Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SIRT1 and insulin resistance

Abstract

Sirtuin 1 (SIRT1), the mammalian homolog of SIR2, was originally identified as a NAD-dependent histone deacetylase, the activity of which is closely associated with lifespan under calorie restriction. Growing evidence suggests that SIRT1 regulates glucose or lipid metabolism through its deacetylase activity for over two dozen known substrates, and has a positive role in the metabolic pathway through its direct or indirect involvement in insulin signaling. SIRT1 stimulates a glucose-dependent insulin secretion from pancreatic β cells, and directly stimulates insulin signaling pathways in insulin-sensitive organs. Furthermore, SIRT1 regulates adiponectin secretion, inflammatory responses, gluconeogenesis, and levels of reactive oxygen species, which together contribute to the development of insulin resistance. Moreover, overexpression of SIRT1 and several SIRT1 activators has beneficial effects on glucose homeostasis and insulin sensitivity in obese mice models. These findings suggest that SIRT1 might be a new therapeutic target for the prevention of disease related to insulin resistance, such as metabolic syndrome and diabetes mellitus, although direct evidence from clinical studies in humans is needed to prove this possibility. In this Review, we discuss the potential role and therapeutic promise of SIRT1 in insulin resistance on the basis of the latest experimental studies.

Key Points

  • SIRT1 upregulates adiponectin expression by deacetylating FoxO1, and thus protects against insulin resistance

  • SIRT1 attenuates tumor-necrosis-factor-induced inflammation, potentially by deacetylating NFκB

  • SIRT1 has a largely positive role in the insulin-signaling pathway by inducing insulin secretion, repressing Ptpn1, and by regulating insulin-receptor substrates (IRS) 1 and 2 and Akt activation

  • SIRT1 mediates mitochondrial biogenesis by deacetylating PGC1α, upregulates antioxidant enzyme expression by deacetylating FoxO3a and thereby reduces the levels of reactive oxygen species

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SIRT1-mediated regulation of insulin secretion and insulin signaling.
Figure 2: SIRT1-mediated regulation of mitochondrial biogenesis, lipolysis, and ROS levels.
Figure 3: Proposed roles and targets of SIRT1 in insulin resistance.

Similar content being viewed by others

References

  1. Newsholme, P. et al. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J. Physiol. 583, 9–24 (2007).

    Article  CAS  Google Scholar 

  2. Muoio, D. M. & Newgard, C. B. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 193–205 (2008).

    Article  CAS  Google Scholar 

  3. Kim, J. A., Wei, Y. & Sowers, J. R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102, 401–414 (2008).

    Article  CAS  Google Scholar 

  4. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  Google Scholar 

  5. Kitamura, Y. I. et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell. Metab. 2, 153–163 (2005).

    Article  CAS  Google Scholar 

  6. Moynihan, K. A. et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell. Metab. 2, 105–117 (2005).

    Article  CAS  Google Scholar 

  7. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPARγ. Nature 429, 771–776 (2004).

    Article  CAS  Google Scholar 

  8. Wang, H., Qiang, L. & Farmer, S. R. Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol. Cell Biol. 28, 188–200 (2008).

    Article  Google Scholar 

  9. Rodgers, J. T. & Puigserver, P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl Acad. Sci. USA 104, 12861–12866 (2007).

    Article  CAS  Google Scholar 

  10. Fulco, M. et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol. Cell. 12, 51–62 (2003).

    Article  CAS  Google Scholar 

  11. Deng, X. Q., Chen, L. L. & Li, N. X. The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liver Int. 27, 708–715 (2007).

    Article  CAS  Google Scholar 

  12. Sommer, M. et al. δNp63α overexpression induces downregulation of Sirt1 and an accelerated aging phenotype in the mouse. Cell Cycle 5, 2005–2011 (2006).

    Article  CAS  Google Scholar 

  13. Sun, C. et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B . Cell. Metab. 6, 307–319 (2007).

    Article  CAS  Google Scholar 

  14. Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    Article  CAS  Google Scholar 

  15. Feige, J. N. et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell. Metab. 8, 347–358 (2008).

    Article  CAS  Google Scholar 

  16. Kadowaki, T. et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116, 1784–1792 (2006).

    Article  CAS  Google Scholar 

  17. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001).

    Article  CAS  Google Scholar 

  18. Qiao, L. & Shao, J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J. Biol. Chem. 281, 39915–39924 (2006).

    Article  CAS  Google Scholar 

  19. Frescas, D., Valenti, L. & Accilli, D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 280, 20589–20595 (2005).

    Article  CAS  Google Scholar 

  20. Zhu, M. et al. Circulating adiponectin levels increase in rats on caloric restriction: the potential for insulin sensitization. Exp. Gerontol. 39, 1049–1059 (2004).

    Article  CAS  Google Scholar 

  21. Qiang, L., Wang, H. & Farmer, S. R. Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. Mol. Cell Biol. 27, 4698–4707 (2007).

    Article  CAS  Google Scholar 

  22. Banks, A. S. et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell. Metab. 8, 333–341 (2008).

    Article  CAS  Google Scholar 

  23. Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11, 183–190 (2005).

    Article  CAS  Google Scholar 

  24. Yeung, F. et al. Modulation of NFκB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

    Article  CAS  Google Scholar 

  25. Yang, S. R. et al. Sirtuin regulates cigarette smoke induced proinflammatory mediators release via RelA/p65 NF-κB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L567–L576 (2006).

    Article  Google Scholar 

  26. Csiszar, A. et al. Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations. Am. J. Physiol. Heart Circ. Physiol. 294, H2721–H2735 (2008).

    Article  CAS  Google Scholar 

  27. Fontana, L. Neuroendocrine factors in the regulation of inflammation: excessive adiposity and calorie restriction. Exp. Gerontol. 44, 41–45 (2009).

    Article  CAS  Google Scholar 

  28. Yoshizaki, T. et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell Biol. 29, 1363–1374 (2009).

    Article  CAS  Google Scholar 

  29. Bordone, L. et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 4, e31 (2006).

    Article  Google Scholar 

  30. Ramsey, K. M. et al. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 7, 78–88 (2008).

    Article  CAS  Google Scholar 

  31. Seely, B. L. et al. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 45, 1379–1385 (1996).

    Article  CAS  Google Scholar 

  32. Goldstein, B. J., Bittner-Kowalczyk, A., White, M. F. & Harbeck, M. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J. Biol. Chem. 275, 4283–4289 (2000).

    Article  CAS  Google Scholar 

  33. Zhang, J. The direct involvement of Sirt1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J. Biol. Chem. 282, 34356–34364 (2007).

    Article  CAS  Google Scholar 

  34. Chen, I. Y. et al. Histone H2A.z is essential for cardiac myocyte hypertrophy but opposed by silent information regulator 2α. J. Biol. Chem. 281, 19369–19377 (2006).

    Article  CAS  Google Scholar 

  35. Inoue, G., Cheatham, B., Emkey, R. & Kahn, C. R. Dynamics of insulin signaling in 3T3-L1 adipocytes. Differential compartmentalization and trafficking of insulin receptor substrate (IRS)-1 and IRS-2. J. Biol. Chem. 273, 11548–11555 (1998).

    Article  CAS  Google Scholar 

  36. Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. & Horio, Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282, 6823–6832 (2006).

    Article  Google Scholar 

  37. Dowell, P., Otto, T. C., Adi, S. & Lane, M. D. Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J. Biol. Chem. 278, 45485–45491 (2003).

    Article  CAS  Google Scholar 

  38. Subauste, A. R. & Burant, C. F. Role of FoxO1 in FFA-induced oxidative stress in adipocytes. Am. J. Physiol. Endocrinol. Metab. 293, E159–E164 (2007).

    Article  CAS  Google Scholar 

  39. Nakae, J. et al. The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity. J. Clin. Invest. 116, 2473–2483 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, Y. et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269–273 (2008).

    Article  CAS  Google Scholar 

  41. Hou, X. et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem. 283, 20015–20026 (2008).

    Article  CAS  Google Scholar 

  42. Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M. & Tschöp, M. H. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl Acad. Sci. USA 105, 9793–9798 (2008).

    Article  CAS  Google Scholar 

  43. Nedachi, T., Kadotani, A., Ariga, M., Katagiri, H. & Kanzaki, M. Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FoxO3α in C2C12 myocytes. Am. J. Physiol. Endocrinol. Metab. 294, E668–E678 (2008).

    Article  CAS  Google Scholar 

  44. Bouras, T. et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J. Biol. Chem. 280, 10264–10276 (2005).

    Article  CAS  Google Scholar 

  45. Michael, L. F. et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl Acad. Sci. USA 98, 3820–3825 (2001).

    Article  CAS  Google Scholar 

  46. Gerhart-Hines, Z. et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 26, 1913–1923 (2006).

    Article  Google Scholar 

  47. Finck, B. N. & Kelly, D. P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116, 615–622 (2006).

    Article  CAS  Google Scholar 

  48. Nemoto, S., Fergusson, M. M. & Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 280, 16456–16460 (2005).

    Article  CAS  Google Scholar 

  49. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    Article  CAS  Google Scholar 

  50. Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

    Article  CAS  Google Scholar 

  51. Anderson, R. M. et al. Dynamic regulation of PGC-1α localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 7, 101–111 (2008).

    Article  CAS  Google Scholar 

  52. Heilbronn, L. K., Gan, S. K., Turner, N., Campbell, L. V. & Chisholm, D. J. Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J. Clin. Endocrinol. Metab. 92, 1467–1473 (2007).

    Article  CAS  Google Scholar 

  53. Koves, T. R. et al. Peroxisome proliferator-activated receptor-gamma co-activator 1α-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J. Biol. Chem. 280, 33588–33598 (2005).

    Article  CAS  Google Scholar 

  54. Koo, S. H. et al. PGC-1 promotes insulin resistance in liver through PAR-alpha-dependent induction of TRB-3. Nat. Med. 10, 530–534 (2004).

    Article  CAS  Google Scholar 

  55. Nishikawa, T. & Araki, E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid. Redox. Signal. 9, 343–353 (2007).

    Article  CAS  Google Scholar 

  56. Nishikawa, T. et al. Impact of mitochondrial ROS production in the pathogenesis of insulin resistance. Diabetes Res. Clin. Pract. 77 (Suppl. 1), S161–S164 (2007).

    Article  CAS  Google Scholar 

  57. Guarente, L. Sirtuins in aging and disease. Cold Spring Harb. Symp. Quant. Biol. 72, 483–488 (2007).

    Article  CAS  Google Scholar 

  58. Hasegawa, K. et al. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem. Biophys. Res. Commun. 372, 51–56 (2008).

    Article  CAS  Google Scholar 

  59. Suwa, M., Nakano, H., Radak, Z. & Kumagai, S. Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1α protein expressions in rat skeletal muscle. Metabolism 57, 986–998 (2008).

    Article  CAS  Google Scholar 

  60. Elliott, P. J. & Jirousek, M. Sirtuins: novel targets for metabolic disease. Curr. Opin. Investig. Drugs 9, 371–378 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their sincere appreciation to Professor Ryuichi Kikkawa, Professor Masakazu Haneda, and Professor Atsunori Kashiwagi for their contribution to the discussion of the role of SIRT1 in insulin resistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Koya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, F., Kume, S. & Koya, D. SIRT1 and insulin resistance. Nat Rev Endocrinol 5, 367–373 (2009). https://doi.org/10.1038/nrendo.2009.101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing