Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vaptans for the treatment of hyponatremia

Abstract

The vaptans constitute a new class of pharmaceuticals developed for the treatment of the hypervolemic and euvolemic forms of hyponatremia. These agents are nonpeptide vasopressin antagonists that interfere with the antidiuretic effect of the hormone by competitively binding to V2 receptors in the kidney. This blockade results in water diuresis (aquaresis) that, if not offset by increased fluid intake, reduces body water content and raises plasma sodium levels. Probably as a result of this rise in plasma sodium, thirst and plasma vasopressin concentration increase, potentionally limiting the effects of the vasopressin antagonists. Nonetheless, vaptans are particularly useful to treat hypervolemic hyponatremia associated with severe congestive heart failure or chronic liver failure, as the only other treatments currently available, such as fluid restriction and diuretics, are slow-acting and minimally effective. Vaptans are also useful for treating euvolemic hyponatremia associated with the syndrome of inappropriate antidiuretic hormone (SIADH), at least when it is chronic and/or minimally symptomatic. However, because their effects vary unpredictably from patient to patient, vaptans are less useful than hypertonic saline infusion in cases of acute, severe and symptomatic hyponatremia. Vaptan therapy is absolutely contraindicated in hypovolemic hyponatremia (in which total body water is reduced) and is ineffective in the vasopressin-independent form of inappropriate antidiuresis caused by constitutive activating mutations of V2 receptors.

Key Points

  • Vaptans are nonpeptide agents that antagonize the antidiuretic effect of vasopressin by competing with it for binding to V2 receptors in the kidney

  • Vaptans increase solute-free water excretion, reduce body water content and raise the plasma sodium level by reducing urine concentration, unless the aquaresis is offset by increased fluid intake

  • The vaptan-induced rise in plasma sodium often stimulates thirst and/or vasopressin secretion, which, in turn, may feed back to increase fluid intake and/or overcome blockade of the V2 receptor

  • In conjunction with modest restriction of fluid intake, vaptans have proven safe and effective in treating chronic hypervolemic and euvolemic hyponatremia

  • The use of vaptans to treat acute, symptomatic forms of hyponatremia is still debatable, because their effects on plasma sodium vary unpredictably from patient to patient

  • Vaptan therapy is contraindicated in hypovolemic hyponatremia, a disorder associated with decreased total body water and sodium levels, and is ineffective in a form of inappropriate antidiuresis that is independent of vasopressin

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principal elements of the osmoregulatory system.
Figure 2: Osmoregulation of water balance in healthy adults.

Similar content being viewed by others

References

  1. Robertson, G. L., Aycinena, P. & Zerbe, R. L. Neurogenic disorders of osmoregulation. Am. J. Med. 72, 339–353 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Robertson, G. L. Regulation of arginine vasopressin in the syndrome of inappropriate antidiuresis. Am. J. Med. 119 (Suppl. 1), S36–S42 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Schrier, R. W. Water and sodium retention in edematous disorders: role of vasopressin and aldosterone. Am. J. Med. 119 (Suppl. 1), S47–S53 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Pruszczynski, W., Vahanian, A., Ardaillou, R. & Acar, J. Role of antidiuretic hormone in impaired water excretion of patients with congestive heart failure. J. Clin. Endocrinol. Metab. 58, 599–605 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Robertson, G. L. The use of vasopressin assays in physiology and pathophysiology. Semin. Nephrol. 14, 368–383 (1994).

    CAS  PubMed  Google Scholar 

  6. Oelkers, W. Hyponatremia and inappropriate secretion of vasopressin (antidiuretic hormone) in patients with hypopituitarism. N. Engl. J. Med. 321, 492–496 (1989).

    Article  CAS  Google Scholar 

  7. Gitelman, S. E., Feldman, B. J. & Rosenthal, S. M. Nephrogenic syndrome of inappropriate antidiuresis: a novel disorder in water balance in pediatric patients. Am. J. Med. 119 (Suppl. 1), S54–S58 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Decaux, G. et al. Nephrogenic syndrome of inappropriate antidiuresis in adults: high phenotypic variability in men and women from a large pedigree. J. Am. Soc. Nephrol. 18, 606–612 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Robertson, G. L. Antidiuretic hormone. Normal and disordered function. Endocrinol. Metab. Clin. North Am. 30, 671–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Pasantes-Morales, H., Lezama, R. A., Ramos-Mandujano, G. & Tuz, K. L. Mechanisms of cell volume regulation in hypo-osmolality. Am. J. Med. 119 (Suppl. 1), S4–S11 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Sterns, R. H. & Silver, S. M. Brain volume regulation in response to hypo-osmolality and its correction. Am. J. Med. 119 (Suppl. 1), S12–S16 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Shimizu, K. Aquaretic effects of the nonpeptide V2 antagonist OPC-31260 in hydropenic humans. Kidney Int. 48, 220–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Ohnishi, A. et al. Potent aquaretic agent. A novel nonpeptide selective vasopressin 2 antagonist (OPC-31260) in men. J. Clin. Invest. 92, 2653–2659 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohnishi, A. et al. Aquaretic effect of a potent, orally active, non-peptide V2 antagonist in men. J. Pharmacol. Exp. Ther. 272, 546–551 (1995).

    CAS  PubMed  Google Scholar 

  15. Burnier, M., Fricker, A. F., Hayoz, D., Nussberger, J. & Brunner, H. R. Pharmacokinetic and pharmacodynamic effects of YM087, a combined V1/V2 vasopressin receptor antagonist in normal subjects. Eur. J. Clin. Pharmacol. 55, 633–637 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Mao, Z. L., Stalker, D. & Keirns, J. Pharmacokinetics of conivaptan hydrochloride, a Vasopressin V1a/V2-receptor antagonist, in patients with euvolemic or hypervolemic hyponatremia and with or without congestive heart failure from a prospective, 4-day open-label study. Clin. Ther. 31, 1542–1550 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Matsuhisa, A., Taniguchi, N., Koshio, H., Yatsu, T. & Tanaka, A. Nonpeptide arginine vasopressin antagonists for both V1A and V2 receptors: synthesis and pharmacological properties of 4-(1,4,5,6-tetrahydroimidazo[4,5-d][1]benzoazepine-6-carbonyl)benzanili de derivatives and 4′-(5,6-dihydro-4H-thiazolo[5,4-d][1]benzoazepine-6-carbonyl)benzanilid e derivatives. Chem. Pharm. Bull. (Tokyo) 48, 21–31 (2000).

    Article  CAS  Google Scholar 

  18. Shoaf, S. E., Wang, Z., Bricmont, P. & Mallikaarjun, S. Pharmacokinetics, pharmacodynamics, and safety of tolvaptan, a nonpeptide AVP antagonist, during ascending single-dose studies in healthy subjects. J. Clin. Pharmacol. 47, 1498–1507 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Serradeil-Le Gal, C. An overview of SR121463, a selective, non-peptide vasopressin V(2) receptor antagonist. Cardiovasc. Drug Rev. 19, 201–214 (2001).

    CAS  PubMed  Google Scholar 

  20. Albright, J. D. et al. 5-Fluoro-2-methyl-N-[4-(5H-pyrrolo[2,1-c]-[1, 4]benzodiazepin-10(11H)-ylcarbonyl)-3-chlorophenyl]benzamide (VPA-985): an orally active arginine vasopressin antagonist with selectivity for V2 receptors. J. Med. Chem. 41, 2442–2444 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Martinez-Castelao, A. Lixivaptan (American Home Products). Curr. Opin. Investig. Drugs 2, 525–530 (2001).

    CAS  PubMed  Google Scholar 

  22. Muralidharan, G. et al. Pharmacokinetics and pharmacodynamics of a novel vasopressin receptor antagonist, VPA-985, in healthy subjects. Clin. Pharmacol. Ther. 65, 189 (1999).

    Article  Google Scholar 

  23. Guyader, D., Patat, A., Ellis-Grosse, E. J. & Orczyk, G. P. Pharmacodynamic effects of a nonpeptide antidiuretic hormone V2 antagonist in cirrhotic patients with ascites. Hepatology 36, 1197–1205 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Gunnet, J. W. et al. Characterization of RWJ-351647, a novel non-peptide vasopressin V2 receptor antagonist. Clin. Exper. Pharmacol. Physiol. 33, 320–326 (2006).

    Article  CAS  Google Scholar 

  25. Robertson, G. L., Shelton, R. L. & Athar, S. The osmoregulation of vasopressin. Kidney Int. 10, 25–37 (1976).

    Article  CAS  PubMed  Google Scholar 

  26. Zerbe, R. L., Miller, J. Z. & Robertson, G. L. The reproducibility and heritability of individual differences in osmoregulatory function in normal human subjects. J. Lab. Clin. Med. 117, 51–59 (1991).

    CAS  Google Scholar 

  27. Ghali, J. K. et al. Efficacy and safety of oral conivaptan: a V1A/V2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvolemic or hypervolemic hyponatremia. J. Clin. Endocrinol. Metab. 91, 2145–2152 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Annane, D., Decaux, G. & Smith, N. Efficacy and safety of oral conivaptan, a vasopressin-receptor antagonist, evaluated in a randomized, controlled trial in patients with euvolemic or hypervolemic hyponatremia. Am. J. Med. Sci. 337, 28–36 (2009).

    Article  PubMed  Google Scholar 

  29. Zeltser, D., Rosansky, S., van Rensburg, H., Verbalis, J. G. & Smith, N. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am. J. Nephrol. 27, 447–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Schrier, R. W. et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N. Engl. J. Med. 355, 2099–2112 (2006).

    Article  CAS  Google Scholar 

  31. Gheorghiade, M. et al. Vasopressin v(2) receptor blockade with tolvaptan versus fluid restriction in the treatment of hyponatremia. Am. J. Cardiol. 97, 1064–1067 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Wong, F., Blei, A. T., Blendis, L. M. & Thuluvath, P. J. A vasopressin receptor antagonist (VPA-985) improves serum sodium concentration in patients with hyponatremia: a multicenter, randomized, placebo-controlled trial. Hepatology 37, 182–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Gheorghiade, M. et al. Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, randomized trial. Circulation 107, 2690–2696 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Abraham, W. T., Shamshirsaz, A. A., McFann, K., Oren, R. M. & Schrier, R. W. Aquaretic effect of lixivaptan, an oral, non-peptide, selective V2 receptor vasopressin antagonist, in New York Heart Association functional class II and III chronic heart failure patients. J. Am. Coll. Cardiol. 47, 1615–1621 (2006).

    Article  CAS  Google Scholar 

  35. Rossi, J. et al. Improvement in hyponatremia during hospitalization for worsening heart failure is associated with improved outcomes: insights from the Acute and Chronic Therapeutic Impact of a Vasopressin Antagonist in Chronic Heart Failure (ACTIV in CHF) trial. Acute Card. Care 9, 82–86 (2007).

    Article  PubMed  Google Scholar 

  36. Konstam, M. A. et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA 297, 1319–1331 (2007).

    Article  CAS  Google Scholar 

  37. Inoue, T. et al. Therapeutic and diagnostic potential of a vasopressin-2 antagonist for impaired water handling in cirrhosis. Clin. Pharmacol. Ther. 63, 561–570 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Ginès, P. et al. Effects of satavaptan, a selective vasopressin V(2) receptor antagonist, on ascites and serum sodium in cirrhosis with hyponatremia: a randomized trial. Hepatology 48, 204–213 (2008).

    Article  PubMed  Google Scholar 

  39. Verbalis, J. G., Zeltser, D., Smith, N., Barve, A. & Andoh, M. Assessment of the efficacy and safety of intravenous conivaptan in patients with euvolaemic hyponatraemia: subgroup analysis of a randomized, controlled study. Clin. Endocrinol. (Oxf.) 69, 159–168 (2008).

    Article  CAS  Google Scholar 

  40. O'Leary, J. G. & Davis, G. L. Conivaptan increases serum sodium in hyponatremic patients with end-stage liver disease. Liver Transpl. 15, 1325–1329 (2009).

    Article  PubMed  Google Scholar 

  41. Soupart, A. et al. Successful long-term treatment of hyponatremia in syndrome of inappropriate antidiuretic hormone secretion with satavaptan (SR121463B), an orally active nonpeptide vasopressin V2-receptor antagonist. Clin. J. Am. Soc. Nephrol. 1, 1154–1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Goldman, M. B., Luchins, D. J. & Robertson, G. L. Mechanisms of altered water metabolism in psychotic patients with polydipsia and hyponatremia. N. Engl. J. Med. 318, 397–403 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Josiassen, R. C. et al. Double-blind, placebo-controlled, multicenter trial of a vasopressin V2-receptor antagonist in patients with schizophrenia and hyponatremia. Biol. Psychiatry 64, 1097–1100 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Decaux, G. et al. Nephrogenic syndrome of inappropriate antidiuresis in adults: high phenotypic variability in men and women from a large pedigree. J. Am. Soc. Nephrol. 18, 606–612 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Berliner, R. W., Levinsky, N. G., Davidson, D. G. & Eden, M. Dilution and concentration of the urine and the action of the antidiuretic hormone. Am. J. Med. 24, 730–744 (1958).

    Article  CAS  PubMed  Google Scholar 

  46. Knepper, M. A. Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin. Am. J. Physiol. 272, F3–F12 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, G. Vaptans for the treatment of hyponatremia. Nat Rev Endocrinol 7, 151–161 (2011). https://doi.org/10.1038/nrendo.2010.229

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing