Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Acne vulgaris

Abstract

Acne vulgaris is a chronic inflammatory disease — rather than a natural part of the life cycle as colloquially viewed — of the pilosebaceous unit (comprising the hair follicle, hair shaft and sebaceous gland) and is among the most common dermatological conditions worldwide. Some of the key mechanisms involved in the development of acne include disturbed sebaceous gland activity associated with hyperseborrhoea (that is, increased sebum production) and alterations in sebum fatty acid composition, dysregulation of the hormone microenvironment, interaction with neuropeptides, follicular hyperkeratinization, induction of inflammation and dysfunction of the innate and adaptive immunity. Grading of acne involves lesion counting and photographic methods. However, there is a lack of consensus on the exact grading criteria, which hampers the conduction and comparison of randomized controlled clinical trials evaluating treatments. Prevention of acne relies on the successful management of modifiable risk factors, such as underlying systemic diseases and lifestyle factors. Several treatments are available, but guidelines suffer from a lack of data to make evidence-based recommendations. In addition, the complex combination treatment regimens required to target different aspects of acne pathophysiology lead to poor adherence, which undermines treatment success. Acne commonly causes scarring and reduces the quality of life of patients. New treatment options with a shift towards targeting the early processes involved in acne development instead of suppressing the effects of end products will enhance our ability to improve the outcomes for patients with acne.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acne formation.
Figure 2: The ten most prevalent diseases according to the Global Burden of Disease study.
Figure 3: Tangled network of four core events in acne formation.
Figure 4: Pathophysiological processes involved in acne vulgaris.
Figure 5: Clinical presentation of acne vulgaris.
Figure 6: Acne conglobata.

Similar content being viewed by others

References

  1. White, G. M. Recent findings in the epidemiologic evidence, classification, and subtypes of acne vulgaris. J. Am. Acad. Dermatol. 39, S34–S37 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease study 2010. Lancet 380, 2163–2196 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gollnick, H. P. & Finlay, A. Y., Shear, N. & Global Alliance to Improve Outcomes in Acne. Can we define acne as a chronic disease? If so, how and when? Am. J. Clin. Dermatol. 9, 279–284 (2008). An important article suggesting the chronic nature of acne.

    Article  PubMed  Google Scholar 

  4. Burton, J. L., Cunliffe, W. J., Stafford, I. & Shuster, S. The prevalence of acne vulgaris in adolescence. Br. J. Dermatol. 85, 119–126 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. Ghodsi, S. Z., Orawa, H. & Zouboulis, C. C. Prevalence, severity, and severity risk factors of acne in high school pupils: a community-based study. J. Invest. Dermatol. 129, 2136–2141 (2009). A well-planned epidemiological study on acne and a review of the literature.

    Article  CAS  PubMed  Google Scholar 

  6. Thiboutot, D. et al. New insights into the management of acne: an update from the Global Alliance to Improve Outcomes in Acne group. J. Am. Acad. Dermatol. 60, S1–S50 (2009). This paper presents an update of the 2003 guideline of the Global Alliance to Improve Outcomes in Acne group, which includes comprehensive data about acne and its management.

    Article  PubMed  Google Scholar 

  7. Dreno, B. & Poli, F. Epidemiology of acne. Dermatology 206, 7–10 (2003).

    Article  PubMed  Google Scholar 

  8. Centers for Disease Control and Prevention. NAMCS factsheet for dermatology. CDC[online], (2010). A factsheet that provides the most recent US data about dermatology visits.

  9. Centers for Disease Control and Prevention. Annual number and percent distribution of ambulatory care visits by setting type according to diagnosis group: United States, 2009–2010. CDC[online], (2010).

  10. Wilmer, E. N. et al. Most common dermatologic conditions encountered by dermatologists and nondermatologists. Cutis 94, 285–292 (2014). This article presents updated demographic data of dermatology visits in the United States.

    PubMed  Google Scholar 

  11. Yentzer, B. A. et al. Acne vulgaris in the United States: a descriptive epidemiology. Cutis 86, 94–99 (2010).

    PubMed  Google Scholar 

  12. McConnell, R. C., Fleischer, A. B., Williford, P. M. & Feldman, S. R. Most topical tretinoin treatment is for acne vulgaris through the age of 44 years: an analysis of the National Ambulatory Medical Care Survey, 1990–1994. J. Am. Acad. Dermatol. 38, 221–226 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Goulden, V., Clark, S. M. & Cunliffe, W. J. Post-adolescent acne: a review of clinical features. Br. J. Dermatol. 136, 66–70 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Landis, E. T., Davis, S. A., Taheri, A. & Feldman, S. R. Top dermatologic diagnoses by age. Dermatol. Online J. 20, 22368 (2014).

    PubMed  Google Scholar 

  15. Goldberg, J. L. et al. Changing age of acne vulgaris visits: another sign of earlier puberty? Pediatr. Dermatol. 28, 645–648 (2011).

    Article  PubMed  Google Scholar 

  16. Davis, S. A. et al. Top dermatologic conditions in patients of color: an analysis of nationally representative data. J. Drugs Dermatol. 11, 466–473 (2012).

    PubMed  Google Scholar 

  17. Perkins, A. C., Cheng, C. E., Hillebrand, G. G., Miyamoto, K. & Kimball, A. B. Comparison of the epidemiology of acne vulgaris among Caucasian, Asian, Continental Indian and African American women. J. Eur. Acad. Dermatol. Venereol. 25, 1054–1060 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Bickers, D. R. et al. The burden of skin diseases: 2004 a joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J. Am. Acad. Dermatol. 55, 490–500 (2006).

    Article  PubMed  Google Scholar 

  19. Zouboulis, C. C. Acne as a chronic systemic disease. Clin. Dermatol. 32, 389–396 (2014). This article reviews the association of acne with non-dermatological disorders, indicating that acne could occasionally be a cutaneous phenotype of systemic diseases.

    Article  PubMed  Google Scholar 

  20. Zouboulis, C. C., Jourdan, E. & Picardo, M. Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions. J. Eur. Acad. Dermatol. Venereol. 28, 527–532 (2014). In this review, the authors present evidence that acne is induced by changes in sebum lipid composition and not only by increased seborhhoea.

    Article  CAS  PubMed  Google Scholar 

  21. Das, S. & Reynolds, R. V. Recent advances in acne pathogenesis: implications for therapy. Am. J. Clin. Dermatol. 15, 479–488 (2014). This review article associates the recent advances in the knowledge in acne pathogenesis with new potential compound candidates for acne treatment.

    Article  PubMed  Google Scholar 

  22. Goulden, V., McGeown, C. H. & Cunliffe, W. J. The familial risk of adult acne: a comparison between first-degree relatives of affected and unaffected individuals. Br. J. Dermatol. 141, 297–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Herane, M. I. & Ando, I. Acne in infancy and acne genetics. Dermatology 206, 24–28 (2003).

    Article  PubMed  Google Scholar 

  24. Evans, D. M., Kirk, K. M., Nyholt, D. R., Novac, C. & Martin, N. G. Teenage acne is influenced by genetic factors. Br. J. Dermatol. 152, 579–581 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ju, Q. et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters sebaceous gland cell differentiation in vitro. Exp. Dermatol. 20, 320–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Valeyrie-Allanore, L., Sassolas, B. & Roujeau, J. C. Drug-induced skin, nail and hair disorders. Drug Saf. 30, 1011–1030 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Melnik, B. C., John, S. M. & Schmitz, G. Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from laron syndrome. Nutr. Metab. (Lond.) 8, 41 (2011).

    Article  CAS  Google Scholar 

  28. Mahmood, S. N. & Bowe, W. P. Diet and acne update: carbohydrates emerge as the main culprit. J. Drugs Dermatol. 13, 428–435 (2014).

    PubMed  Google Scholar 

  29. Wolkenstein, P. et al. Smoking and dietary factors associated with moderate-to-severe acne in French adolescents and young adults: results of a survey using a representative sample. Dermatology 230, 34–39 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Albuquerque, R. G., Rocha, M. A., Bagatin, E., Tufik, S. & Andersen, M. L. Could adult female acne be associated with modern life? Arch. Dermatol. Res. 306, 683–688 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Zouboulis, C. C., Schagen, S. & Alestas, T. The sebocyte culture: a model to study the pathophysiology of the sebaceous gland in sebostasis, seborrhoea and acne. Arch. Dermatol. Res. 300, 397–413 (2008).

    Article  PubMed  Google Scholar 

  32. Dahlhoff, M., de Angelis, M. H., Wolf, E. & Schneider, M. R. Ligand-independent epidermal growth factor receptor hyperactivation increases sebaceous gland size and sebum secretion in mice. Exp. Dermatol. 22, 667–669 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Camera, E., Dahlhoff, M., Ludovici, M., Zouboulis, C. C. & Schneider, M. R. Perilipin 3 modulates specific lipogenic pathways in SZ95 sebocytes. Exp. Dermatol. 23, 759–761 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Dahlhoff, M. et al. PLIN2, the major perilipin regulated during sebocyte differentiation, controls sebaceous lipid accumulation in vitro and sebaceous gland size in vivo. Biochim. Biophys. Acta 1830, 4642–4649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi, C. W., Choi, J. W., Park, K. C. & Youn, S. W. Facial sebum affects the development of acne, especially the distribution of inflammatory acne. J. Eur. Acad. Dermatol. Venereol. 27, 301–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Mourelatos, K., Eady, E. A., Cunliffe, W. J., Clark, S. M. & Cove, J. H. Temporal changes in sebum excretion and propionibacterial colonization in preadolescent children with and without acne. Br. J. Dermatol. 156, 22–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Pappas, A. The relationship of diet and acne: a review. Dermatoendocrinol. 1, 262–267 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stewart, M. E. Sebaceous gland lipids. Semin. Dermatol. 11, 100–105 (1992).

    CAS  PubMed  Google Scholar 

  39. Downing, D. T., Stewart, M. E., Wertz, P. W. & Strauss, J. S. Essential fatty acids and acne. J. Am. Acad. Dermatol. 14, 221–225 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Zouboulis, C. C. Acne and sebaceous gland function. Clin. Dermatol. 22, 360–366 (2004).

    Article  PubMed  Google Scholar 

  41. Ottaviani, M. et al. Peroxidated squalene induces the production of inflammatory mediators in HaCaT keratinocytes: a possible role in acne vulgaris. J. Invest. Dermatol. 126, 2430–2437 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Smith, R. N., Braue, A., Varigos, G. A. & Mann, N. J. The effect of a low glycemic load diet on acne vulgaris and the fatty acid composition of skin surface triglycerides. J. Dermatol. Sci. 50, 41–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Pappas, A., Fantasia, J. & Chen, T. Age and ethnic variations in sebaceous lipids. Dermato-endocrinology 5, 319–324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. da Cunha, M. G., Fonseca, F. L. & Machado, C. D. Androgenic hormone profile of adult women with acne. Dermatology 226, 167–171 (2013).

    Article  PubMed  Google Scholar 

  45. Wei, B. et al. Higher 17α-hydroxyprogesterone levels aggravated the severity of male adolescent acne in northeast China. Dermatology 229, 359–362 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Makrantonaki, E. et al. Interplay of IGF-I and 17β-estradiol at age-specific levels in human sebocytes and fibroblasts in vitro. Exp. Gerontol. 43, 939–946 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Slominski, A. et al. Steroidogenesis in the skin: implications for local immune functions. J. Steroid Biochem. Mol. Biol. 137, 107–123 (2013). This article reviews the current knowledge on cutaneous steroidogenesis and its implications in skin diseases, including acne.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krause, K., Schnitger, A., Fimmel, S., Glass, E. & Zouboulis, C. C. Corticotropin-releasing hormone skin signaling is receptor-mediated and is predominant in the sebaceous glands. Horm. Metab. Res. 39, 166–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Zouboulis, C. C. et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc. Natl Acad. Sci. USA 99, 7148–7153 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sansone, G. & Reisner, R. M. Differential rates of conversion of testosterone to dihydrotestosterone in acne and in normal human skin — a possible pathogenic factor in acne. J. Invest. Dermatol. 56, 366–372 (1971).

    Article  CAS  PubMed  Google Scholar 

  51. Pochi, P. E. & Strauss, J. S. Sebaceous gland response in man to the administration of testosterone, Δ4-androstenedione, and dehydroisoandrosterone. J. Invest. Dermatol. 52, 32–36 (1969).

    Article  CAS  PubMed  Google Scholar 

  52. Giltay, E. J. & Gooren, L. J. Effects of sex steroid deprivation/administration on hair growth and skin sebum production in transsexual males and females. J. Clin. Endocrinol. Metab. 85, 2913–2921 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Rosenfield, R. L., Deplewski, D., Kentsis, A. & Ciletti, N. Mechanisms of androgen induction of sebocyte differentiation. Dermatology 196, 43–46 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Chen, W., Yang, C. C., Sheu, H. M., Seltmann, H. & Zouboulis, C. C. Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes. J. Invest. Dermatol. 121, 441–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Zouboulis, C. C. et al. What is the pathogenesis of acne? Exp. Dermatol. 14, 143–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Inoue, T. et al. Expression of steroidogenic enzymes in human sebaceous glands. J. Endocrinol. 222, 301–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, S. E., Kim, J. M., Jeong, M. K., Zouboulis, C. C. & Lee, S. H. 11β-hydroxysteroid dehydrogenase type 1 is expressed in human sebaceous glands and regulates glucocorticoid-induced lipid synthesis and Toll-like receptor 2 expression in SZ95 sebocytes. Br. J. Dermatol. 168, 47–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Aizawa, H. & Niimura, M. Elevated serum insulin-like growth factor-1 (IGF-1) levels in women with postadolescent acne. J. Dermatol. 22, 249–252 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Cappel, M., Mauger, D. & Thiboutot, D. Correlation between serum levels of insulin-like growth factor 1, dehydroepiandrosterone sulfate, and dihydrotestosterone and acne lesion counts in adult women. Arch. Dermatol. 141, 333–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Vora, S., Ovhal, A., Jerajani, H., Nair, N. & Chakrabortty, A. Correlation of facial sebum to serum insulin-like growth factor 1 in patients with acne. Br. J. Dermatol. 159, 990–991 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Rudman, S. M., Philpott, M. P., Thomas, G. A. & Kealey, T. The role of IGF-I in human skin and its appendages: morphogen as well as mitogen? J. Invest. Dermatol. 109, 770–777 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Deplewski, D. & Rosenfield, R. L. Growth hormone and insulin-like growth factors have different effects on sebaceous cell growth and differentiation. Endocrinology 140, 4089–4094 (1999). This article reviews the complex regulation of sebaceous gland action through the growth hormone and IGF1 signalling cascade.

    Article  CAS  PubMed  Google Scholar 

  63. Tavakkol, A., Varani, J., Elder, J. T. & Zouboulis, C. C. Maintenance of human skin in organ culture: role for insulin-like growth factor 1 receptor and epidermal growth factor receptor. Arch. Dermatol. Res. 291, 643–651 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Smith, T. M., Cong, Z., Gilliland, K. L., Clawson, G. A. & Thiboutot, D. M. Insulin-like growth factor-1 induces lipid production in human SEB-1 sebocytes via sterol response element-binding protein-1. J. Invest. Dermatol. 126, 1226–1232 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Smith, T. M., Gilliland, K., Clawson, G. A. & Thiboutot, D. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway. J. Invest. Dermatol. 128, 1286–1293 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Melnik, B. C. & Zouboulis, C. C. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. Exp. Dermatol. 22, 311–315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Blanchard, P. G. et al. Major involvement of mTOR in the PPARγ-induced stimulation of adipose tissue lipid uptake and fat accretion. J. Lipid Res. 53, 1117–1125 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bakan, I. & Laplante, M. Connecting mTORC1 signaling to SREBP-1 activation. Curr. Opin. Lipidol. 23, 226–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Rosignoli, C., Nicolas, J. C., Jomard, A. & Michel, S. Involvement of the SREBP pathway in the mode of action of androgens in sebaceous glands in vivo. Exp. Dermatol. 12, 480–489 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Ganceviciene, R., Graziene, V., Fimmel, S. & Zouboulis, C. C. Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris. Br. J. Dermatol. 160, 345–352 (2009). This paper provides evidence for the role of neuropeptides, and especially of the most upstream hypothalamic hormone corticotropin-releasing hormone, in the function of the sebaceous gland and the development of stress-induced acne.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, L., Li, W. H., Anthonavage, M. & Eisinger, M. Melanocortin 5 receptor: a marker of human sebocyte differentiation. Peptides 27, 413–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Ganceviciene, R., Böhm, M., Fimmel, S. & Zouboulis, C. C. The role of neuropeptides in the multifactorial pathogenesis of acne vulgaris. Dermatoendocrinol. 1, 170–176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Toyoda, M., Nakamura, M. & Morohashi, M. Neuropeptides and sebaceous glands. Eur. J. Dermatol. 12, 422–427 (2002). This article describes the effects of downstream neuropeptides on sebaceous glands and their diseases.

    CAS  PubMed  Google Scholar 

  74. Thielitz, A. et al. Inhibitors of dipeptidyl peptidase IV and aminopeptidase N target major pathogenetic steps in acne initiation. J. Invest. Dermatol. 127, 1042–1051 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Zouboulis, C. C. Is acne vulgaris a genuine inflammatory disease? Dermatology 203, 277–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Jeremy, A. H., Holland, D. B., Roberts, S. G., Thomson, K. F. & Cunliffe, W. J. Inflammatory events are involved in acne lesion initiation. J. Invest. Dermatol. 121, 20–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Freedberg, I., Tomic-Canic, M., Komine, M. & Blumenberg, M. Keratins and the keratinocyte activation cycle. J. Invest. Dermatol. 116, 633–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Trivedi, N. R., Gilliland, K. L., Zhao, W., Liu, W. & Thiboutot, D. M. Gene array expression profiling in acne lesions reveals marked upregulation of genes involved in inflammation and matrix remodeling. J. Invest. Dermatol. 126, 1071–1079 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Kang, S. et al. Inflammation and extracellular matrix degradation mediated by activated transcription factors nuclear factor-κB and activator protein 1 in inflammatory acne lesions in vivo. Am. J. Pathol. 166, 1691–1699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kistowska, M. et al. IL-1β drives inflammatory responses to Propionibacterium acnes in vitro and in vivo. J. Invest. Dermatol. 134, 677–685 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Choi, J. J. et al. TNF-α increases lipogenesis via JNK and PI3K/Akt pathways in SZ95 human sebocytes. J. Dermatol. Sci. 65, 179–188 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Kelhälä, H. L. et al. IL-17/Th17 pathway is activated in acne lesions. PLoS ONE 9, e105238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Alestas, T., Ganceviciene, R., Fimmel, S., Müller-Decker, K. & Zouboulis, C. C. Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J. Mol. Med. (Berl.). 84, 75–87 (2006). This paper provides robust evidence on the involvement of inflammation and its pathways on acne pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, Q., Seltmann, H., Zouboulis, C. C. & Travers, J. B. Activation of platelet-activating factor receptor in SZ95 sebocytes results in inflammatory cytokine and prostaglandin E2 production. Exp. Dermatol. 15, 769–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Neufang, G., Furstenberger, G., Heidt, M., Marks, F. & Müller-Decker, K. Abnormal differentiation of epidermis in transgenic mice constitutively expressing cyclooxygenase-2 in skin. Proc. Natl Acad. Sci. USA 98, 7629–7634 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, Q., Seltmann, H., Zouboulis, C. C. & Konger, R. L. Involvement of PPARγ in oxidative stress-mediated prostaglandin E2 production in SZ95 human sebaceous gland cells. J. Invest. Dermatol. 126, 42–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Zouboulis, C. C., Seltmann, H. & Alestas, T. Zileuton prevents the activation of the leukotriene pathway and reduces sebaceous lipogenesis. Exp. Dermatol. 19, 148–150 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Fitz-Gibbon, S. et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J. Invest. Dermatol. 133, 2152–2160 (2013). This article presents the P. acnes taxonomy and its association with acne.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jasson, F. et al. Different strains of Propionibacterium acnes modulate differently the cutaneous innate immunity. Exp. Dermatol. 22, 587–592 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Nagy, I. et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 8, 2195–2205 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Lee, D. Y. et al. Sebocytes express functional cathelicidin antimicrobial peptides and can act to kill Propionibacterium acnes. J. Invest. Dermatol. 128, 1863–1866 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Graham, G. M., Farrar, M. D., Cruse-Sawyer, J. E., Holland, K. T. & Ingham, E. Proinflammatory cytokine production by human keratinocytes stimulated with Propionibacterium acnes and P. acnes GroEL. Br. J. Dermatol. 150, 421–428 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. McDowell, A. et al. Propionibacterium acnes types I and II represent phylogenetically distinct groups. J. Clin. Microbiol. 43, 326–334 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nagy, I. et al. Distinct strains of Propionibacterium acnes induce selective human β-defensin-2 and interleukin-8 expression in human keratinocytes through Toll-like receptors. J. Invest. Dermatol. 124, 931–938 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Schaller, M. et al. Induction of a chemoattractive proinflammatory cytokine response after stimulation of keratinocytes with Propionibacterium acnes and coproporphyrin III. Br. J. Dermatol. 153, 66–71 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Agak, G. W. et al. Propionibacterium acnes induces an IL-17 response in acne vulgaris that is regulated by vitamin A and vitamin D. J. Invest. Dermatol. 134, 366–373 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Kistowska, M. et al. Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients. J. Invest. Dermatol. 135, 110–118 (2015).

    Article  PubMed  Google Scholar 

  98. Li, Z. J. et al. Propionibacterium acnes activates the NLRP3 inflammasome in human sebocytes. J. Invest. Dermatol. 134, 2747–2756 (2014). This paper provides the first evidence of the inflammasome regulation by P. acnes.

    Article  CAS  PubMed  Google Scholar 

  99. Kim, J. Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology 211, 193–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Georgel, P. et al. A Toll-like receptor 2 responsive lipid effector pathway protects mammals against skin infections with Gram-positive bacteria. Infect. Immun. 73, 4512–4521 (2005). This article provides the first evidence of the role of bacterial peptides on sebaceous lipogenesis and inflammatory signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Oeff, M. K. et al. Differential regulation of Toll-like receptor and CD14 pathways by retinoids and corticosteroids in human sebocytes. Dermatology 213, 266 (2006).

    Article  PubMed  Google Scholar 

  102. Selway, J. L., Kurczab, T., Kealey, T. & Langlands, K. Toll-like receptor 2 activation and comedogenesis: implications for the pathogenesis of acne. BMC Dermatol. 13, 10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bakry, O. A., Samaka, R. M., Sebika, H. & Seleit, I. Toll-like receptor 2 and P. acnes : do they trigger initial acne vulgaris lesions? Anal. Quant. Cytopathol. Histopathol. 36, 100–110 (2014).

    Google Scholar 

  104. Chronnell, C. M. et al. Human β defensin-1 and -2 expression in human pilosebaceous units: upregulation in acne vulgaris lesions. J. Invest. Dermatol. 117, 1120–1125 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Harrison, W. J., Bull, J. J., Seltmann, H., Zouboulis, C. C. & Philpott, M. P. Expression of lipogenic factors galectin-12, resistin, SREBP-1, and SCD in human sebaceous glands and cultured sebocytes. J. Invest. Dermatol. 127, 1309–1317 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Nakatsuji, T. et al. Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J. Invest. Dermatol. 129, 2480–2488 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nakatsuji, T. et al. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating β-defensin-2 expression. J. Invest. Dermatol. 130, 985–994 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Bissonnette, R. et al. Changes in serum free testosterone, sleep patterns, and 5-alpha-reductase type I activity influence changes in sebum excretion in female subjects. Skin Res. Technol. 21, 47–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Rasmussen, J. E. Diet and acne. Int. J. Dermatol. 16, 488–492 (1977).

    Article  CAS  PubMed  Google Scholar 

  110. Melnik, B. C. & Schmitz, G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Exp. Dermatol. 18, 833–841 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Downing, D. T., Strauss, J. S. & Pochi, P. E. Changes in skin surface lipid composition induced by severe caloric restriction in man. Am. J. Clin. Nutr. 25, 365–367 (1972).

    Article  CAS  PubMed  Google Scholar 

  112. Pochi, P. E., Downing, D. T. & Strauss, J. S. Sebaceous gland response in man to prolonged total caloric deprivation. J. Invest. Dermatol. 55, 303–309 (1970).

    Article  CAS  PubMed  Google Scholar 

  113. MacDonald, I. Changes in the fatty acid composition of sebum associated with high carbohydrate diets. Nature 203, 1067–1068 (1964).

    Article  CAS  PubMed  Google Scholar 

  114. Cordain, L. et al. Acne vulgaris: a disease of Western civilization. Arch. Dermatol. 138, 1584–1590 (2002). This paper presents clinicoepidemiological evidence of nutrition induction of acne.

    Article  PubMed  Google Scholar 

  115. Arora, M. K., Seth, S., Dayal, S., Trehan, A. S. & Seth, M. Serum lipid profile in female patients with severe acne vulgaris. Clin. Lab. 60, 1201–1205 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Lu, P. H. & Hsu, C. H. Body mass index is negatively associated with acne lesion counts in Taiwanese women with post-adolescent acne. J. Eur. Acad. Dermatol. Venereol. http://dx.doi.org/10.1111/jdv.12754 (2014).

  117. Di Landro, A. et al. Family history, body mass index, selected dietary factors, menstrual history, and risk of moderate to severe acne in adolescents and young adults. J. Am. Acad. Dermatol. 67, 1129–1135 (2012).

    Article  PubMed  Google Scholar 

  118. Schäfer, T., Nienhaus, A., Vieluf, D., Berger, J. & Ring, J. Epidemiology of acne in the general population: the risk of smoking. Br. J. Dermatol. 145, 100–104 (2001).

    Article  PubMed  Google Scholar 

  119. Rombouts, S., Nijsten, T. & Lambert, J. Cigarette smoking and acne in adolescents: results from a cross-sectional study. J. Eur. Acad. Dermatol. Venereol. 21, 326–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Yang, Y. S. et al. Cigarette smoke-induced interleukin-1 alpha may be involved in the pathogenesis of adult acne. Ann. Dermatol. 26, 11–16 (2014). This article explains how cigarette smoke-induced IL-1α production may be involved in the pathogenesis of adult acne.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Melnik, B., Jansen, T. & Grabbe, S. Abuse of anabolic-androgenic steroids and bodybuilding acne: an underestimated health problem. J. Dtsch. Dermatol. Ges. 5, 110–117 (2007).

    Article  PubMed  Google Scholar 

  122. Szabó, K. & Kemény, L. Studying the genetic predisposing factors in the pathogenesis of acne vulgaris. Hum. Immunol. 72, 766–773 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Tasli, L. et al. Insulin-like growth factor-I gene polymorphism in acne vulgaris. J. Eur. Acad. Dermatol. Venereol. 27, 254–257 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Amr, K., Abdel-Hameed, M., Sayed, K., Nour-Edin, F. & Abdel Hay, R. The Pro12Ala polymorphism of the gene for peroxisome proliferator activated receptor-gamma is associated with a lower Global Acne Grading System score in patients with acne vulgaris. Clin. Exp. Dermatol. 39, 741–745 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Younis, S. & Javed, Q. The interleukin-6 and interleukin-1A gene promoter polymorphism is associated with the pathogenesis of acne vulgaris. Arch. Dermatol. Res. 307, 365–370 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. He, L. et al. Two new susceptibility loci 1q24.2 and 11p11.2 confer risk to severe acne. Nat. Commun. 5, 2870 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Navarini, A. A. et al. Genome-wide association study identifies three novel susceptibility loci for severe acne vulgaris. Nat. Commun. 5, 4020 (2014). This is a large genome-wide association study in patients with acne compared with healthy controls.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang, M., Qureshi, A. A., Hunter, D. J. & Han, J. A genome-wide association study of severe teenage acne in European Americans. Hum. Genet. 133, 259–264 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Bek-Thomsen, M., Lomholt, H. B., Scavenius, C., Enghild, J. J. & Brüggemann, H. Proteome analysis of human sebaceous follicle infundibula extracted from healthy and acne-affected skin. PLoS ONE 9, e107908 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Katsambas, A. D., Cunliffe, W. J. & Zouboulis, C. C. in Pathogenesis and Treatment of Acne and Rosacea (eds Zouboulis, C. C. et al.) 213–221 (Springer, 2014).

    Google Scholar 

  131. Lucky, A. W., Dessinioti, C. & Katsambas, A. D. in Pathogenesis and Treatment of Acne and Rosacea (eds Zouboulis, C. C. et al.) 243–249 (Springer, 2014).

    Google Scholar 

  132. Antoniou, C., Dessinioti, C., Stratigos, A. J. & Katsambas, A. D. Clinical and therapeutic approach to childhood acne: an update. Pediatr. Dermatol. 26, 373–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Eichenfield, L. F. et al. Evidence-based recommendations for the diagnosis and treatment of pediatric acne. Pediatrics 131, S163–S186 (2013).

    Article  PubMed  Google Scholar 

  134. Chiang, A., Hafeez, F. & Maibach, H. I. Skin lesion metrics: role of photography in acne. J. Dermatolog. Treat. 25, 100–105 (2014).

    Article  PubMed  Google Scholar 

  135. Burke, B. M. & Cunliffe, W. J. The assessment of acne vulgaris — the Leeds technique. Br. J. Dermatol. 111, 83–92 (1984).

    Article  CAS  PubMed  Google Scholar 

  136. Ramli, R., Malik, A. S., Hani, A. F. & Jamil, A. Acne analysis, grading and computational assessment methods: an overview. Skin Res. Technol. 18, 1–14 (2012). A review of the existing computational evaluation methods and current developments.

    Article  PubMed  Google Scholar 

  137. Lucky, A. W. et al. A multirater validation study to assess the reliability of acne lesion counting. J. Am. Acad. Dermatol. 35, 559–565 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Plewig, G. Acne: Morphogenesis and Treatment (Springer-Verlag Berlin Heidelberg, 1975).

    Book  Google Scholar 

  139. O’brien, S., Lewis, J. & Cunliffe, W. The Leeds revised acne grading system. J. Dermatol. Treat. 9, 215–220 (1998). This article presents the most sophisticated method for assessing classic acne severity and efficacy of acne treatment studies though a global grading of acne lesions.

    Article  Google Scholar 

  140. Tan, J. K. et al. Evaluation of essential clinical components and features of current acne global grading scales. J. Am. Acad. Dermatol. 69, 754–761 (2013).

    Article  PubMed  Google Scholar 

  141. Tan, J. et al. Acne severity grading: determining essential clinical components and features using a Delphi consensus. J. Am. Acad. Dermatol. 67, 187–193 (2012).

    Article  PubMed  Google Scholar 

  142. Cook, C. H., Centner, R. L. & Michaels, S. E. An acne grading method using photographic standards. Arch. Dermatol. 115, 571–575 (1979).

    Article  CAS  PubMed  Google Scholar 

  143. Rizova, E. & Kligman, A. New photographic techniques for clinical evaluation of acne. J. Eur. Acad. Dermatol. Venereol. 15, S13–S18 (2001).

    Google Scholar 

  144. Patwardhan, S. V., Kaczvinsky, J. R., Joa, J. F. & Canfield, D. Auto-classification of acne lesions using multimodal imaging. J. Drugs Dermatol. 12, 746–756 (2013).

    PubMed  Google Scholar 

  145. Stamatas, G. N. & Kollias, N. in Pathogenesis and Treatment of Acne and Rosacea (eds Zouboulis, C. C. et al.) 331–340 (Springer, 2014). This book chapter presents current and future technologies for imaging and assessment of acne lesions.

    Google Scholar 

  146. Dessinioti, C., Antoniou, C. & Katsambas, A. Acneiform eruptions. Clin. Dermatol. 32, 24–34 (2014).

    Article  PubMed  Google Scholar 

  147. Katsambas, A. D., Dessinioti, C. & Cunliffe, W. J. in Pathogenesis and Treatment of Acne and Rosacea (eds Zouboulis, C. C. et al.) 223–226 (Springer, 2014).

    Google Scholar 

  148. Chen, W. et al. Acne-associated syndromes: models for better understanding of acne pathogenesis. J. Eur. Acad. Dermatol. Venereol. 25, 637–646 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Melnik, B. C., John, S. M. & Plewig, G. Acne: risk indicator for increased body mass index and insulin resistance. Acta Derm. Venereol. 93, 644–649 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Adebamowo, C. A. et al. Milk consumption and acne in teenaged boys. J. Am. Acad. Dermatol. 58, 787–793 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Aksu, A. E. et al. Acne: prevalence and relationship with dietary habits in Eskisehir, Turkey. J. Eur. Acad. Dermatol. Venereol. 26, 1503–1509 (2012).

    PubMed  Google Scholar 

  152. Kaymak, Y. et al. Dietary glycemic index and glucose, insulin, insulin-like growth factor I, insulin-like growth factor binding protein 3, and leptin levels in patients with acne. J. Am. Acad. Dermatol. 57, 819–823 (2007).

    Article  PubMed  Google Scholar 

  153. Smith, R. N., Mann, N. J., Braue, A., Mäkelä inen, H. & Varigos, G. A. The effect of a high-protein, low glycemic-load diet versus a conventional, high glycemic-load diet on biochemical parameters associated with acne vulgaris: a randomized, investigator-masked, controlled trial. J. Am. Acad. Dermatol. 57, 247–256 (2007). This is one of the first well-planned clinical studies to evaluate the effectiveness of fatty acids on acne development and severity.

    Article  PubMed  Google Scholar 

  154. Kwon, H. H. et al. Clinical and histological effect of a low glycaemic load diet in treatment of acne vulgaris in Korean patients: a randomized, controlled trial. Acta Derm. Venereol. 92, 241–246 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Jung, J. Y. et al. Effect of dietary supplementation with omega-3 fatty acid and gamma-linolenic acid on acne vulgaris: a randomised, double-blind, controlled trial. Acta Derm. Venereol. 94, 521–525 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Capitanio, B. et al. Underestimated clinical features of postadolescent acne. J. Am. Acad. Dermatol. 63, 782–788 (2010).

    Article  PubMed  Google Scholar 

  157. Gollnick, H. et al. Management of acne: a report from a Global Alliance to Improve Outcomes in Acne. J. Am. Acad. Dermatol. 49, S1–S37 (2003).

    Article  PubMed  Google Scholar 

  158. Strauss, J. S. et al. Guidelines of care for acne vulgaris management. J. Am. Acad. Dermatol. 56, 651–663 (2007).

    Article  PubMed  Google Scholar 

  159. Nast, A. et al. European evidence-based (S3) guidelines for the treatment of acne. J. Eur. Acad. Dermatol. Venereol. 26, S1–S29 (2012). This paper presents guidelines for acne treatment and a current review on acne aetiopathogenesis.

    Article  Google Scholar 

  160. Dréno, B. et al. European recommendations on the use of oral antibiotics for acne. Eur. J. Dermatol. 14, 391–399 (2004).

    PubMed  Google Scholar 

  161. Layton, A. M., Dreno, B., Gollnick, H. P. & Zouboulis, C. C. A review of the European Directive for prescribing systemic isotretinoin for acne vulgaris. J. Eur. Acad. Dermatol. Venereol. 20, 773–776 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Williams, H. C., Dellavalle, R. P. & Garner, S. Acne vulgaris. Lancet 379, 361–372 (2012).

    Article  PubMed  Google Scholar 

  163. Del Rosso, J. Q. & Leyden, J. J. Status report on antibiotic resistance: implications for the dermatologist. Dermatol. Clin. 25, 127–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Chien, A. L., Voorhees, J. J. & Kang, S. Fitzpatrick's Dermatology in Medicine (McGraw-Hill, 2008).

    Google Scholar 

  165. Benkoussa, M., Brand, C., Delmotte, M. H., Formstecher, P. & Lefebvre, P. Retinoic acid receptors inhibit AP1 activation by regulating extracellular signal-regulated kinase and CBP recruitment to an AP1-responsive promoter. Mol. Cell. Biol. 22, 4522–4534 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Liu, P. T., Krutzik, S. R., Kim, J. & Modlin, R. L. Cutting edge: all-trans retinoic acid down-regulates TLR2 expression and function. J. Immunol. 174, 2467–2470 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Culp, L., Moradi Tuchayi, S., Alinia, H. & Feldman, S. R. Tolerability of topical retinoids: are there clinically meaningful differences among topical retinoids? J. Cutan. Med. Surg. http://dx.doi.org/10.1177/1203475415591117 (2015).

  168. Tanghetti, E. A. & Popp, K. F. A current review of topical benzoyl peroxide: new perspectives on formulation and utilization. Dermatol. Clin. 27, 17–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Fakhouri, T., Yentzer, B. A. & Feldman, S. R. Advancement in benzoyl peroxide-based acne treatment: methods to increase both efficacy and tolerability. J. Drugs Dermatol. 8, 657–661 (2009).

    PubMed  Google Scholar 

  170. Jacobs, A., Starke, G., Rosumeck, S. & Nast, A. Systematic review on the rapidity of the onset of action of topical treatments in the therapy of mild-to-moderate acne vulgaris. Br. J. Dermatol. 170, 557–564 (2014). A systematic review of new results in the comparative speed of acne improvement with different agents.

    Article  CAS  PubMed  Google Scholar 

  171. Zouboulis, C. C., Fischer, T. C., Wohlrab, J., Barnard, J. & Alió, A. B. Study of the efficacy, tolerability, and safety of 2 fixed-dose combination gels in the management of acne vulgaris. Cutis 84, 223–229 (2009).

    PubMed  Google Scholar 

  172. Zouboulis, C. C. et al. A multicentre, single-blind, randomized comparison of a fixed clindamycin phosphate/tretinoin gel formulation (Velac) applied once daily and a clindamycin lotion formulation (Dalacin T) applied twice daily in the topical treatment of acne vulgaris. Br. J. Dermatol. 143, 498–505 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Abdel-Naser, M. B. & Zouboulis, C. C. Clindamycin phosphate/tretinoin gel formulation in the treatment of acne vulgaris. Expert Opin. Pharmacother. 9, 2931–2937 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Aslam, I., Fleischer, A. & Feldman, S. Emerging drugs for the treatment of acne. Expert Opin. Emerg. Drugs 20, 91–101 (2015). This paper reviews new anti-acne drugs.

    Article  CAS  PubMed  Google Scholar 

  175. Dréno, B. et al. Adult female acne: a new paradigm. J. Eur. Acad. Dermatol. Venereol. 27, 1063–1070 (2013).

    Article  PubMed  Google Scholar 

  176. Gollnick, H. P., Graupe, K. & Zaumseil, R. P. Azelaic acid 15% gel in the treatment of acne vulgaris. Combined results of two double-blind clinical comparative studies. J. Dtsch. Dermatol. Ges. 2, 841–847 (2004).

    Article  PubMed  Google Scholar 

  177. Thielitz, A. et al. A randomized investigator-blind parallel-group study to assess efficacy and safety of azelaic acid 15% gel versus adapalene 0.1% gel in the treatment and maintenance treatment of female adult acne. J. Eur. Acad. Dermatol. Venereol. 29, 789–796 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Garner, S. E. et al. Minocycline for acne vulgaris: efficacy and safety. Cochrane Database Syst. Rev. 8, CD002086 (2012).

    Google Scholar 

  179. Fleischer, A. B., Dinehart, S., Stough, D. & Plott, R. T. Safety and efficacy of a new extended-release formulation of minocycline. Cutis 78, 21–31 (2006).

    PubMed  Google Scholar 

  180. Dreno, B. et al. Antibiotic stewardship in dermatology: limiting antibiotic use in acne. Eur. J. Dermatol. 24, 330–334 (2014).

    PubMed  Google Scholar 

  181. Lee, Y. H., Liu, G., Thiboutot, D. M., Leslie, D. L. & Kirby, J. S. A retrospective analysis of the duration of oral antibiotic therapy for the treatment of acne among adolescents: investigating practice gaps and potential cost-savings. J. Am. Acad. Dermatol. 71, 70–76 (2014).

    Article  PubMed  Google Scholar 

  182. Thevarajah, S., Balkrishnan, R., Camacho, F. T., Feldman, S. R. & Fleischer, A. B. Trends in prescription of acne medication in the US: shift from antibiotic to non-antibiotic treatment. J. Dermatolog. Treat. 16, 224–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  183. Davis, S. A., Sandoval, L. F., Gustafson, C. J., Feldman, S. R. & Cordoro, K. M. Treatment of preadolescent acne in the United States: an analysis of nationally representative data. Pediatr. Dermatol. 30, 689–694 (2013).

    Article  PubMed  Google Scholar 

  184. Arrington, E. A., Patel, N. S., Gerancher, K. & Feldman, S. R. Combined oral contraceptives for the treatment of acne: a practical guide. Cutis 90, 83–90 (2012). This is a concise paper on the available combined oral contraceptives for acne treatment from the points of view of both the dermatologists and the gynaecologists.

    PubMed  Google Scholar 

  185. Landis, E. T. et al. Isotretinoin and oral contraceptive use in female acne patients varies by physician specialty: analysis of data from the National Ambulatory Medical Care Survey. J. Dermatolog. Treat. 23, 272–277 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Zouboulis, C. C. & Bettoli, V. Management of severe acne. Br. J. Dermatol. 172, S27–S36 (2015).

    Article  Google Scholar 

  187. Brown, J., Farquhar, C., Lee, O., Toomath, R. & Jepson, R. G. Spironolactone versus placebo or in combination with steroids for hirsutism and/or acne. Cochrane Database Syst. Rev. 2, CD000194 (2009).

    Google Scholar 

  188. Sandoval, L. F., Hartel, J. K. & Feldman, S. R. Current and future evidence-based acne treatment: a review. Expert Opin. Pharmacother. 15, 173–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Leyden, J. J., McGinley, K. J. & Foglia, A. N. Qualitative and quantitative changes in cutaneous bacteria associated with systemic isotretinoin therapy for acne conglobata. J. Invest. Dermatol. 86, 390–393 (1986).

    Article  CAS  PubMed  Google Scholar 

  190. Wessels, F., Anderson, A. N. & Kropman, K. The cost-effectiveness of isotretinoin in the treatment of acne. Part 1. A meta-analysis of effectiveness literature. S. Afr. Med. J. 89, 780–784 (1999).

    CAS  PubMed  Google Scholar 

  191. Zouboulis, C. C. The truth behind this undeniable efficacy — recurrence rates and relapse risk factors of acne treatment with oral isotretinoin. Dermatology 212, 99–100 (2006).

    Article  PubMed  Google Scholar 

  192. Leyden, J. J., Del Rosso, J. Q. & Baum, E. W. The use of isotretinoin in the treatment of acne vulgaris: clinical considerations and future directions. J. Clin. Aesthet. Dermatol. 7, S3–S21 (2014).

    PubMed  PubMed Central  Google Scholar 

  193. Rohrback, J. M., Fleischer, A. B., Krowchuk, D. P. & Feldman, S. R. Depression is not common in isotretinoin-treated acne patients. J. Dermatolog. Treat. 15, 252 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. Jordan, A. Y. et al. Does the teratogenicity of isotretinoin outweigh its benefits? J. Dermatolog. Treat. 16, 190–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Webster, G. F., Leyden, J. J. & Gross, J. A. Comparative pharmacokinetic profiles of a novel isotretinoin formulation (isotretinoin-Lidose) and the innovator isotretinoin formulation: a randomized, 4-treatment, crossover study. J. Am. Acad. Dermatol. 69, 762–767 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Barnes, L. E., Al-Dabagh, A., Huang, W. W. & Feldman, S. R. Common reasons why acne patients call the office. Dermatol. Online J. 20, 22609 (2014).

    PubMed  Google Scholar 

  197. Fleischer, A. B., Simpson, J. K., McMichael, A. & Feldman, S. R. Are there racial and sex differences in the use of oral isotretinoin for acne management in the United States? J. Am. Acad. Dermatol. 49, 662–666 (2003).

    Article  PubMed  Google Scholar 

  198. Kosaka, S., Kawana, S., Zouboulis, C. C., Hasan, T. & Ortel, B. Targeting of sebocytes by aminolevulinic acid-dependent photosensitization. Photochem. Photobiol. 82, 453–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  199. Morton, C. A., Szeimies, R. M., Sidoroff, A. & Braathen, L. R. European guidelines for topical photodynamic therapy part 2: emerging indications — field cancerization, photorejuvenation and inflammatory/infective dermatoses. J. Eur. Acad. Dermatol. Venereol. 27, 672–679 (2013).

    Article  CAS  PubMed  Google Scholar 

  200. Zheng, W. et al. Evidence-based review of photodynamic therapy in the treatment of acne. Eur. J. Dermatol. 24, 444–456 (2014). A helpful recent review on photodynamic therapy for the treatment of acne.

    CAS  PubMed  Google Scholar 

  201. Taylor, M. N. & Gonzalez, M. L. The practicalities of photodynamic therapy in acne vulgaris. Br. J. Dermatol. 160, 1140–1148 (2009).

    Article  CAS  PubMed  Google Scholar 

  202. Hamilton, F. L. et al. Laser and other light therapies for the treatment of acne vulgaris: systematic review. Br. J. Dermatol. 160, 1273–1285 (2009).

    Article  CAS  PubMed  Google Scholar 

  203. Yentzer, B. A. et al. An exploratory study of adherence to topical benzoyl peroxide in patients with acne vulgaris. J. Am. Acad. Dermatol. 60, 879–880 (2009).

    Article  PubMed  Google Scholar 

  204. Balkrishnan, R., Kulkarni, A. S., Cayce, K. & Feldman, S. R. Predictors of healthcare outcomes and costs related to medication use in patients with acne in the United States. Cutis 77, 251–255 (2006).

    PubMed  Google Scholar 

  205. Lott, R., Taylor, S. L., O’Neill, J. L., Krowchuk, D. P. & Feldman, S. R. Medication adherence among acne patients: a review. J. Cosmet. Dermatol. 9, 160–166 (2010).

    Article  PubMed  Google Scholar 

  206. Yentzer, B. A. et al. A randomized controlled pilot study of strategies to increase adherence in teenagers with acne vulgaris. J. Am. Acad. Dermatol. 64, 793–795 (2011). This study shows the importance of frequent visits during treatment in adherence improvement.

    Article  PubMed  Google Scholar 

  207. Feldman, S. R. & Chen, D. M. How patients experience and manage dryness and irritation from acne treatment. J. Drugs Dermatol. 10, 605–608 (2011).

    PubMed  Google Scholar 

  208. Feneran, A. N., Kaufman, W. S., Dabade, T. S. & Feldman, S. R. Retinoid plus antimicrobial combination treatments for acne. Clin. Cosmet. Investig. Dermatol. 4, 79–92 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Yentzer, B. A. et al. Simplifying regimens promotes greater adherence and outcomes with topical acne medications: a randomized controlled trial. Cutis 86, 103–108 (2010).

    PubMed  Google Scholar 

  210. Tan, X. et al. Medication adherence, healthcare costs and utilization associated with acne drugs in Medicaid enrollees with acne vulgaris. Am. J. Clin. Dermatol. 14, 243–251 (2013). This large-scale study offers useful data about adherence to acne medication.

    Article  PubMed  Google Scholar 

  211. Halvorsen, J. A. et al. Suicidal ideation, mental health problems, and social impairment are increased in adolescents with acne: a population-based study. J. Invest. Dermatol. 131, 363–370 (2011). This study offers helpful information about the psychological impact of acne.

    Article  CAS  PubMed  Google Scholar 

  212. Uhlenhake, E., Yentzer, B. A. & Feldman, S. R. Acne vulgaris and depression: a retrospective examination. J. Cosmet. Dermatol. 9, 59–63 (2010).

    Article  PubMed  Google Scholar 

  213. Layton, A. M., Henderson, C. A. & Cunliffe, W. J. A clinical evaluation of acne scarring and its incidence. Clin. Exp. Dermatol. 19, 303–308 (1994).

    Article  CAS  PubMed  Google Scholar 

  214. Zouboulis, C. C., Zouridaki, E., Rosenberger, A. & Dalkowski, A. Current developments and uses of cryosurgery in the treatment of keloids and hypertrophic scars. Wound Repair Regen. 10, 98–102 (2002).

    Article  PubMed  Google Scholar 

  215. Jacob, C. I., Dover, J. S. & Kaminer, M. S. Acne scarring: a classification system and review of treatment options. J. Am. Acad. Dermatol. 45, 109–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  216. Rivera, A. E. Acne scarring: a review and current treatment modalities. J. Am. Acad. Dermatol. 59, 659–676 (2008). A comprehensive review of the current treatment options for acne scars.

    Article  PubMed  Google Scholar 

  217. Motley, R. J. & Finlay, A. Y. How much disability is caused by acne? Clin. Exp. Dermatol. 14, 194–198 (1989).

    Article  CAS  PubMed  Google Scholar 

  218. Cunliffe, W. J. Acne and unemployment. Br. J. Dermatol. 115, 386 (1986).

    Article  CAS  PubMed  Google Scholar 

  219. Tasoula, E. et al. The impact of acne vulgaris on quality of life and psychic health in young adolescents in Greece. Results of a population survey. An. Bras. Dermatol. 87, 862–869 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Hayashi, N. et al. A cross-sectional analysis of quality of life in Japanese acne patients using the Japanese version of Skindex-16. J. Dermatol. 31, 971–976 (2004).

    Article  PubMed  Google Scholar 

  221. Tedeschi, A., Dall’Oglio, F., Micali, G., Schwartz, R. A. & Janniger, C. K. Corrective camouflage in pediatric dermatology. Cutis 79, 110–112 (2007).

    PubMed  Google Scholar 

  222. Loney, T., Standage, M. & Lewis, S. Not just ‘skin deep’: psychosocial effects of dermatological-related social anxiety in a sample of acne patients. J. Health Psychol. 13, 47–54 (2008).

    Article  PubMed  Google Scholar 

  223. Mallon, E. et al. The quality of life in acne: a comparison with general medical conditions using generic questionnaires. Br. J. Dermatol. 140, 672–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  224. Ohayon, M. M. Epidemiology of depression and its treatment in the general population. J. Psychiatr. Res. 41, 207–213 (2007).

    Article  PubMed  Google Scholar 

  225. Kellett, S. C. & Gawkrodger, D. J. The psychological and emotional impact of acne and the effect of treatment with isotretinoin. Br. J. Dermatol. 140, 273–282 (1999).

    Article  CAS  PubMed  Google Scholar 

  226. Gupta, M. A. & Gupta, A. K. Depression and suicidal ideation in dermatology patients with acne, alopecia areata, atopic dermatitis and psoriasis. Br. J. Dermatol. 139, 846–850 (1998).

    Article  CAS  PubMed  Google Scholar 

  227. Goodman, G. J. Post-acne scarring: a short review of its pathophysiology. Australas. J. Dermatol. 42, 84–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  228. Zouboulis, C. C. & Böhm, M. Neuroendocrine regulation of sebocytes — a pathogenetic link between stress and acne. Exp. Dermatol. 13, S31–S35 (2004).

    Article  Google Scholar 

  229. Schulpis, K., Georgala, S., Papakonstantinou, E. D. & Michas, T. Psychological and sympatho-adrenal status in patients with cystic acne. J. Eur. Acad. Dermatol. Venereol. 13, 24–27 (1999).

    Article  CAS  PubMed  Google Scholar 

  230. Jones-Caballero, M., Chren, M. M., Soler, B., Pedrosa, E. & Peñas, P. F. Quality of life in mild to moderate acne: relationship to clinical severity and factors influencing change with treatment. J. Eur. Acad. Dermatol. Venereol. 21, 219–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  231. Newton, J. N., Mallon, E., Klassen, A., Ryan, T. J. & Finlay, A. Y. The effectiveness of acne treatment: an assessment by patients of the outcome of therapy. Br. J. Dermatol. 137, 563–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  232. Murray, C. J. et al. GBD 2010: design, definitions, and metrics. Lancet 380, 2063–2066 (2012).

    Article  PubMed  Google Scholar 

  233. Hay, R. J. et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J. Invest. Dermatol. 134, 1527–1534 (2014).

    Article  CAS  PubMed  Google Scholar 

  234. Karimkhani, C. et al. Global burden of skin disease as reflected in Cochrane Database of Systematic Reviews. JAMA Dermatol. 150, 945–951 (2014). This article shows the imbalance of research devoted to different skin diseases and its burden.

    Article  PubMed  Google Scholar 

  235. Karimkhani, C. et al. Comparing cutaneous research funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases with 2010 Global Burden of Disease results. PLoS ONE 9, e102122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zouboulis, C. C. Zileuton, a new efficient and safe systemic anti-acne drug. Dermatoendocrinol. 1, 188–192 (2009). The article presents the effectiveness of a systemic anti-inflammatory leukotriene 5 inhibitor on acne.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zouboulis, C. C. et al. A new concept for acne therapy: a pilot study with zileuton, an oral 5-lipoxygenase inhibitor. Arch. Dermatol. 139, 668–670 (2003).

    Article  PubMed  Google Scholar 

  238. Zouboulis, C. C., Saborowski, A. & Boschnakow, A. Zileuton, an oral 5-lipoxygenase inhibitor, directly reduces sebum production. Dermatology 210, 36–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  239. Sakamoto, F. H. et al. Selective photothermolysis to target sebaceous glands: theoretical estimation of parameters and preliminary results using a free electron laser. Lasers Surg. Med. 44, 175–183 (2012).

    Article  PubMed  Google Scholar 

  240. Dréno, B. et al. Development and evaluation of a Global Acne Severity Scale (GEA Scale) suitable for France and Europe. J. Eur. Acad. Dermatol. Venereol. 25, 43–48 (2011).

    Article  PubMed  Google Scholar 

  241. Department of Health and Human Services. Acne vulgaris: developing drugs for treatment. FDA [online], (2005).

  242. Degitz, K., Placzek, M., Borelli, C. & Plewig, G. Pathophysiology of acne. J. Dtsch. Dermatol. Ges. 5, 316–323 (2007).

    Article  PubMed  Google Scholar 

  243. Zouboulis, C. C. et al. What is the pathogenesis of acne? Exp. Dermatol. 14, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  244. Fresno Contreras, M. J., Jimé nez Soriano, M. M. & Ramírez Diéguez, A. In vitro percutaneous absorption of all-trans retinoic acid applied in free form or encapsulated in stratum corneum lipid liposomes. Int. J. Pharm. 297, 134–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  245. Jain, A. K. et al. Adapalene loaded solid lipid nanoparticles gel: an effective approach for acne treatment. Colloids Surf. B Biointerfaces 121, 222–229 (2014).

    Article  CAS  PubMed  Google Scholar 

  246. Leyden, J. New developments in topical antimicrobial therapy for acne. J. Drugs Dermatol. 7, S8–S11 (2008).

    PubMed  Google Scholar 

  247. Geria, A. N. & Scheinfeld, N. S. Talarozole, a selective inhibitor of P450 mediated all-trans retinoic acid for the treatment of psoriasis and acne. Curr. Opin. Investig. Drugs 9, 1228–1237 (2008).

    CAS  PubMed  Google Scholar 

  248. Stecová, J. et al. Cyproterone acetate loading to lipid nanoparticles for topical acne treatment: particle characterisation and skin uptake. Pharm. Res. 24, 991–1000 (2007).

    Article  CAS  PubMed  Google Scholar 

  249. Trifu, V. et al. Cortexolone 17α-propionate 1% cream, a new potent antiandrogen for topical treatment of acne vulgaris. A pilot randomized, double-blind comparative study versus placebo and tretinoin 0•05% cream. Br. J. Dermatol. 165, 177–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  250. Soh, S. F. et al. Determination of androgen receptor degradation enhancer ASC J9® in mouse sera and organs with liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 88, 117–122 (2014).

    Article  CAS  PubMed  Google Scholar 

  251. Rico, J., Quiring, J., Hollenbach, S., Enloe, C. & Stasko, N. Phase 2 study of efficacy and safety of SB204 in the treatment of acne vulgaris. J. Invest. Dermatol. 134, LB838 (2014).

    Article  CAS  Google Scholar 

  252. Yoon, J. Y., Kwon, H. H., Min, S. U., Thiboutot, D. M. & Suh, D. H. Epigallocatechin-3 gallate improves acne in humans by modulating intracellular molecular targets and inhibiting P. acnes. J. Invest. Dermatol. 133, 429–440 (2013).

    Article  CAS  PubMed  Google Scholar 

  253. Eisinger, M. et al. A melanocortin receptor 1 and 5 antagonist inhibits sebaceous gland differentiation and the production of sebum-specific lipids. J. Dermatol. Sci. 63, 23–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  254. Böhm, M., Ehrchen, J. & Luger, T. A. Beneficial effects of the melanocortin analogue Nle4-D-Phe7-α MSH in acne vulgaris. J. Eur. Acad. Dermatol. Venereol. 28, 108–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  255. Melo, M. N., Dugourd, D. & Castanho, M. A. Omiganan pentahydrochloride in the front line of clinical applications of antimicrobial peptides. Recent Pat. Antiinfect. Drug Discov. 1, 201–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  256. Nakatsuji, T. et al. Vaccination targeting a surface sialidase of P. acnes: implication for new treatment of acne vulgaris. PLoS ONE 3, e1551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Mitkov, M., Pehlivanov, B. & Terzieva, D. Metformin versus rosiglitazone in the treatment of polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 126, 93–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  258. Huang, W. C. et al. Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid. J. Dermatol. Sci. 73, 232–240 (2014).

    Article  CAS  PubMed  Google Scholar 

  259. Morganti, P. et al. Topical clindamycin 1% versus linoleic acid-rich phosphatidylcholine and nicotinamide 4% in the treatment of acne: a multicentre-randomized trial. Int. J. Cosmet. Sci. 33, 467–476 (2011).

    Article  CAS  PubMed  Google Scholar 

  260. Letawe, C., Boone, M. & Piérard, G. E. Digital image analysis of the effect of topically applied linoleic acid on acne microcomedones. Clin. Exp. Dermatol. 23, 56–58 (1998).

    Article  CAS  PubMed  Google Scholar 

  261. Pavicic, T., Wollenweber, U., Farwick, M. & Korting, H. C. Anti-microbial and -inflammatory activity and efficacy of phytosphingosine: an in vitro and in vivo study addressing acne vulgaris. Int. J. Cosmet. Sci. 29, 181–190 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.M.T., C.C.Z. and S.R.F.); Epidemiology (S.M.T., C.C.Z. and S.R.F.); Mechanisms/pathophysiology (S.M.T, E.M., R.G., C.D., C.C.Z. and S.R.F.); Diagnosis, screening and prevention (S.M.T., E.M., R.G., C.D., C.C.Z. and S.R.F.); Management (S.M.T., C.C.Z. and S.R.F.); Quality of life (S.M.T., E.M., R.G., C.D., C.C.Z. and S.R.F.); Outlook (S.M.T., C.C.Z. and S.R.F.); overview of Primer (S.R.F.). S.M.T. and E.M. contributed equally as first authors. S.R.F. and C.C.Z. contributed equally as senior authors.

Corresponding author

Correspondence to Steven R. Feldman.

Ethics declarations

Competing interests

S.M.T. has no conflicts to disclose. E.M. has received an honorarium and a grant from Immundiagnostik. R.G. is a consultant for L'Oreal, and received honoraria as a speaker for Bioderma, Stiefel/GlaxoSmithKline and LEO Pharma. C.D. has received an honorarium as a speaker for Stiefel/GlaxoSmithKline. S.R.F. is a speaker for Janssen and Taro; he is also a consultant and speaker for Galderma, Stiefel/GlaxoSmithKline, Abbott Laboratories and LEO Pharma. S.R.F. has received grants from Galderma, Janssen, Abbott Laboratories, Amgen, Stiefel/GlaxoSmithKline, Celgene and Anacor. S.R.F. is also a consultant for Amgen, Baxter, Caremark, Gerson Lehrman Group, Guidepoint Global, HanAll Pharmaceutical, Kikaku, Eli Lilly, Merck, Merz, Mylan, Novartis, Pfizer, Qurient, Suncare Research and Xenoport. S.R.F. is on an advisory board for Pfizer. S.R.F. is also the founder of and holds stock in Causa Research, and holds stock and is the majority owner in Medical Quality Enhancement Corporation, and he receives royalties from UpToDate and Xlibris. The Center for Dermatology Research, Wake Forest School of Medicine, North Carolina, USA, is supported by an unrestricted educational grant from Galderma Laboratories. C.C.Z. has received honoraria from AbbVie, Almirall, Basilea, Bayer Health Care, Bioderma, Biogen-Idec, Dermira, Galderma, General Topics, Glenmark, LEO Pharma, Philips Lifestyle, Pierre Fabre, Stiefel/GlaxoSmithKline, Vichy and Xenon for participation on advisory boards, or as a consultant, investigator or speaker. The Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany, have received grants from AbbVie, AstraZeneca, Bioderma, Biogen-Idec, Bristol-Meyers Squibb, Immundiagnostik, Intendis, LVMH, Merz, Novartis, Pierre Fabre, and UCB for the participation of C.C.Z. as an investigator, or on advisory boards.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuchayi, S., Makrantonaki, E., Ganceviciene, R. et al. Acne vulgaris. Nat Rev Dis Primers 1, 15029 (2015). https://doi.org/10.1038/nrdp.2015.29

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2015.29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing