Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Merkel cell carcinoma

Abstract

Merkel cell carcinoma (MCC) is a rare but highly aggressive skin cancer with neuroendocrine features. MCC pathogenesis is associated with either the presence of Merkel cell polyomavirus or chronic exposure to ultraviolet light (UV), which can cause a characteristic pattern of multiple DNA mutations. Notably, in the Northern hemisphere, the majority of MCC cases are of viral aetiology; by contrast, in areas with high UV exposure, UV-mediated carcinogenesis is predominant. The two aetiologies share similar clinical, histopathological and prognostic characteristics. MCC presents with a solitary cutaneous or subcutaneous nodule, most frequently in sun-exposed areas. In fact, UV exposure is probably involved in both viral-mediated and non-viral-mediated carcinogenesis, by contributing to immunosuppression or DNA damage, respectively. Confirmation of diagnosis relies on analyses of histological features and immunological marker expression profiles of the lesion. At primary diagnosis, loco-regional metastases are already present in 30% of patients. Excision of the tumour is the first-line therapy; if not feasible, radiotherapy can often effectively control the disease. Chemotherapy was the only alternative in advanced-stage or refractory MCC until several clinical trials demonstrated the efficacy of immune-checkpoint inhibitors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical cells of origin, causal events and tissue markers for MCC.
Figure 2: Circular map of MCPyV and linear maps of the MCPyV early genes.
Figure 3: Genetic aberrations in MCC.
Figure 4: Clinical presentations of MCC.
Figure 5: Histopathological and immunohistochemical features of MCC.
Figure 6: Simplified evaluation and treatment of primary MCC.

Similar content being viewed by others

References

  1. Toker, C. Trabecular carcinoma of the skin. Arch. Dermatol. 105, 107–110 (1972).

    Google Scholar 

  2. Maricich, S. M. et al. Merkel cells are essential for light-touch responses. Science 324, 1580–1582 (2009). This study demonstrates that Merkel cells are essential for gentle touch reception.

    Google Scholar 

  3. Lemos, B. D. et al. Pathologic nodal evaluation improves prognostic accuracy in Merkel cell carcinoma: analysis of 5823 cases as the basis of the first consensus staging system. J. Am. Acad. Dermatol. 63, 751–761 (2010).

    Google Scholar 

  4. Schrama, D. et al. Merkel cell polyomavirus status is not associated with clinical course of Merkel cell carcinoma. J. Invest. Dermatol. 131, 1631–1638 (2011).

    Google Scholar 

  5. Becker, J. C., Schrama, D. & zur Hausen, A. in Rook's Textbook of Dermatology, 9 Vol. 12 Ch. 145 (eds Griffiths, C., Barker, J., Bleiker, T., Chalmers, R. & Creamer, D. ) (John Wiley & Sons, Inc., 2016).

    Google Scholar 

  6. Kaae, J. et al. Merkel cell carcinoma: incidence, mortality, and risk of other cancers. J. Natl Cancer Inst. 102, 793–801 (2010).

    Google Scholar 

  7. Harms, P. W. et al. The distinctive mutational spectra of polyomavirus-negative Merkel cell carcinoma. Cancer Res. 75, 3720–3727 (2015). The first report to demonstrate the strong UV mutational signature in MCPyV MCC and absence of UV mutational signature in MCPyV+ MCC.

    Google Scholar 

  8. Kukko, H. et al. Merkel cell carcinoma — a population-based epidemiological study in Finland with a clinical series of 181 cases. Eur. J. Cancer 48, 737–742 (2012).

    Google Scholar 

  9. Agelli, M. & Clegg, L. X. Epidemiology of primary Merkel cell carcinoma in the United States. J. Am. Acad. Dermatol. 49, 832–841 (2003).

    Google Scholar 

  10. Hodgson, N. C. Merkel cell carcinoma: changing incidence trends. J. Surg. Oncol. 89, 1–4 (2005).

    Google Scholar 

  11. Girschik, J., Thorn, K., Beer, T. W., Heenan, P. J. & Fritschi, L. Merkel cell carcinoma in Western Australia: a population-based study of incidence and survival. Br. J. Dermatol. 165, 1051–1057 (2011).

    Google Scholar 

  12. Zaar, O., Gillstedt, M., Lindelöf, B., Wennberg-Larkö, A.-M. & Paoli, J. Merkel cell carcinoma incidence is increasing in Sweden. J. Eur. Acad. Dermatol. Venereol. 30, 1708–1713 (2016).

    Google Scholar 

  13. Youlden, D. R., Soyer, H. P., Youl, P. H., Fritschi, L. & Baade, P. D. Incidence and survival for Merkel cell carcinoma in Queensland, Australia, 1993–2010. JAMA Dermatol. 150, 864–872 (2014).

    Google Scholar 

  14. Soltani, A. M., Allan, B. J., Best, M. J., Panthaki, Z. J. & Thaller, S. R. Merkel cell carcinoma of the hand and upper extremity: current trends and outcomes. J. Plast. Reconstr. Aesthet. Surg. 67, e71–e77 (2014).

    Google Scholar 

  15. Harms, K. L. et al. Analysis of prognostic factors from 9387 Merkel cell carcinoma cases forms the basis for the new 8 th edition AJCC staging system. Ann. Surg. Oncol. 23, 3564–3571 (2016).

    Google Scholar 

  16. Fields, R. C. et al. Five hundred patients with Merkel cell carcinoma evaluated at a single institution. Ann. Surg. 254, 465–473 (2011).

    Google Scholar 

  17. Miller, R. W. & Rabkin, C. S. Merkel cell carcinoma and melanoma: etiological similarities and differences. Cancer Epidemiol. Biomarkers Prev. 8, 153–158 (1999).

    Google Scholar 

  18. Howard, R. A., Dores, G. M., Curtis, R. E., Anderson, W. F. & Travis, L. B. Merkel cell carcinoma and multiple primary cancers. Cancer Epidemiol. Biomarkers Prev. 15, 1545–1549 (2006).

    Google Scholar 

  19. Starrett, G. J. et al. Merkel cell polyomavirus exhibits dominant control of the tumor genome and transcriptome in virus-associated merkel cell carcinoma. mBio 8, e02079-16 (2017).

    Google Scholar 

  20. Goh, G. et al. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy. Oncotarget 7, 3403–3415 (2016).

    Google Scholar 

  21. Heath, M. et al. Clinical characteristics of Merkel cell carcinoma at diagnosis in 195 patients: the AEIOU features. J. Am. Acad. Dermatol. 58, 375–381 (2008).

    Google Scholar 

  22. Ziprin, P., Smith, S., Salerno, G. & Rosin, R. D. Two cases of Merkel cell tumour arising in patients with chronic lymphocytic leukaemia. Br. J. Dermatol. 142, 525–528 (2000).

    Google Scholar 

  23. An, K. P. & Ratner, D. Merkel cell carcinoma in the setting of HIV infection. J. Am. Acad. Dermatol. 45, 309–312 (2001).

    Google Scholar 

  24. Engels, E. A., Frisch, M., Goedert, J. J., Biggar, R. J. & Miller, R. W. Merkel cell carcinoma and HIV infection. Lancet 359, 497–498 (2002).

    Google Scholar 

  25. Penn, I. & First, M. R. Merkel's cell carcinoma in organ recipients: report of 41 cases. Transplantation 68, 1717–1721 (1999).

    Google Scholar 

  26. Clarke, C. A. et al. Risk of Merkel cell carcinoma after solid organ transplantation. J. Natl Cancer Inst. 107, dju382 (2015).

    Google Scholar 

  27. Garrett, G. L. et al. Incidence of and risk factors for skin cancer in organ transplant recipients in the United States. JAMA Dermatol. 153, 296–303 (2017).

    Google Scholar 

  28. Paulson, K. G. et al. Systemic immune suppression predicts diminished Merkel cell carcinoma-specific survival independent of stage. J. Invest. Dermatol. 133, 642–646 (2013).

    Google Scholar 

  29. Sahi, H. et al. History of chronic inflammatory disorders increases the risk of Merkel cell carcinoma, but does not correlate with Merkel cell polyomavirus infection. Br. J. Cancer 116, 260–264 (2017).

    Google Scholar 

  30. Ho, S.-Y., Tsai, Y.-C., Lee, M.-C. & Guo, H.-R. Merkel cell carcinoma in patients with long-term ingestion of arsenic. J. Occup. Health 47, 188–192 (2005).

    Google Scholar 

  31. Popp, S., Waltering, S., Herbst, C., Moll, I. & Boukamp, P. UV-B-type mutations and chromosomal imbalances indicate common pathways for the development of Merkel and skin squamous cell carcinomas. Int. J. Cancer 99, 352–360 (2002).

    Google Scholar 

  32. Prasad, R. & Katiyar, S. K. Crosstalk among UV-induced inflammatory mediators, DNA damage and epigenetic regulators facilitates suppression of the immune system. Photochem. Photobiol. 93, 930–936 (2017).

    Google Scholar 

  33. Zur Hausen, A., Rennspiess, D., Winnepenninckx, V., Speel, E.-J. & Kurz, A. K. Early B-cell differentiation in Merkel cell carcinomas: clues to cellular ancestry. Cancer Res. 73, 4982–4987 (2013).

    Google Scholar 

  34. Tilling, T. et al. Immunohistochemical analyses point to epidermal origin of human Merkel cells. Histochem. Cell Biol. 141, 407–421 (2014).

    Google Scholar 

  35. Feng, H., Shuda, M., Chang, Y. & Moore, P. S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319, 1096–1100 (2008). This study presents the discovery of MCPyV in MCC, highlighting the clonal integration of viral DNA, truncation of large T antigen and expression of the viral oncogene mRNA.

    Google Scholar 

  36. Gheit, T. et al. Isolation and characterization of a novel putative human polyomavirus. Virology 506, 45–54 (2017).

    Google Scholar 

  37. Tolstov, Y. L. et al. Asymptomatic primary Merkel cell polyomavirus infection among adults. Emerg. Infect. Dis. 17, 1371–1380 (2011).

    Google Scholar 

  38. Pastrana, D. V. et al. Quantitation of human seroresponsiveness to Merkel cell polyomavirus. PLoS Pathog. 5, e1000578 (2009).

    Google Scholar 

  39. Martel-Jantin, C. et al. Merkel cell polyomavirus infection occurs during early childhood and is transmitted between siblings. J. Clin. Virol. 58, 288–291 (2013).

    Google Scholar 

  40. Nicol, J. T. J. et al. Age-specific seroprevalences of merkel cell polyomavirus, human polyomaviruses 6, 7, and 9, and trichodysplasia spinulosa-associated polyomavirus. Clin. Vaccine Immunol. 20, 363–368 (2013).

    Google Scholar 

  41. Loyo, M. et al. Quantitative detection of Merkel cell virus in human tissues and possible mode of transmission. Int. J. Cancer 126, 2991–2996 (2010).

    Google Scholar 

  42. Ly, T. Y., Walsh, N. M. & Pasternak, S. The spectrum of Merkel cell polyomavirus expression in Merkel cell carcinoma, in a variety of cutaneous neoplasms, and in neuroendocrine carcinomas from different anatomical sites. Hum. Pathol. 43, 557–566 (2012).

    Google Scholar 

  43. Houben, R. et al. Merkel cell polyomavirus-infected Merkel cell carcinoma cells require expression of viral T antigens. J. Virol. 84, 7064–7072 (2010). This study provides the first evidence that the expression of T antigens is necessary for MCPyV+ MCC cell survival.

    Google Scholar 

  44. Li, J. et al. Merkel cell polyomavirus large T antigen disrupts host genomic integrity and inhibits cellular proliferation. J. Virol. 87, 9173–9188 (2013).

    Google Scholar 

  45. Theiss, J. M. et al. A comprehensive analysis of replicating Merkel cell polyomavirus genomes delineates the viral transcription program and suggests a role for mcv-miR-M1 in episomal persistence. PLoS Pathog. 11, e1004974 (2015).

    Google Scholar 

  46. Laude, H. C. et al. Distinct merkel cell polyomavirus molecular features in tumour and non tumour specimens from patients with Merkel cell carcinoma. PLoS Pathog. 6, e1001076 (2010).

    Google Scholar 

  47. Nakamura, T. et al. Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma. Virology 398, 273–279 (2010).

    Google Scholar 

  48. Shuda, M. et al. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc. Natl Acad. Sci. USA 105, 16272–16277 (2008). This study demonstrates that full-length large T antigen is not permissive in MCPyV+ MCC cell lines.

    Google Scholar 

  49. Shuda, M., Kwun, H. J., Feng, H., Chang, Y. & Moore, P. S. Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. J. Clin. Invest. 121, 3623–3634 (2011).

    Google Scholar 

  50. Cheng, J., Rozenblatt-Rosen, O., Paulson, K. G., Nghiem, P. & DeCaprio, J. A. Merkel cell polyomavirus large T antigen has growth-promoting and inhibitory activities. J. Virol. 87, 6118–6126 (2013).

    Google Scholar 

  51. Shuda, M. et al. Merkel cell polyomavirus small T antigen induces cancer and embryonic Merkel cell proliferation in a transgenic mouse model. PLoS ONE 10, e0142329 (2015).

    Google Scholar 

  52. Verhaegen, M. E. et al. Merkel cell polyomavirus small T antigen is oncogenic in transgenic mice. J. Invest. Dermatol. 135, 1415–1424 (2015).

    Google Scholar 

  53. Verhaegen, M. E. et al. Merkel cell polyomavirus small T antigen initiates Merkel cell carcinoma-like tumor development in mice. Cancer Res. 77, 3151–3157 (2017). The first in vivo demonstration of an MCC-like tumour in a murine model.

    Google Scholar 

  54. Kwun, H. J. et al. Merkel cell polyomavirus small T antigen controls viral replication and oncoprotein expression by targeting the cellular ubiquitin ligase SCFFbw7. Cell Host Microbe 14, 125–135 (2013).

    Google Scholar 

  55. Angermeyer, S., Hesbacher, S., Becker, J. C., Schrama, D. & Houben, R. Merkel cell polyomavirus-positive Merkel cell carcinoma cells do not require expression of the viral small T antigen. J. Invest. Dermatol. 133, 2059–2064 (2013).

    Google Scholar 

  56. Berrios, C. et al. Merkel cell polyomavirus small T antigen promotes pro-glycolytic metabolic perturbations required for transformation. PLoS Pathog. 12, e1006020 (2016).

    Google Scholar 

  57. Wong, S. Q. et al. UV-associated mutations underlie the etiology of MCV-negative Merkel cell carcinomas. Cancer Res. 75, 5228–5234 (2015).

    Google Scholar 

  58. González-Vela, M. D. C. et al. Shared oncogenic pathways implicated in both virus-positive and UV-induced merkel cell carcinomas. J. Invest. Dermatol. 137, 197–206 (2017).

    Google Scholar 

  59. Cimino, P. J. et al. Retinoblastoma gene mutations detected by whole exome sequencing of Merkel cell carcinoma. Mod. Pathol. 27, 1073–1087 (2014).

    Google Scholar 

  60. Fischer, M., Grossmann, P., Padi, M. & DeCaprio, J. A. Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks. Nucleic Acids Res. 44, 6070–6086 (2016).

    Google Scholar 

  61. Borchert, S. et al. High-affinity Rb binding, p53 inhibition, subcellular localization, and transformation by wild-type or tumor-derived shortened Merkel cell polyomavirus large T antigens. J. Virol. 88, 3144–3160 (2014).

    Google Scholar 

  62. Hesbacher, S. et al. RB1 is the crucial target of the Merkel cell polyomavirus large T antigen in Merkel cell carcinoma cells. Oncotarget 7, 32956–32968 (2016).

    Google Scholar 

  63. Rodig, S. J. et al. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. J. Clin. Invest. 122, 4645–4653 (2012).

    Google Scholar 

  64. Houben, R. et al. Mechanisms of p53 restriction in Merkel cell carcinoma cells are independent of the Merkel cell polyoma virus T antigens. J. Invest. Dermatol. 133, 2453–2460 (2013).

    Google Scholar 

  65. Cohen, P. R. et al. Genomic portfolio of Merkel cell carcinoma as determined by comprehensive genomic profiling: implications for targeted therapeutics. Oncotarget 7, 23454–23467 (2016).

    Google Scholar 

  66. Hafner, C. et al. Activation of the PI3K/AKT pathway in Merkel cell carcinoma. PLoS ONE 7, e31255 (2012).

    Google Scholar 

  67. Paulson, K. G. et al. Transcriptome-wide studies of Merkel cell carcinoma and validation of intratumoral CD8+ lymphocyte invasion as an independent predictor of survival. J. Clin. Oncol. 29, 1539–1546 (2011).

    Google Scholar 

  68. Walsh, N. M. et al. A morphological and immunophenotypic map of the immune response in Merkel cell carcinoma. Hum. Pathol. 52, 190–196 (2016).

    Google Scholar 

  69. Dowlatshahi, M. et al. Tumor-specific T cells in human Merkel cell carcinomas: a possible role for Tregs and T-cell exhaustion in reducing T-cell responses. J. Invest. Dermatol. 133, 1879–1889 (2013).

    Google Scholar 

  70. Yi, J. S., Cox, M. A. & Zajac, A. J. T-Cell exhaustion: characteristics, causes and conversion. Immunology 129, 474–481 (2010).

    Google Scholar 

  71. Ritter, C. et al. Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma. Sci. Rep. 7, 2290 (2017).

    Google Scholar 

  72. Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet. Oncol. 17, e542–e551 (2016).

    Google Scholar 

  73. Becker, J. C. et al. Merkel cell carcinoma: molecular pathogenesis, clinical features and therapy. J. Dtsch. Dermatol. Ges. 6, 709–719 (2008).

    Google Scholar 

  74. Llombart, B. et al. Clinicopathological and immunohistochemical analysis of 20 cases of Merkel cell carcinoma in search of prognostic markers. Histopathology 46, 622–634 (2005).

    Google Scholar 

  75. Schadendorf, D. et al. Merkel cell carcinoma: epidemiology, prognosis, therapy and unmet medical needs. Eur. J. Cancer 71, 53–69 (2017).

    Google Scholar 

  76. Sparks, J., Sparks, M. & Malone, J. C. Cutaneous Merkel cell carcinoma: multiple asynchronous primary lesions in a patient on immunosuppressive therapy. J. Cutan. Pathol. 44, 309–312 (2017).

    Google Scholar 

  77. Gupta, S. G. et al. Sentinel lymph node biopsy for evaluation and treatment of patients with Merkel cell carcinoma: the Dana-Farber experience and meta-analysis of the literature. Arch. Dermatol. 142, 685–690 (2006).

    Google Scholar 

  78. Foote, M., Veness, M., Zarate, D. & Poulsen, M. Merkel cell carcinoma: the prognostic implications of an occult primary in stage IIIB (nodal) disease. J. Am. Acad. Dermatol. 67, 395–399 (2012).

    Google Scholar 

  79. Walsh, N. M. Complete spontaneous regression of Merkel cell carcinoma: a 30 year perspective. J. Cutan. Pathol. 43, 1150–1154 (2016).

    Google Scholar 

  80. Chen, K. T. et al. A better prognosis for Merkel cell carcinoma of unknown primary origin. Am. J. Surg. 206, 752–757 (2013).

    Google Scholar 

  81. Bichakjian, C. K. et al. NCCN clinical practice guidelines in oncology (NCCN guidelines) Merkel cell carcinoma version 1. National Comprehensive Cancer Networkhttps://www.nccn.org/professionals/physician_gls/pdf/mcc.pdf (2017).

  82. Lebbe, C. et al. Diagnosis and treatment of Merkel Cell Carcinoma. European consensus-based interdisciplinary guideline. Eur. J. Cancer 51, 2396–2403 (2015).

    Google Scholar 

  83. Becker, J. C. et al. Brief S2k guidelines — Merkel cell carcinoma. J. Dtsch. Dermatol. Ges. 11 (Suppl. 3), 29–36 (2013).

    Google Scholar 

  84. Llombart, B., Kindem, S. & Chust, M. Merkel cell carcinoma: an update of key imaging techniques, prognostic factors, treatment, and follow-up. Actas Dermosifiliogr. 108, 98–107 (2017).

    Google Scholar 

  85. Buder, K. et al. Somatostatin receptor expression in Merkel cell carcinoma as target for molecular imaging. BMC Cancer 14, 268 (2014).

    Google Scholar 

  86. Concannon, R., Larcos, G. S. & Veness, M. The impact of 18F-FDG PET-CT scanning for staging and management of Merkel cell carcinoma: results from Westmead Hospital, Sydney, Australia. J. Am. Acad. Dermatol. 62, 76–84 (2010).

    Google Scholar 

  87. Fried, I. & Cerroni, L. Merkel cell carcinoma [German]. Pathologe 35, 467–475 (2014).

    Google Scholar 

  88. Calder, K. B. & Smoller, B. R. New insights into merkel cell carcinoma. Adv. Anat. Pathol. 17, 155–161 (2010).

    Google Scholar 

  89. Brown, H. A., Sawyer, D. M. & Woo, T. Intraepidermal Merkel cell carcinoma with no dermal involvement. Am. J. Dermatopathol. 22, 65–69 (2000).

    Google Scholar 

  90. Narisawa, Y., Koba, S., Inoue, T. & Nagase, K. Histogenesis of pure and combined Merkel cell carcinomas: an immunohistochemical study of 14 cases. J. Dermatol. 42, 445–452 (2015).

    Google Scholar 

  91. Iacocca, M. V., Abernethy, J. L., Stefanato, C. M., Allan, A. E. & Bhawan, J. Mixed Merkel cell carcinoma and squamous cell carcinoma of the skin. J. Am. Acad. Dermatol. 39, 882–887 (1998).

    Google Scholar 

  92. Lai, J. H. et al. Pure versus combined Merkel cell carcinomas: immunohistochemical evaluation of cellular proteins (p53, Bcl-2, and c-kit) reveals significant overexpression of p53 in combined tumors. Hum. Pathol. 46, 1290–1296 (2015).

    Google Scholar 

  93. Ames, H. M. et al. Huntingtin-interacting protein 1: a Merkel cell carcinoma marker that interacts with c-Kit. J. Invest. Dermatol. 131, 2113–2120 (2011).

    Google Scholar 

  94. Fleming, K. E. et al. Support for p63 expression as an adverse prognostic marker in Merkel cell carcinoma: report on a Canadian cohort. Hum. Pathol. 45, 952–960 (2014).

    Google Scholar 

  95. Stetsenko, G. Y. et al. p63 expression in Merkel cell carcinoma predicts poorer survival yet may have limited clinical utility. Am. J. Clin. Pathol. 140, 838–844 (2013).

    Google Scholar 

  96. Paulson, K. G. et al. CD8+ lymphocyte intratumoral infiltration as a stage-independent predictor of Merkel cell carcinoma survival: a population-based study. Am. J. Clin. Pathol. 142, 452–458 (2014).

    Google Scholar 

  97. Feldmeyer, L. et al. Density, distribution, and composition of immune infiltrates correlate with survival in Merkel cell carcinoma. Clin. Cancer Res. 22, 5553–5563 (2016).

    Google Scholar 

  98. Miller, N. J. et al. Tumor-infiltrating Merkel Cell polyomavirus-specific T cells are diverse and associated with improved patient survival. Cancer Immunol. Res. 5, 137–147 (2017).

    Google Scholar 

  99. Harms, K. L. et al. Increased expression of EZH2 in Merkel cell carcinoma is associated with disease progression and poorer prognosis. Hum. Pathol. 67, 78–84 (2017).

    Google Scholar 

  100. U.S. Preventive Services Task Force. Skin cancer: screening. Summary of recommendations and evidence. U.S. Preventive Services Task Forcehttp://www.uspreventiveservicestaskforce.org/uspstf09/skincancer/skincanrs.htm (2009).

  101. U.S. Department of Health and Human Services. The Surgeon General's call to action to prevent skin cancer (U.S. Dept of Health and Human Services, 2014).

  102. Locke, F. L., Rollison, D. E. & Sondak, V. K. Merkel cell carcinoma and immunosuppression: what we still need to know. J. Natl Cancer Inst. 107, dju422 (2015).

    Google Scholar 

  103. Zelenetz, A. D. et al. NCCN clinical practice guidelines in oncology (NCCN Guidelines) B-cell lymphomas version 4. National Comprehensive Cancer Networkhttps://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf (2017).

  104. Kaufman, H. L. et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 17, 1374–1385 (2016). This study shows the high response rate of MCPyV+ MCC and MCPyV MCC to PDL1 inhibition as a second-line therapy.

    Google Scholar 

  105. Allen, P. J. et al. Merkel cell carcinoma: prognosis and treatment of patients from a single institution. J. Clin. Oncol. 23, 2300–2309 (2005).

    Google Scholar 

  106. Bichakjian, C. K. et al. Merkel cell carcinoma: critical review with guidelines for multidisciplinary management. Cancer 110, 1–12 (2007).

    Google Scholar 

  107. Hawryluk, E. B. et al. Positron emission tomography/computed tomography imaging in Merkel cell carcinoma: a study of 270 scans in 97 patients at the Dana-Farber/Brigham and Women's Cancer Center. J. Am. Acad. Dermatol. 68, 592–599 (2013).

    Google Scholar 

  108. Paulson, K. G. et al. Antibodies to merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in merkel cell carcinoma patients. Cancer Res. 70, 8388–8397 (2010).

    Google Scholar 

  109. Paulson, K. G. et al. Viral oncoprotein antibodies as a marker for recurrence of Merkel cell carcinoma: a prospective validation study. Cancer 123, 1464–1474 (2017).

    Google Scholar 

  110. Mancebo, S. E., Hu, J. Y. & Wang, S. Q. Sunscreens: a review of health benefits, regulations, and controversies. Dermatol. Clin. 32, 427–438 (2014).

    Google Scholar 

  111. Samimi, M. et al. Vitamin D deficiency is associated with greater tumor size and poorer outcome in Merkel cell carcinoma patients. J. Eur. Acad. Dermatol. Venereol. 28, 298–308 (2014).

    Google Scholar 

  112. Dziunycz, P. J. et al. The oncogene ATF3 is potentiated by cyclosporine A and ultraviolet light A. J. Invest. Dermatol. 134, 1998–2004 (2014).

    Google Scholar 

  113. Becker, J. C., Houben, R., Vetter, C. S. & Bröcker, E. B. The carcinogenic potential of tacrolimus ointment beyond immune suppression: a hypothesis creating case report. BMC Cancer 6, 7 (2006).

    Google Scholar 

  114. Santana, A. L., Felsen, D. & Carucci, J. A. Interleukin-22 and cyclosporine in aggressive cutaneous squamous cell carcinoma. Dermatol. Clin. 35, 73–84 (2017).

    Google Scholar 

  115. Ellis, D. L. & Davis, R. S. Evidence-based management of primary and localized Merkel cell carcinoma: a review. Int. J. Dermatol. 52, 1248–1258 (2013).

    Google Scholar 

  116. Tai, P. A practical update of surgical management of merkel cell carcinoma of the skin. ISRN Surg. 2013, 850797 (2013).

    Google Scholar 

  117. Kline, L. & Coldiron, B. Mohs micrographic surgery for the treatment of Merkel cell carcinoma. Dermatol. Surg. 42, 945–951 (2016).

    Google Scholar 

  118. O’Connor, W. J., Roenigk, R. K. & Brodland, D. G. Merkel cell carcinoma. Comparison of Mohs micrographic surgery and wide excision in eighty-six patients. Dermatol. Surg. 23, 929–933 (1997).

    Google Scholar 

  119. Gunaratne, D. A., Howle, J. R. & Veness, M. J. Sentinel lymph node biopsy in Merkel cell carcinoma: a 15-year institutional experience and statistical analysis of 721 reported cases. Br. J. Dermatol. 174, 273–281 (2016).

    Google Scholar 

  120. Stokes, J. B. et al. Patients with Merkel cell carcinoma tumors < or = 1.0 cm in diameter are unlikely to harbor regional lymph node metastasis. J. Clin. Oncol. 27, 3772–3777 (2009).

    Google Scholar 

  121. Servy, A. et al. Merkel cell carcinoma: value of sentinel lymph-node status and adjuvant radiation therapy. Ann. Oncol. 27, 914–919 (2016).

    Google Scholar 

  122. Prieto, I. et al. Merkel cell carcinoma: an algorithm for multidisciplinary management and decision-making. Crit. Rev. Oncol. Hematol. 98, 170–179 (2016).

    Google Scholar 

  123. Fang, L. C., Lemos, B., Douglas, J., Iyer, J. & Nghiem, P. Radiation monotherapy as regional treatment for lymph node-positive Merkel cell carcinoma. Cancer 116, 1783–1790 (2010).

    Google Scholar 

  124. Hasan, S., Liu, L., Triplet, J., Li, Z. & Mansur, D. The role of postoperative radiation and chemoradiation in Merkel cell carcinoma: a systematic review of the literature. Front. Oncol. 3, 276 (2013).

    Google Scholar 

  125. Bhatia, S. et al. Adjuvant radiation therapy and chemotherapy in Merkel cell carcinoma: survival analyses of 6908 cases from the National Cancer Data Base. J. Natl Cancer Inst. 108, djw042 (2016). A register study that demonstrates the value of adjuvant radiotherapy.

    Google Scholar 

  126. Veness, M. & Howle, J. Radiotherapy alone in patients with Merkel cell carcinoma: the Westmead Hospital experience of 41 patients. Australas. J. Dermatol. 56, 19–24 (2015).

    Google Scholar 

  127. Iyer, J. G. et al. Single-fraction radiation therapy in patients with metastatic Merkel cell carcinoma. Cancer Med. 4, 1161–1170 (2015).

    Google Scholar 

  128. Jouary, T. et al. Adjuvant prophylactic regional radiotherapy versus observation in stage I Merkel cell carcinoma: a multicentric prospective randomized study. Ann. Oncol. 23, 1074–1080 (2012).

    Google Scholar 

  129. Porceddu, S. V., Veness, M. J. & Guminski, A. Nonmelanoma cutaneous head and neck cancer and Merkel cell carcinoma: current concepts, advances, and controversies. J. Clin. Oncol. 33, 3338–3345 (2015).

    Google Scholar 

  130. Nghiem, P. et al. Systematic literature review of efficacy, safety and tolerability outcomes of chemotherapy regimens in patients with metastatic Merkel cell carcinoma. Future Oncol. 13, 1263–1279 (2017). A meta-analysis that demonstrates the limited clinical value of chemotherapy in advanced-stage MCC.

    Google Scholar 

  131. Iyer, J. G. et al. Response rates and durability of chemotherapy among 62 patients with metastatic Merkel cell carcinoma. Cancer Med. 5, 2294–2301 (2016).

    Google Scholar 

  132. Becker, J. C. et al. Evaluation of real-world treatment outcomes in patients with distant metastatic Merkel cell carcinoma following second-line chemotherapy in Europe. Oncotargethttp://dx.doi.org/10.18632/oncotarget.19218 (2017).

  133. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 451–461 (2015).

    Google Scholar 

  134. Lyngaa, R. et al. T-Cell responses to oncogenic Merkel cell polyomavirus proteins distinguish patients with merkel cell carcinoma from healthy donors. Clin. Cancer Res. 20, 1768–1778 (2014). A study that shows the detection of T antigen-specific T cell responses in the majority of patients with MCC.

    Google Scholar 

  135. Afanasiev, O. K. et al. Merkel polyomavirus-specific T cells fluctuate with Merkel cell carcinoma burden and express therapeutically targetable PD-1 and Tim-3 exhaustion markers. Clin. Cancer Res. 19, 5351–5360 (2013).

    Google Scholar 

  136. Nghiem, P. T. et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N. Engl. J. Med. 374, 2542–2552 (2016). A study that shows the high response rate of MCPyV+ MCC and MCPyV MCC to PD1 inhibition as a first-line therapy.

    Google Scholar 

  137. Topalian, S. et al. Non-comparative, open-label, multiple cohort, phase 1/2 study to evaluate nivolumab (NIVO) in patients with virus-associated tumors (CheckMate 358): efficacy and safety in Merkel cell carcinoma [abstract]. Cancer Res. 77 (13 Suppl.), CT074 (2017).

  138. D’Angelo, S. P. et al. First-line (1L) avelumab treatment in patients (pts) with metastatic Merkel cell carcinoma (mMCC): preliminary data from an ongoing study [abstract]. J. Clin. Oncol. 35 (Suppl. 15), 9530 (2017).

    Google Scholar 

  139. Terheyden, P. & Becker, J. C. New developments in the biology and the treatment of metastatic Merkel cell carcinoma. Curr. Opin. Oncol. 29, 221–226 (2017).

    Google Scholar 

  140. Ferrat, E. et al. Performance of four frailty classifications in older patients with cancer: prospective elderly cancer patients cohort study. J. Clin. Oncol. 35, 766–777 (2017).

    Google Scholar 

  141. Gorayski, P., Tripcony, L. & Poulsen, M. Chemotherapy compliance in high-risk Merkel cell carcinoma treated with chemoradiotherapy. Australas. J. Dermatol. 58, 35–41 (2017).

    Google Scholar 

  142. Kanz, B. A. et al. Safety and efficacy of anti-PD-1 in patients with baseline cardiac, renal, or hepatic dysfunction. J. Immunother. Cancer 4, 60 (2016).

    Google Scholar 

  143. Sauer, C. M. et al. Reviewing the current evidence supporting early B-cells as the cellular origin of Merkel cell carcinoma. Crit. Rev. Oncol. Hematol. 116, 99–105 (2017).

    Google Scholar 

  144. Liu, W. et al. Identifying the target cells and mechanisms of Merkel cell polyomavirus infection. Cell Host Microbe 19, 775–787 (2016).

    Google Scholar 

  145. Tolstov, Y. L. et al. Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int. J. Cancer 125, 1250–1256 (2009).

    Google Scholar 

  146. Cassler, N. M., Merrill, D., Bichakjian, C. K. & Brownell, I. Merkel cell carcinoma therapeutic update. Curr. Treat. Opt. Oncol. 17, 36 (2016).

    Google Scholar 

  147. APCure. LTvax, the first therapeutic product targeting Merkel cell polyomavirus-associated cancers. APCurehttp://www.apcure.com/en/pipeline/ltvax (2017)

  148. Paulson, K. G. et al. Downregulation of MHC-I expression is prevalent but reversible in Merkel cell carcinoma. Cancer Immunol. Res. 2, 1071–1079 (2014).

    Google Scholar 

  149. Willmes, C. et al. Type I and II IFNs inhibit Merkel cell carcinoma via modulation of the Merkel cell polyomavirus T antigens. Cancer Res. 72, 2120–2128 (2012).

    Google Scholar 

  150. Ritter, C. et al. Reversal of epigenetic silencing of MHC class I chain-related protein A and B improves immune recognition of Merkel cell carcinoma. Sci. Rep. 6, 21678 (2016).

    Google Scholar 

  151. Gross, L. A filterable agent, L. recovered from Ak leukemic extracts, causing salivary gland carcinomas in C3H mice. Proc. Soc. Exp. Biol. Med. 83, 414–421 (1953).

    Google Scholar 

  152. Calvignac-Spencer, S. et al. A taxonomy update for the family Polyomaviridae. Arch. Virol. 161, 1739–1750 (2016).

    Google Scholar 

  153. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Malaria and some polyomaviruses (SV40, BK, JC, and Merkel cell viruses). IARC monographs on the evaluation of carcinogenic risks to humans, no. 104 (International Agency for Research on Cancer, 2014).

  154. Schowalter, R. M., Pastrana, D. V., Pumphrey, K. A., Moyer, A. L. & Buck, C. B. Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe 7, 509–515 (2010).

    Google Scholar 

  155. Schrama, D., Buck, C. B., Houben, R. & Becker, J. C. No evidence for association of HPyV6 or HPyV7 with different skin cancers. J. Invest. Dermatol. 132, 239–241 (2012).

    Google Scholar 

  156. Nguyen, K. D. et al. Human polyomavirus 6 and 7 are associated with pruritic and dyskeratotic dermatoses. J. Am. Acad. Dermatol. 76, 932–940.e3 (2017).

    Google Scholar 

  157. van der Meijden, E. et al. Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLoS Pathog. 6, e1001024 (2010).

    Google Scholar 

  158. van der Meijden, E. et al. Primary polyomavirus infection, not reactivation, as the cause of trichodysplasia spinulosa in immunocompromised patients. J. Infect. Dis. 215 jiw403 (2016).

    Google Scholar 

  159. Gardner, S. D., Field, A. M., Coleman, D. V. & Hulme, B. New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet 297, 1253–1257 (1971).

    Google Scholar 

  160. Padgett, B. L., Zurhein, G. M., Walker, D. L., Eckroade, R. J. & Dessel, B. H. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 297, 1257–1260 (1971).

    Google Scholar 

  161. Bowen, L. N., Smith, B., Reich, D., Quezado, M. & Nath, A. HIV-associated opportunistic CNS infections: pathophysiology, diagnosis and treatment. Nat. Rev. Neurol. 12, 662–674 (2016).

    Google Scholar 

  162. Koralnik, I. J. et al. JC virus granule cell neuronopathy: a novel clinical syndrome distinct from progressive multifocal leukoencephalopathy. Ann. Neurol. 57, 576–580 (2005).

    Google Scholar 

  163. Allander, T. et al. Identification of a third human polyomavirus. J. Virol. 81, 4130–4136 (2007).

    Google Scholar 

  164. Gaynor, A. M. et al. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog. 3, e64 (2007).

    Google Scholar 

  165. Siebrasse, E. A. et al. WU polyomavirus in respiratory epithelial cells from lung transplant patient with Job syndrome. Emerg. Infect. Dis. 21, 103–106 (2015).

    Google Scholar 

  166. Buck, C. B. et al. Complete genome sequence of a tenth human polyomavirus. J. Virol. 86, 10887 (2012).

    Google Scholar 

  167. Lim, E. S. et al. Discovery of STL polyomavirus, a polyomavirus of ancestral recombinant origin that encodes a unique T antigen by alternative splicing. Virology 436, 295–303 (2013).

    Google Scholar 

  168. Mishra, N. et al. Identification of a novel polyomavirus in a pancreatic transplant recipient with retinal blindness and vasculitic myopathy. J. Infect. Dis. 210, 1595–1599 (2014).

    Google Scholar 

  169. Daily, K. et al. Assessment of cancer cell line representativeness using microarrays for Merkel cell carcinoma. J. Invest. Dermatol. 135, 1138–1146 (2015).

    Google Scholar 

  170. Houben, R. et al. Activation of the MAP kinase pathway induces apoptosis in the Merkel cell carcinoma cell line UISO. J. Invest. Dermatol. 127, 2116–2122 (2007).

    Google Scholar 

  171. Spurgeon, M. E., Cheng, J., Bronson, R. T., Lambert, P. F. & DeCaprio, J. A. Tumorigenic activity of merkel cell polyomavirus T antigens expressed in the stratified epithelium of mice. Cancer Res. 75, 1068–1079 (2015).

    Google Scholar 

  172. Lee, S. et al. Identification and validation of a novel mature microRNA encoded by the Merkel cell polyomavirus in human Merkel cell carcinomas. J. Clin. Virol. 52, 272–275 (2011).

    Google Scholar 

  173. Carter, J. J. et al. Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes. Proc. Natl Acad. Sci. USA 110, 12744–12749 (2013).

    Google Scholar 

  174. Feng, H. et al. Cellular and viral factors regulating Merkel cell polyomavirus replication. PLoS ONE 6, e22468 (2011).

    Google Scholar 

  175. Harrison, C. J. et al. Asymmetric assembly of Merkel cell polyomavirus large T-antigen origin binding domains at the viral origin. J. Mol. Biol. 409, 529–542 (2011).

    Google Scholar 

  176. Yardimci, H. et al. Bypass of a protein barrier by a replicative DNA helicase. Nature 492, 205–209 (2012).

    Google Scholar 

  177. Shuda, M. et al. CDK1 substitutes for mTOR kinase to activate mitotic cap-dependent protein translation. Proc. Natl Acad. Sci. USA 112, 5875–5882 (2015).

    Google Scholar 

  178. Bichakjian, C. K., Nghiem, P., Johnson, T., Wright, C. L. & Sober, A. J. in AJCC Cancer Staging Manual 8 th Edition Ch. 46 (eds Amin, M. B. et al.) (American Joint Committee on Cancer, 2016).

    Google Scholar 

Download references

Acknowledgements

J.C.B. is funded by the European Commission Grant Agreement #277775/IMMOMEC, the BMBF 03VP01062/CTCelect and the Hiege Stiftung. A.S. receives a grant from the German Federal Ministry of Education and Science (BMBF), grant number 01ER1305. J.A.D. was supported in part by US Public Health Service grants R01CA63113, R01CA173023, P01CA050661 and P01CA203655, the DFCI Helen Pappas Merkel Cell Research Fund and the Claudia Adams Barr Program in Cancer Research. P.N. was supported in part by US Public Health Service grants K24-CA139052 and RO1-CA176841 and the University of Washington MCC Gift Fund.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.C.B.); Epidemiology (A.S.); Mechanisms/pathophysiology (J.A.D. and J.C.B.); Diagnosis, screening and prevention (L.C.); Management (C.L., P.N., M.V. and J.C.B.); Quality of life (M.V.); Outlook (J.C.B.); Overview of Primer (J.C.B.).

Corresponding author

Correspondence to Jürgen C. Becker.

Ethics declarations

Competing interests

J.C.B. has received speaker honoraria from Amgen, Merck Serono and Pfizer; he has received advisory board honoraria from Amgen, CureVac, eTheRNA, Lytix, Merck Serono, Novartis, Rigontec, and Takeda; and he has received research funding from Boehringer Ingelheim, Bristol-Myers Squibb (BMS) and Merck Serono. J.C.B.'s activities with BMS, Merck Serono and Pfizer are related to the submitted report (therapy for advanced-stage MCC). A research project in J.A.D.'s laboratory is supported by Constellation Pharmaceuticals. C.L. has received honoraria from Amgen, BMS, MSD, Novartis and Roche, and research funding from BMS and Roche; she has a consulting or advisory role for Amgen, BMS, MSD, Novartis and Roche; she is part of speakers’ bureaus for Amgen, BMS, Novartis and Roche; and she has received compensation for travel, accommodation and expenses from Amgen, BMS, Novartis and Roche. P.N. has served as a consultant for EMD Serono, Merck and Pfizer and has received research support to his institution from BMS. A.S., L.C. and M.V. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, J., Stang, A., DeCaprio, J. et al. Merkel cell carcinoma. Nat Rev Dis Primers 3, 17077 (2017). https://doi.org/10.1038/nrdp.2017.77

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.77

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer