Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Periodontal diseases

Abstract

Periodontal diseases comprise a wide range of inflammatory conditions that affect the supporting structures of the teeth (the gingiva, bone and periodontal ligament), which could lead to tooth loss and contribute to systemic inflammation. Chronic periodontitis predominantly affects adults, but aggressive periodontitis may occasionally occur in children. Periodontal disease initiation and propagation is through a dysbiosis of the commensal oral microbiota (dental plaque), which then interacts with the immune defences of the host, leading to inflammation and disease. This pathophysiological situation persists through bouts of activity and quiescence, until the affected tooth is extracted or the microbial biofilm is therapeutically removed and the inflammation subsides. The severity of the periodontal disease depends on environmental and host risk factors, both modifiable (for example, smoking) and non-modifiable (for example, genetic susceptibility). Prevention is achieved with daily self-performed oral hygiene and professional removal of the microbial biofilm on a quarterly or bi-annual basis. New treatment modalities that are actively explored include antimicrobial therapy, host modulation therapy, laser therapy and tissue engineering for tissue repair and regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Healthy and diseased periodontium.
Figure 2: The main stages of periodontal disease.
Figure 3: Immune responses in chronic periodontitis.
Figure 4: Clinical periodontal chart and intra-oral radiographs of a patient with chronic periodontitis.
Figure 5: Susceptibility to periodontal diseases.
Figure 6: Generalized aggressive periodontitis.
Figure 7: Decision algorithm for the therapeutic management of chronic periodontitis.

Similar content being viewed by others

References

  1. Gotsman, I. et al. Periodontal destruction is associated with coronary artery disease and periodontal infection with acute coronary syndrome. J. Periodontol. 78, 849–858 (2007).

    Google Scholar 

  2. Jeffcoat, M. K. et al. Periodontal disease and preterm birth: results of a pilot intervention study. J. Periodontol. 74, 1214–1218 (2003).

    Google Scholar 

  3. Khader, Y. S., Dauod, A. S., El-Qaderi, S. S., Alkafajei, A. & Batayha, W. Q. Periodontal status of diabetics compared with nondiabetics: a meta-analysis. J. Diabetes Complications 20, 59–68 (2006).

    Google Scholar 

  4. Flemmig, T. F. Periodontitis. Ann. Periodontol 4, 32–38 (1999).

    Google Scholar 

  5. Eke, P. I., Dye, B. A., Wei, L., Thornton-Evans, G. O. & Genco, R. J. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J. Dent. Res. 91, 914–920 (2012).

    Google Scholar 

  6. Papapanou, P. N. The prevalence of periodontitis in the US: forget what you were told. J. Dent. Res. 91, 907–908 (2012).

    Google Scholar 

  7. Papapanou, P. N. & Lindhe, J. in Clinical Periodontology and Implant Dentistry 6th edn (eds Lindhe, J. & Lang, N. P. ) 125–166 (Blackwell, 2003).

    Google Scholar 

  8. Demmer, R. T. & Papapanou, P. N. Epidemiologic patterns of chronic and aggressive periodontitis. Periodontol. 2000 53, 28–44 (2010).

    Google Scholar 

  9. Jenkins, W. M. & Papapanou, P. N. Epidemiology of periodontal disease in children and adolescents. Periodontol. 2000 26, 16–32 (2001).

    Google Scholar 

  10. Kassebaum, N. J. et al. Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression. J. Dent. Res. 93, 1045–1053 (2014).

    Google Scholar 

  11. Holtfreter, B. et al. Standards for reporting chronic periodontitis prevalence and severity in epidemiologic studies: proposed standards from the Joint EU/USA Periodontal Epidemiology Working Group. J. Clin. Periodontol. 42, 407–412 (2015).

    Google Scholar 

  12. Kinane, D. F., Peterson, M. & Stathopoulou, P. G. Environmental and other modifying factors of the periodontal diseases. Periodontol. 2000 40, 107–119 (2006).

    Google Scholar 

  13. Kinane, D. F. & Chestnutt, I. G. Smoking and periodontal disease. Crit. Rev. Oral Biol. Med. 11, 356–365 (2000). This paper reviews the correlation between smoking and periodontal disease and outlines the myriad of disadvantages that smokers (compared with non-smokers) have regarding the extent, severity and prognosis of periodontal disease.

    Google Scholar 

  14. Nociti, F. H., Casati, M. Z. & Duarte, P. M. Current perspective of the impact of smoking on the progression and treatment of periodontitis. Periodontol. 2000 67, 187–210 (2014).

    Google Scholar 

  15. Thorstensson, H., Kuylenstiema, J. & Hugoson, A. Medical status and complications in relation to periodontal disease experience in insulin-dependent diabetics. J. Clin. Periodontol. 23, 194–202 (1996).

    Google Scholar 

  16. Lalla, E. & Papapanou, P. N. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat. Rev. Endocrinol. 7, 738–748 (2011). This review summarizes the data and explains the link between two common diseases: diabetes mellitus and periodontitis.

    Google Scholar 

  17. Lalla, E. et al. Diabetes mellitus promotes periodontal destruction in children. J. Clin. Periodontol. 34, 294–298 (2007).

    Google Scholar 

  18. Eke, P. I. et al. Risk indicators for periodontitis in US adults: NHANES 2009 to 2012. J. Periodontol. 87, 1174–1185 (2016).

    Google Scholar 

  19. Kinane, D. F. & Marshall, G. J. Periodontal manifestations of systemic disease. Aust. Dent. J. 46, 2–12 (2001).

    Google Scholar 

  20. Borrell, L. N. & Papapanou, P. N. Analytical epidemiology of periodontitis. J. Clin. Periodontol. 32 (Suppl. 6), 132–158 (2005).

    Google Scholar 

  21. Michalowicz, B. S. et al. Evidence of a substantial genetic basis for risk of adult periodontitis. J. Periodontol. 71, 1699–1707 (2000).

    Google Scholar 

  22. Schaefer, A. S. et al. A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis. Hum. Mol. Genet. 19, 553–562 (2010).

    Google Scholar 

  23. Divaris, K. et al. Genome-wide association study of periodontal pathogen colonization. J. Dental Res. 91, 21S–28S (2012).

    Google Scholar 

  24. Divaris, K. et al. Exploring the genetic basis of chronic periodontitis: a genome-wide association study. Hum. Mol. Genet. 22, 2312–2324 (2013).

    Google Scholar 

  25. Teumer, A. et al. Genome-wide association study of chronic periodontitis in a general German population. J. Clin. Periodontol. 40, 977–985 (2013).

    Google Scholar 

  26. Shaffer, J. R. et al. Genome-wide association study of periodontal health measured by probing depth in adults ages 18–49 years. G3 (Bethesda) 4, 307–314 (2014).

    Google Scholar 

  27. Freitag-Wolf, S. et al. Genome-wide exploration identifies sex-specific genetic effects of alleles upstream NPY to increase the risk of severe periodontitis in men. J. Clin. Periodontol. 41, 1115–1121 (2014).

    Google Scholar 

  28. Feng, P. et al. Genome wide association scan for chronic periodontitis implicates novel locus. BMC Oral Health 14, 84 (2014).

    Google Scholar 

  29. Shimizu, S. et al. A genome-wide association study of periodontitis in a Japanese population. J. Dent. Res. 94, 555–561 (2015).

    Google Scholar 

  30. Hong, K. W., Shin, M. S., Ahn, Y. B., Lee, H. J. & Kim, H. D. Genomewide association study on chronic periodontitis in Korean population: results from the Yangpyeong health cohort. J. Clin. Periodontol. 42, 703–710 (2015).

    Google Scholar 

  31. Sanders, A. E. et al. Chronic periodontitis genome-wide association study in the Hispanic Community Health Study / Study Of Latinos. J. Dent. Res. 96, 64–72 (2017).

    Google Scholar 

  32. Martins, M. D. et al. Epigenetic modifications of histones in periodontal disease. J. Dent. Res. 95, 215–222 (2016).

    Google Scholar 

  33. Darveau, R. P. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 8, 481–490 (2010).

    Google Scholar 

  34. Lourenco, T. G. et al. Microbial signature profiles of periodontally healthy and diseased patients. J. Clin. Periodontol. 41, 1027–1036 (2014).

    Google Scholar 

  35. Perez-Chaparro, P. J. et al. Newly identified pathogens associated with periodontitis: a systematic review. J. Dent. Res. 93, 846–858 (2014).

    Google Scholar 

  36. Perez-Chaparro, P. J. et al. The current weight of evidence of the microbiologic profile associated with peri-implantitis: a systematic review. J. Periodontol. 87, 1295–1304 (2016).

    Google Scholar 

  37. Feres, M., Teles, F., Teles, R., Figueiredo, L. C. & Faveri, M. The subgingival periodontal microbiota of the aging mouth. Periodontol. 2000 72, 30–53 (2016).

    Google Scholar 

  38. Haubek, D. et al. Risk of aggressive periodontitis in adolescent carriers of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans in Morocco: a prospective longitudinal cohort study. Lancet 371, 237–242 (2008).

    Google Scholar 

  39. Amaliya, A. et al. Java project on periodontal diseases: periodontal bone loss in relation to environmental and systemic conditions. J. Clin. Periodontol. 42, 325–332 (2015).

    Google Scholar 

  40. Mombelli, A., Casagni, F. & Madianos, P. N. Can presence or absence of periodontal pathogens distinguish between subjects with chronic and aggressive periodontitis? A systematic review. J. Clin. Periodontol. 29 (Suppl. 3), 10–21 (2002).

    Google Scholar 

  41. Pillet, S. Cytomegalovirus and ulcerative colitis: place of antiviral therapy. World J. Gastroenterol. 22, 2030 (2016).

    Google Scholar 

  42. Slots, J. Periodontal herpesviruses: prevalence, pathogenicity, systemic risk. Periodontol. 2000 69, 28–45 (2015).

    Google Scholar 

  43. Fu, Y. W., Li, X. X., Gong, Y. Q. & Xu, H. Z. Valacyclovir as an adjunct to full-mouth scaling and root planing of advanced chronic periodontitis: a randomized clinical trial [Chinese]. Shanghai Kou Qiang Yi Xue 23, 103–106 (2014).

    Google Scholar 

  44. Sunde, P. T., Olsen, I., Enersen, M. & Grinde, B. Patient with severe periodontitis and subgingival Epstein–Barr virus treated with antiviral therapy. J. Clin. Virol. 42, 176–178 (2008).

    Google Scholar 

  45. Mantyla, P. et al. Gingival crevicular fluid collagenase-2 (MMP-8) test stick for chair-side monitoring of periodontitis. J. Periodontal Res. 38, 436–439 (2003).

    Google Scholar 

  46. Kinane, D. F., Demuth, D. R., Gorr, S. U., Hajishengallis, G. N. & Martin, M. H. Human variability in innate immunity. Periodontol. 2000 45, 14–34 (2007). This paper summarizes the state-of-the-art in our understanding of the innate immune processes in periodontal disease and susceptibility to this disease.

    Google Scholar 

  47. Hajishengallis, G. & Lamont, R. J. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral Microbiol. 27, 409–419 (2012).

    Google Scholar 

  48. Kinane, D. F. & Hajishengallis, G. Polymicrobial infections, biofilms, and beyond. J. Clin. Periodontol. 36, 404–405 (2009).

    Google Scholar 

  49. Benakanakere, M. & Kinane, D. F. Innate cellular responses to the periodontal biofilm. Front. Oral Biol. 15, 41–55 (2012).

    Google Scholar 

  50. Graves, D. Cytokines that promote periodontal tissue destruction. J. Periodontol. 79, 1585–1591 (2008).

    Google Scholar 

  51. Gemmell, E., Marshall, R. I. & Seymour, G. J. Cytokines and prostaglandins in immune homeostasis and tissue destruction in periodontal disease. Periodontol. 2000 14, 112–143 (1997).

    Google Scholar 

  52. Sorsa, T. et al. Analysis of matrix metalloproteinases, especially MMP-8, in gingival creviclular fluid, mouthrinse and saliva for monitoring periodontal diseases. Periodontol. 2000 70, 142–163 (2016).

    Google Scholar 

  53. Gemmell, E. & Seymour, G. J. Immunoregulatory control of Th1/Th2 cytokine profiles in periodontal disease. Periodontol. 2000 35, 21–41 (2004).

    Google Scholar 

  54. Aranha, A. M. et al. Evidence supporting a protective role for Th9 and Th22 cytokines in human and experimental periapical lesions. J. Endod. 39, 83–87 (2013).

    Google Scholar 

  55. Eskan, M. A. et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat. Immunol. 13, 465–473 (2012).

    Google Scholar 

  56. Kinane, D. F., Podmore, M., Murray, M. C., Hodge, P. J. & Ebersole, J. Etiopathogenesis of periodontitis in children and adolescents. Periodontol. 2000 26, 54–91 (2001).

    Google Scholar 

  57. Abbas, F. et al. Bleeding/plaque ratio and the development of gingival inflammation. J. Clin. Periodontol. 13, 774–782 (1986).

    Google Scholar 

  58. Winkel, E. G. et al. Experimental gingivitis in relation to age in individuals not susceptible to periodontal destruction. J. Clin. Periodontol. 14, 499–507 (1987).

    Google Scholar 

  59. Kinane, D. F. & Attstrom, R. Advances in the pathogenesis of periodontitiss. Group B consensus report of the fifth European workshop in periodontology. J. Clin. Periodontol. 32, 130–131 (2005).

    Google Scholar 

  60. Joss, A., Adler, R. & Lang, N. P. Bleeding on probing. A parameter for monitoring periodontal conditions in clinical practice. J. Clin. Periodontol. 21, 402–408 (1994).

    Google Scholar 

  61. Lang, N. P., Adler, R., Joss, A. & Nyman, S. Absence of bleeding on probing. An indicator of periodontal stability. J. Clin. Periodontol. 17, 714–721 (1990). This seminal paper explains that an absence of bleeding from the gingiva is an excellent indicator of lack of gingival inflammation and is, therefore, a negative predictive marker of gingivitis and periodontal disease.

    Google Scholar 

  62. Löe, H., Theilade, E. & Jensen, S. B. Experimental gingivitis in man. J. Periodontol. 36, 177–187 (1965). This landmark paper links the absence of toothbrushing with the accumulation of microbial dental plaque and the onset of gingivitis.

    Google Scholar 

  63. Theilade, E., Wright, W. H., Jensen, S. B. & Loe, H. Experimental gingivitis in man. J. Periodontal Res. 1, 1–13 (1966).

    Google Scholar 

  64. Trombelli, L., Scapoli, C., Tatakis, D. N. & Grassi, L. Modulation of clinical expression of plaque-induced gingivitis: effects of personality traits, social support and stress. J. Clin. Periodontol. 32, 1143–1150 (2005).

    Google Scholar 

  65. Trombelli, L. et al. Modulation of clinical expression of plaque-induced gingivitis. II. Identification of “high-responder” and “low-responder” subjects. J. Clin. Periodontol. 31, 239–252 (2004).

    Google Scholar 

  66. Tatakis, D. N. & Trombelli, L. Modulation of clinical expression of plaque-induced gingivitis. I. Background review and rationale. J. Clin. Periodontol. 31, 229–238 (2004).

    Google Scholar 

  67. Scapoli, C., Mamolini, E. & Trombelli, L. Role of IL-6, TNF-A and LT-A variants in the modulation of the clinical expression of plaque-induced gingivitis. J. Clin. Periodontol. 34, 1031–1038 (2007).

    Google Scholar 

  68. Scapoli, C., Tatakis, D. N., Mamolini, E. & Trombelli, L. Modulation of clinical expression of plaque-induced gingivitis: interleukin-1 gene cluster polymorphisms. J. Periodontol. 76, 49–56 (2005).

    Google Scholar 

  69. Shapira, L., Wilensky, A. & Kinane, D. F. Effect of genetic variability on the inflammatory response to periodontal infection. J. Clin. Periodontol. 32, 72–86 (2005).

    Google Scholar 

  70. Trombelli, L. et al. Experimental gingivitis: reproducibility of plaque accumulation and gingival inflammation parameters in selected populations during a repeat trial. J. Clin. Periodontol. 35, 955–960 (2008).

    Google Scholar 

  71. Trombelli, L. et al. Interleukin-1β levels in gingival crevicular fluid and serum under naturally occurring and experimentally induced gingivitis. J. Clin. Periodontol. 37, 697–704 (2010).

    Google Scholar 

  72. Offenbaceer, S., Odle, B. M. & Dyke, T. E. The use of crevicular fluid prostaglandin E2 levels as a predictor of periodontal attachment loss. J. Periodontal Res. 21, 101–112 (1986).

    Google Scholar 

  73. Stashenko, P. Role of immune cytokines in the pathogenesis of periapical lesions. Endod. Dent. Traumatol. 6, 89–96 (1990).

    Google Scholar 

  74. Wilton, J. M. A. et al. Detection of high-risk groups and individuals for periodontal diseases. Systemic predisposition and markers of general health. J. Clin. Periodontol. 15, 339–346 (1988).

    Google Scholar 

  75. Ellis, J. S. et al. Prevalence of gingival overgrowth induced by calcium channel blockers: a community-based study. J. Periodontol. 70, 63–67 (1999).

    Google Scholar 

  76. Wu, M., Chen, S. W. & Jiang, S. Y. Relationship between gingival inflammation and pregnancy. Mediators Inflamm. 2015, 623427 (2015).

    Google Scholar 

  77. Barr, C., Lopez, M. R. & Rua-Dobles, A. Periodontal changes by HIV serostatus in a cohort of homosexual and bisexual men. J. Clin. Periodontol. 19, 794–801 (1992).

    Google Scholar 

  78. Kinane, D. F. & Lappin, D. F. Immune processes in periodontal disease: a review. Ann. Periodontol 7, 62–71 (2002).

    Google Scholar 

  79. Van der Velden, U. et al. Java project on periodontal diseases. The natural development of periodontitis: risk factors, risk predictors and risk determinants. J. Clin. Periodontol. 33, 540–548 (2006). This study points to the fact that periodontal disease begins in early teenage years, and susceptibility to periodontal disease carries on to adulthood.

    Google Scholar 

  80. Kinane, D. F., Shiba, H. & Hart, T. C. The genetic basis of periodontitis. Periodontol. 2000 39, 91–117 (2005). This review addresses the genetic aspects of the aetiology of periodontal disease.

    Google Scholar 

  81. Baylin, S. B. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2, S4–S11 (2005).

    Google Scholar 

  82. Benakanakere, M., Abdolhosseini, M., Hosur, K., Finoti, L. S. & Kinane, D. F. TLR2 promoter hypermethylation creates innate immune dysbiosis. J. Dent. Res. 94, 183–191 (2015). This paper describes the epigenetic changes in the gingiva that are caused by the interaction of P. gingivalis with epithelial cells and shows that this epigenetic modification of Toll-like receptor 2 causes disruptive changes in the ability of epithelial cells to enhance inflammation.

    Google Scholar 

  83. Kinane, D. F. Causation and pathogenesis of periodontal disease. Periodontol. 2000 25, 8–20 (2001).

    Google Scholar 

  84. [No authors listed.] American Academy of Periodontology Task Force Report on the Update to the 1999 Classification of Periodontal Diseases and Conditions. J. Periodontol 86, 835–838 (2015).

  85. Armitage, G. C. Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 4, 1–6 (1999).

    Google Scholar 

  86. Stathopoulou, P. G., Buduneli, N. & Kinane, D. F. Systemic biomarkers for periodontitis. Curr. Oral Health Rep. 2, 218–226 (2015).

    Google Scholar 

  87. Haffajee, A. D., Socransky, S. S. & Goodson, J. M. Clinical parameters as predictors of destructive periodontal disease activity. J. Clin. Periodontol. 10, 257–265 (1983).

    Google Scholar 

  88. Giannobile, W. V., Kornman, K. S. & Williams, R. C. Personalized medicine enters dentistry. J. Am. Dent. Assoc. 144, 874–876 (2013).

    Google Scholar 

  89. Apatzidou, D. A. & Kinane, D. F. Nonsurgical mechanical treatment strategies for periodontal disease. Dent. Clin. North Am. 54, 1–12 (2010).

    Google Scholar 

  90. Axelsson, P., Lindhe, J. & Nystrom, B. On the prevention of caries and periodontal disease. Results of a 15-year longitudinal study in adults. J. Clin. Periodontol. 18, 182–189 (1991).

    Google Scholar 

  91. Breininger, D. R., O’Leary, T. J. & Blumenshine, R. V. H. Comparative effectiveness of ultrasonic and hand scaling for the removal of subgingival plaque and calculus. J. Periodontol. 58, 9–18 (1987).

    Google Scholar 

  92. Dragoo, M. R. A clinical evaluation of hand and ultrasonic instruments on subgingival debridement. 1. With unmodified and modified ultrasonic inserts. Int. J. Periodontics Restorative Dent. 12, 310–323 (1992).

    Google Scholar 

  93. Badersten, A., Nilveus, R. & Egelberg, J. Effect of nonsurgical periodontal therapy. II. Severely advanced periodontitis. J. Clin. Periodontol. 11, 63–76 (1984).

    Google Scholar 

  94. Torfason, T., Kiger, R., Selvig, K. A. & Egelberg, J. Clinical improvement of gingival conditions following ultrasonic versus hand instrumentation of periodontal pockets. J. Clin. Periodontol. 6, 165–176 (1979).

    Google Scholar 

  95. Tunkel, J., Heinecke, A. & Flemmig, T. F. A systematic review of efficacy of machine-driven and manual subgingival debridement in the treatment of chronic periodontitis. J. Clin. Periodontol. 29, 72–81 (2002).

    Google Scholar 

  96. Hanes, P. J. & Purvis, J. P. Local anti-infective therapy: pharmacological agents. A systematic review. Ann. Periodontol. 8, 79–98 (2003).

    Google Scholar 

  97. Matesanz-Pérez, P. et al. A systematic review on the effects of local antimicrobials as adjuncts to subgingival debridement, compared with subgingival debridement alone, in the treatment of chronic periodontitis. J. Clin. Periodontol. 40, 227–241 (2013).

    Google Scholar 

  98. Slots, J. Systemic antibiotics in periodontics. J. Periodontol. 75, 1553–1565 (2004).

    Google Scholar 

  99. Keestra, J. A. J., Grosjean, I., Coucke, W., Quirynen, M. & Teughels, W. Non-surgical periodontal therapy with systemic antibiotics in patients with untreated chronic periodontitis: a systematic review and meta-analysis. J. Periodontal Res. 50, 294–314 (2014).

    Google Scholar 

  100. Keestra, J. A. J., Grosjean, I., Coucke, W., Quirynen, M. & Teughels, W. Non-surgical periodontal therapy with systemic antibiotics in patients with untreated aggressive periodontitis: a systematic review and meta-analysis. J. Periodontal Res. 50, 689–706 (2014).

    Google Scholar 

  101. Rabelo, C. C. et al. Systemic antibiotics in the treatment of aggressive periodontitis. A systematic review and a Bayesian Network meta-analysis. J. Clin. Periodontol. 42, 647–657 (2015).

    Google Scholar 

  102. Zandbergen, D., Slot, D. E., Niederman, R. & Van der Weijden, F. A. The concomitant administration of systemic amoxicillin and metronidazole compared to scaling and root planing alone in treating periodontitis: = a systematic review =. BMC Oral Health 16, 27 (2016).

    Google Scholar 

  103. Chang, K. M. et al. Tetracyclines inhibit Porphyromonas gingivalis-induced alveolar bone loss in rats by a non-antimicrobial mechanism. J. Periodontal Res. 29, 242–249 (1994).

    Google Scholar 

  104. Caton, J. G. et al. Treatment with subantimicrobial dose doxycycline improves the efficacy of scaling and root planing in patients with adult periodontitis. J. Periodontol. 71, 521–532 (2000).

    Google Scholar 

  105. Oringer, R. J. Modulation of the host response in periodontal therapy. J. Periodontol. 73, 460–470 (2002).

    Google Scholar 

  106. Stambaugh, R. V., Dragoo, M., Smith, D. M. & Carasali, L. The limits of subgingival scaling. Int. J. Periodontics Restorative Dent. 1, 30–41 (1981).

    Google Scholar 

  107. Caffesse, R. G., Sweeney, P. L. & Smith, B. A. Scaling and root planing with and without periodontal flap surgery. J. Clin. Periodontol. 13, 205–210 (1986).

    Google Scholar 

  108. Wang, H. L. & Greenwell, H. Surgical periodontal therapy. Periodontol. 2000 25, 89–99 (2001).

    Google Scholar 

  109. Everett, F. G., Waerhaug, J. & Widman, A. Leonard Widman: surgical treatment of pyorrhea alveolaris. J. Periodontol. 42, 571–579 (1971).

    Google Scholar 

  110. Ramfjord, S. P. & Nissle, R. R. The modified widman flap. J. Periodontol. 45, 601–607 (1974).

    Google Scholar 

  111. Nyman, S., Lindhe, J., Karring, T. & Rylander, H. New attachment following surgical treatment of human periodontal disease. J. Clin. Periodontol. 9, 290–296 (1982).

    Google Scholar 

  112. Larsson, L. et al. Regenerative medicine for periodontal and peri-implant diseases. J. Dent. Res. 95, 255–266 (2016).

    Google Scholar 

  113. Yukna, R. A., Carr, R. L. & Evans, G. H. Histologic evaluation of an Nd:YAG laser-assisted new attachment procedure in humans. Int. J. Periodontics Restorative Dent. 27, 577–587 (2007).

    Google Scholar 

  114. Isidor, F. & Karring, T. Long-term effect of surgical and non-surgical periodontal treatment. A 5-year clinical study. J. Periodontal Res. 21, 462–472 (1986).

    Google Scholar 

  115. Kaldahl, W. B., Kalkwarf, K. L., Patil, K. D., Molvar, M. P. & Dyer, J. K. Long-term evaluation of periodontal therapy: I. Response to 4 therapeutic modalities. J. Periodontol. 67, 93–102 (1996).

    Google Scholar 

  116. Lindhe, J., Westfelt, E., Nyman, S., Socransky, S. S. & Haffajee, A. D. Long-term effect of surgical/non-surgical treatment of periodontal disease. J. Clin. Periodontol. 11, 448–458 (1984).

    Google Scholar 

  117. Olsen, C. T., Ammons, W. F. & van Belle, G. A longitudinal study comparing apically repositioned flaps, with and without osseous surgery. Int. J. Periodontics Restorative Dent. 5, 10–33 (1985).

    Google Scholar 

  118. Pihlstrom, B. L., Oliphant, T. H. & McHugh, R. B. Molar and nonmolar teeth compared over 6½ years following two methods of periodontal therapy. J. Periodontol. 55, 499–504 (1984).

    Google Scholar 

  119. Ramfjord, S. P. et al. 4 modalities of periodontal treatment compared over 5 years. J. Clin. Periodontol. 14, 445–452 (1987).

    Google Scholar 

  120. Kaldahl, W. B., Kalkwarf, K. L., Patil, K. D., Molvar, M. P. & Dyer, J. K. Long-term evaluation of periodontal therapy: II. Incidence sites break. down. J. Periodontol. 67, 103–108 (1996).

    Google Scholar 

  121. Kalkwarf, K. L., Kaldahl, W. B. & Patil, K. D. Evaluation of furcation region response to periodontal therapy. J. Periodontol. 59, 794–804 (1988).

    Google Scholar 

  122. Murphy, K. G. & Gunsolley, J. C. Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Ann. Periodontol. 8, 266–302 (2003).

    Google Scholar 

  123. Kao, R. T., Nares, S. & Reynolds, M. A. Periodontal regeneration — intrabony defects: a systematic review from the AAP Regeneration Workshop. J. Periodontol. 86, S77–S104 (2015).

    Google Scholar 

  124. Reynolds, M. A. et al. Periodontal regeneration — intrabony defects: a consensus report from the AAP Regeneration Workshop. J. Periodontol. 86, S105–S107 (2015).

    Google Scholar 

  125. Nevins, M. L. et al. Human clinical and histologic evaluation of laser-assisted new attachment procedure. Int. J. Periodontics Restorative Dent. 32, 497–507 (2012).

    Google Scholar 

  126. Nevins, M. et al. A prospective 9-month human clinical evaluation of laser-assisted new attachment procedure (LANAP) therapy. Int. J. Periodontics Restorative Dent. 34, 21–27 (2014).

    Google Scholar 

  127. Becker, W., Berg, L. & Becker, B. E. Untreated periodontal disease: a longitudinal study. J. Periodontol. 50, 234–244 (1979).

    Google Scholar 

  128. Buckley, L. A. & Growley, M. J. A longitudinal study of untreated periodontal disease. J. Clin. Periodontol. 11, 523–530 (1984).

    Google Scholar 

  129. Goldman, M. J., Ross, I. F. & Goteiner, D. Effect of periodontal therapy on patients maintained for 15 years or longer. J. Periodontol. 57, 347–353 (1986).

    Google Scholar 

  130. Hirschfeld, L. & Wasserman, B. A long-term survey of tooth loss in 600 treated periodontal patients. J. Periodontol. 49, 225–237 (1978).

    Google Scholar 

  131. McFall, W. T. Tooth loss in 100 treated patients with periodontal disease: a long-term study. J. Periodontol. 53, 539–549 (1982).

    Google Scholar 

  132. Meador, H. L., Lane, J. J. & Suddick, R. P. The long-term effectiveness of periodontal therapy in a clinical practice. J. Periodontol. 56, 253–258 (1985).

    Google Scholar 

  133. Becker, W., Becker, B. E. & Berg, L. E. Periodontal treatment without maintenance: a retrospective study in 44 patients. J. Periodontol. 55, 505–509 (1984).

    Google Scholar 

  134. Wilson, T. G. et al. Compliance with maintenance therapy in a private periodontal practice. J. Periodontol. 55, 468–473 (1984).

    Google Scholar 

  135. Wilson, T. G. Jr, Hale, S. & Temple, R. The results of efforts to improve compliance with supportive periodontal treatment in a private practice. J. Periodontol. 64, 311–314 (1993).

    Google Scholar 

  136. Karring, E. S., Stavropoulos, A., Ellegaard, B. & Karring, T. Treatment of peri-implantitis by the VectorR system. A pilot study. Clin. Oral Implants Res. 16, 288–293 (2005).

    Google Scholar 

  137. Persson, G. R., Samuelsson, E., Lindahl, C. & Renvert, S. Mechanical non-surgical treatment of peri-implantitis: a single-blinded randomized longitudinal clinical study. II. Microbiological results. J. Clin. Periodontol. 37, 563–573 (2010).

    Google Scholar 

  138. Ronay, V., Merlini, A., Attin, T., Schmidlin, P. R. & Sahrmann, P. In vitro cleaning potential of three implant debridement methods. Simulation of the non-surgical approach. Clin. Oral Implants Res. 28, 151–155 (2017).

    Google Scholar 

  139. Sheiham, A. et al. Prevalence of impacts of dental and oral disorders and their effects on eating among older people; a national survey in Great Britain. Community Dent. Oral Epidemiol. 29, 195–203 (2001).

    Google Scholar 

  140. Locker, D. The burden of oral disorders in a population of older adults. Community Dent. Health 9, 109–124 (1992).

    Google Scholar 

  141. Locker, D. in Measuring Oral Health and Quality of Life (ed. Slade, G. D. ) 11–24 (Chapel Hill: University of North Carolina, Dental Ecology, 1997).

    Google Scholar 

  142. Strauss, R. P. & Hunt, R. J. Understanding the value of teeth to older adults: influences on the quality of life. J. Am. Dent. Assoc. 124, 105–110 (1993).

    Google Scholar 

  143. Buunk-Werkhoven, Y., Dijkstra-le Clercq, M., Verheggen-Udding, E., de Jong, N. & Spreen, M. Halitosis and oral health-related quality of life: a case report. Int. J. Dent. Hyg. 10, 3–8 (2012).

    Google Scholar 

  144. Gift, H. C., Reisine, S. T. & Larach, D. C. The social impact of dental problems and visits. Am. J. Public Health 82, 1663–1668 (1992).

    Google Scholar 

  145. Kinane, D. F. Periodontal diseases’ contributions to cardiovascular disease: an overview of potential mechanisms. Ann. Periodontol. 3, 142–150 (1998).

    Google Scholar 

  146. Buduneli, N. & Kinane, D. F. Host-derived diagnostic markers related to soft tissue destruction and bone degradation in periodontitis. J. Clin. Periodontol. 38 (Suppl. 11), 85–105 (2011). This review indicates the dearth of readily available and useful diagnostic markers in periodontal disease despite the extensive range of molecules tested over the years.

    Google Scholar 

  147. Lang, N. P., Joss, A., Orsanic, T., Gusberti, F. A. & Siegrist, B. E. Bleeding on probing. A predictor for the progression of periodontal disease? J. Clin. Periodontol. 13, 590–596 (1986).

    Google Scholar 

  148. Wang, L., Guan, N., Jin, Y., Lin, X. & Gao, H. Subcutaneous vaccination with Porphyromonas gingivalis ameliorates periodontitis by modulating Th17/Treg imbalance in a murine model. Int. Immunopharmacol. 25, 65–73 (2015).

    Google Scholar 

  149. Rios, H. F., Lin, Z., Oh, B., Park, C. H. & Giannobile, W. V. Cell- and gene-based therapeutic strategies for periodontal regenerative medicine. J. Periodontol. 82, 1223–1237 (2011).

    Google Scholar 

  150. Sculean, A. et al. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontol. 2000 68, 182–216 (2015).

    Google Scholar 

  151. Bartold, P. M., Gronthos, S., Ivanovski, S., Fisher, A. & Hutmacher, D. W. Tissue engineered periodontal products. J. Periodontal Res. 51, 1–15 (2015). This is an up-to-date candid review of what is available and what we can expect in the future in terms of tissue engineering additions for periodontal regeneration.

    Google Scholar 

  152. Chia, H. N. & Wu, B. M. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9, 4 (2015).

    Google Scholar 

  153. Rasperini, G. et al. 3D-printed bioresorbable scaffold for periodontal repair. J. Dent. Res. 94, 153S–157S (2015).

    Google Scholar 

  154. Pilipchuk, S. P. et al. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent. Mater. 31, 317–338 (2015).

    Google Scholar 

  155. Chen, S. et al. Adenovirus encoding BMP-7 immobilized on titanium surface exhibits local delivery ability and regulates osteoblast differentiation in vitro. Arch. Oral Biol. 58, 1225–1231 (2013).

    Google Scholar 

  156. Schwarz, F., Bieling, K., Nuesry, E., Sculean, A. & Becker, J. Clinical and histological healing pattern of peri-implantitis lesions following non-surgical treatment with an Er:YAG laser. Lasers Surg. Med. 38, 663–671 (2006).

    Google Scholar 

  157. Renvert, S., Lindahl, C., Roos Jansåker, A.-M. & Persson, G. R. Treatment of peri-implantitis using an Er:YAG laser or an air-abrasive device: a randomized clinical trial. J. Clin. Periodontol. 38, 65–73 (2010).

    Google Scholar 

  158. Sahm, N., Becker, J., Santel, T. & Schwarz, F. Non-surgical treatment of peri-implantitis using an air-abrasive device or mechanical debridement and local application of chlorhexidine: a prospective, randomized, controlled clinical study. J. Clin. Periodontol. 38, 872–878 (2011).

    Google Scholar 

  159. Passanezi, E., Damante, C. A., de Rezende, M. L. R. & Greghi, S. L. A. Lasers in periodontal therapy. Periodontol. 2000 67, 268–291 (2014).

    Google Scholar 

  160. Mustafa, M. et al. Resolvin D1 protects periodontal ligament. Am. J. Physiol. Cell Physiol. 305, C673–C679 (2013).

    Google Scholar 

  161. Van Dyke, T. E. & Serhan, C. N. Resolution of inflammation: a new paradigm for the pathogenesis of periodontal diseases. J. Dent. Res. 82, 82–90 (2003). This paper indicates the use of naturally occurring molecules, resolvins, to enhance tissue recovery from inflammation and thereby aid periodontal healing and treatment.

    Google Scholar 

  162. Hasturk, H. et al. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J. Immunol. 179, 7021–7029 (2007).

    Google Scholar 

  163. Hasturk, H. et al. RvE1 protects from local inflammation and osteoclast-mediated bone destruction in periodontitis. FASEB J. 20, 401–403 (2006).

    Google Scholar 

  164. Spite, M. et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461, 1287–1291 (2009).

    Google Scholar 

  165. Kulkarni, C. & Kinane, D. F. Host response in aggressive periodontitis. Periodontol. 2000 65, 79–91 (2014).

    Google Scholar 

  166. Bermejo-Fenoll, A. & Sanchez-Perez, A. Necrotising periodontal diseases. Med. Oral Patol. Oral Cir. Bucal 9 (Suppl.), 114–119 (2004).

    Google Scholar 

Download references

Acknowledgements

The authors thank M. Benakanakere for assistance in developing Figure 3.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (D.F.K.); Epidemiology (P.N.P.); Mechanisms/pathophysiology (D.F.K.); Diagnosis, screening and prevention (D.F.K. and P.G.S.); Management (P.G.S.); Quality of life (D.F.K.); Outlook (D.F.K.); Overview of Primer (D.F.K.).

Corresponding author

Correspondence to Denis F. Kinane.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinane, D., Stathopoulou, P. & Papapanou, P. Periodontal diseases. Nat Rev Dis Primers 3, 17038 (2017). https://doi.org/10.1038/nrdp.2017.38

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.38

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology