH

granzyme B

HDAC

HTRA2

IKK

IKKβ

insulin

insulin receptor

αv-integrin

β3-integrin

IPAF

JNK1

JNK2

JNK3

Jnk3

MLIAP

NAIP

Naip

NF-κB

NMDA receptor

NUR77

oestrogen receptor

PI3K

p53

PAR4

PPARγ

PTEN

PUMA

retinoic acid receptor

retinoid X receptor

PML

serpin

SMAC

SUMO

survivin

TCL1

TNFR1

TRAIL

vitamin D3 receptor

WNT

XIAP

ZIP kinase

 Medscape DrugInfo

Epogen

Gleevec

Herceptin

Neupogen

Rituximab

 OMIM

ALS

Alzheimer's disease

Huntington's disease

multi-infarct dementia

Parkinson's disease

SMA

type I diabetes

FURTHER INFORMATION

Apopotosis Database

Serial Analysis of Gene Expression

Glossary

APOPTOSIS

A constellation of morphological changes that is observed by microscopy in cells that are undergoing programmed cell death.

CASPASES

A family of intracellular cysteine proteases that are responsible for apoptosis.

ZYMOGEN

The inactive pro-form of an enzyme. Typically, zymogens are activated by proteolysis.

CHROMATIN

Nuclear DNA complexed with proteins, including histones, as well as with RNA.

INDUCED PROXIMITY

A mechanism of caspase activation whereby the unprocessed pro-forms of caspases (zymogens) are brought into close proximity through interactions with other proteins. Because the zymogen forms of caspases have low levels of protease activity, bringing them into close proximity allows them to cleave each other, inducing their transition to the fully active state.

NF-κB

A heterodimeric transcription factor of the REL family. NF-κB is known to bind to the promoters, and induce the transcription, of several anti-apoptotic proteins.

INHIBITOR-OF-APOPTOSIS PROTEIN

(IAP). IAPs contain at least one copy of a Baculovirus IAP repeat (BIR) domain and suppress apoptosis when overexpressed. Several IAPs directly bind and inhibit caspases.

BCL2

The founding member of a family of apoptosis-regulating proteins. Many BCL2-family members regulate mitochondria-dependent steps in cell-death pathways, with some suppressing, and others promoting, the release of apoptogenic proteins from these organelles.

DEATH-INDUCING SIGNALLING COMPLEX

(DISC). The DISC refers to a complex of proteins that is assembled around the cytosolic domains of certain tumour-necrosis factor (TNF)-family death receptors that contain the death-domain structure. Invariant proteins of the DISC include the adaptor protein FADD and caspase-8. Other proteins can be found in some circumstances, depending on the TNF-family receptor and the cell type.

APOPTOSOME

A multiprotein complex that consists of several (probably seven) molecules of APAF1 bound to cytochrome c and caspase-9. The apoptosome represents a holoenzyme complex, which maintains caspase-9 in an active conformation.

LOCOREGIONAL

Refers to an anatomic location or a region of the body. Typically used in the context of gene therapy, for which the delivery of viral vectors is limited to a tissue or body location.

IATROGENIC INSULT

Side effects or undesirable consequences that result from physician intervention.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, J. Apoptosis-based therapies. Nat Rev Drug Discov 1, 111–121 (2002). https://doi.org/10.1038/nrd726

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing