Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adrenocortical carcinoma: a clinician's update

Abstract

Adrenocortical carcinoma is a rare heterogeneous neoplasm with an incompletely understood pathogenesis and a poor prognosis. Previous studies have identified overexpression of insulin-like growth factor 2 (IGF-2) and constitutive activation of β-catenin as key factors involved in the development of adrenocortical carcinoma. Most patients present with steroid hormone excess, for example Cushing syndrome or virilization, or abdominal mass effects, but a growing proportion of patients with adrenocortical carcinoma (currently >15%) is initially diagnosed incidentally. No general consensus on the diagnostic and therapeutic measures for adrenocortical carcinoma exists, but collaborative efforts, such as international conferences and networks, including the European Network for the Study of Adrenal Tumors (ENSAT), have substantially advanced the field. In patients with suspected adrenocortical carcinoma, a thorough endocrine and imaging work-up is recommended to guide the surgical approach aimed at complete resection of the tumor. To establish an adequate basis for treatment decisions, pathology reports include the Weiss score to assess malignancy, the resection status and the Ki67 index. As recurrence is frequent, close follow-up initially every 3 months is mandatory. Most patients benefit from adjuvant mitotane treatment. In metastatic disease, mitotane is the cornerstone of initial treatment, and cytotoxic drugs should be added in case of progression. Results of a large phase III trial in advanced adrenocortical carcinoma are anticipated for 2011 and will hopefully establish a benchmark therapy. New targeted therapies, for example, IGF-1 receptor inhibitors, are under investigation and may soon improve current treatment options.

Key Points

  • Overexpression of insulin-like growth factor 2 and constitutive activation of β-catenin are key molecular alterations in adrenocortical carcinoma

  • Detailed presurgical endocrine and imaging work-up and an expert surgeon are key prerequisites for a complete resection that offers the best chance of cure

  • Even after radical resection, recurrence rate is high and, therefore, most patients benefit from adjuvant treatment strategies (mitotane with or without radiotherapy)

  • Mitotane is the most effective single drug for adrenocortical carcinoma, but drug monitoring is important and management of adverse events is demanding

  • In advanced disease not amenable to surgery, mitotane is given as monotherapy or in combination with cytotoxic chemotherapy (either etoposide combined with doxorubicin and cisplatin or streptozotocin)

  • To facilitate progress in the treatment of adrenocortical carcinoma, patients should be enrolled in clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathophysiologically relevant pathways in adrenocortical carcinoma.
Figure 2: Imaging studies performed in a patient with adrenocortical carcinoma.
Figure 3: Disease-specific survival according to tumor stage data from the European Network for the Study of Adrenal Tumors (ENSAT), which includes follow-up data from 566 patients derived from the German adrenocortical carcinoma registry in July 2010.
Figure 4: Treatment of adrenocortical carcinoma amenable to complete resection.
Figure 5: Treatment of advanced adrenocortical carcinoma not amenable to radical surgery.

Similar content being viewed by others

References

  1. Abecassis, M., McLoughlin, M. J., Langer, B. & Kudlow, J. E. Serendipitous adrenal masses: prevalence, significance, and management. Am. J. Surg. 149, 783–788 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Grumbach, M. M. et al. Management of the clinically inapparent adrenal mass (“incidentaloma”). Ann. Intern. Med. 138, 424–429 (2003).

    Article  PubMed  Google Scholar 

  3. Bovio, S. et al. Prevalence of adrenal incidentaloma in a contemporary computerized tomography series. J. Endocrinol. Invest. 29, 298–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Song, J. H., Chaudhry, F. S. & Mayo-Smith, W. W. The incidental adrenal mass on CT: prevalence of adrenal disease in 1,049 consecutive adrenal masses in patients with no known malignancy. AJR Am. J. Roentgenol. 190, 1163–1168 (2008).

    Article  PubMed  Google Scholar 

  5. Cutler, S. J., Young, J. L. & Connelly, R. R. (Eds) Third national cancer survey: incidenca data (U. S. Dept of Health, Education, and Welfare, Public Health Service, National Institutes of Health, National Cancer Institute, Bethesda, 1975).

    Google Scholar 

  6. Kebebew, E., Reiff, E., Duh, Q. Y., Clark, O. H. & McMillan, A. Extent of disease at presentation and outcome for adrenocortical carcinoma: have we made progress? World J. Surg. 30, 872–878 (2006).

    Article  PubMed  Google Scholar 

  7. Golden, S. H., Robinson, K. A., Saldanha, I., Anton, B. & Ladenson, P. W. Clinical review: Prevalence and incidence of endocrine and metabolic disorders in the United States: a comprehensive review. J. Clin. Endocrinol. Metab. 94, 1853–1878 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koschker, A. C., Fassnacht, M., Hahner, S., Weismann, D. & Allolio, B. Adrenocortical carcinoma—improving patient care by establishing new structures. Exp. Clin. Endocrinol. Diabetes 114, 45–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Ribeiro, R. C. et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc. Natl Acad. Sci. USA 98, 9330–9335 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pinto, E. M. et al. Founder effect for the highly prevalent R337H mutation of tumor suppressor p53 in Brazilian patients with adrenocortical tumors. Arq. Bras. Endocrinol. Metabol. 48, 647–650 (2004).

    Article  PubMed  Google Scholar 

  11. Hutter, A. M. Jr & Kayhoe, D. E. Adrenal cortical carcinoma. Clinical features of 138 patients. Am. J. Med. 41, 572–580 (1966).

    Article  PubMed  Google Scholar 

  12. Bilimoria, K. Y. et al. Adrenocortical carcinoma in the United States: treatment utilization and prognostic factors. Cancer 113, 3130–3136 (2008).

    Article  PubMed  Google Scholar 

  13. Wooten, M. D. & King, D. K. Adrenal cortical carcinoma. Epidemiology and treatment with mitotane and a review of the literature. Cancer 72, 3145–3155 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Universität Würzburg Offizielle Homepage des Deutsche Nebennierenkarzinom-Registers [online], www.nebennierenkarzinom.de/ (2010).

  15. Sidhu, S. et al. Comparative genomic hybridization analysis of adrenocortical tumors. J. Clin. Endocrinol. Metab. 87, 3467–3474 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Kjellman, M. et al. Genotyping of adrenocortical tumors: very frequent deletions of the MEN1 locus in 11q13 and of a 1-centimorgan region in 2p16. J. Clin. Endocrinol. Metab. 84, 730–735 (1999).

    CAS  PubMed  Google Scholar 

  17. Gicquel, C. et al. Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res. 61, 6762–6767 (2001).

    CAS  PubMed  Google Scholar 

  18. DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Wiedemann, H. R. et al. The proteus syndrome. Partial gigantism of the hands and/or feet, nevi, hemihypertrophy, subcutaneous tumors, macrocephaly or other skull anomalies and possible accelerated growth and visceral affections. Eur. J. Pediatr. 140, 5–12 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Boulle, N., Logié, A., Gicquel, C., Perin, L. & Le Bouc, Y. Increased levels of insulin-like growth factor II (IGF-II) and IGF-binding protein-2 are associated with malignancy in sporadic adrenocortical tumors. J. Clin. Endocrinol. Metab. 83, 1713–1720 (1998).

    CAS  PubMed  Google Scholar 

  21. Gicquel, C. et al. Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: study on a series of 82 tumors. J. Clin. Endocrinol. Metab. 82, 2559–2565 (1997).

    CAS  PubMed  Google Scholar 

  22. Logié, A. et al. Autocrine role of IGF-II in proliferation of human adrenocortical carcinoma NCI H295R cell line. J. Mol. Endocrinol. 23, 23–32 (1999).

    Article  PubMed  Google Scholar 

  23. Kikuchi, A. Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci. 94, 225–229 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Naylor, E. W. & Gardner, E. J. Adrenal adenomas in a patient with Gardner's syndrome. Clin. Genet. 20, 67–73 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Tissier, F. et al. Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res. 65, 7622–7627 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Tadjine, M., Lampron, A., Ouadi, L. & Bourdeau, I. Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin. Endocrinol. (Oxf.) 68, 264–270 (2008).

    CAS  Google Scholar 

  27. Berthon, A. et al. Constitutive beta-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum. Mol. Genet. 19, 1561–1576 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Luo, X., Ikeda, Y. & Parker, K. L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481–490 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Hammer, G. D., Parker, K. L. & Schimmer, B. P. Minireview: transcriptional regulation of adrenocortical development. Endocrinology 146, 1018–1024 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Schimmer, B. P. & White, P. C. Minireview: steroidogenic factor 1: its roles in differentiation, development, and disease. Mol. Endocrinol. 24, 1322–1337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Figueiredo, B. C. et al. Amplification of the steroidogenic factor 1 gene in childhood adrenocortical tumors. J. Clin. Endocrinol. Metab. 90, 615–619 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Pianovski, M. A. et al. Mortality rate of adrenocortical tumors in children under 15 years of age in Curitiba, Brazil. Pediatr. Blood Cancer 47, 56–60 (2006).

    Article  PubMed  Google Scholar 

  33. Almeida, M. Q. et al. Steroidogenic factor 1 overexpression and gene amplification are more frequent in adrenocortical tumors from children than from adults. J. Clin. Endocrinol. Metab. 95, 1458–1462 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Sbiera, S. et al. High diagnostic and prognostic value of steroidogenic factor-1 expression in adrenal tumors. J. Clin. Endocrinol. Metab. 95, E161–E171 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Doghman, M. et al. Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Mol. Endocrinol. 21, 2968–2987 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Lichtenauer, U. D. et al. Pre-B-cell transcription factor 1 and steroidogenic factor 1 synergistically regulate adrenocortical growth and steroidogenesis. Endocrinology 148, 693–704 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Doghman, M. et al. Inhibition of adrenocortical carcinoma cell proliferation by steroidogenic factor-1 inverse agonists. J. Clin. Endocrinol. Metab. 94, 2178–2183 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hotta, M. & Baird, A. Differential effects of transforming growth factor type beta on the growth and function of adrenocortical cells in vitro. Proc. Natl Acad. Sci. USA 83, 7795–7799 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feige, J. J. et al. Transforming growth factor beta 1: an autocrine regulator of adrenocortical steroidogenesis. Endocr. Res. 17, 267–279 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Feige, J. J., Vilgrain, I., Brand, C., Bailly, S. & Souchelnitskiy, S. Fine tuning of adrenocortical functions by locally produced growth factors. J. Endocrinol. 158, 7–19 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. de Fraipont, F. et al. Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic Acid microarrays identifies several candidate genes as markers of malignancy. J. Clin. Endocrinol. Metab. 90, 1819–1829 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Bernini, G. P. et al. Angiogenesis in human normal and pathologic adrenal cortex. J. Clin. Endocrinol. Metab. 87, 4961–4965 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Kolomecki, K., Stepien, H., Bartos, M. & Kuzdak, K. Usefulness of VEGF, MMP-2, MMP-3 and TIMP-2 serum level evaluation in patients with adrenal tumours. Endocr. Regul. 35, 9–16 (2001).

    CAS  PubMed  Google Scholar 

  44. Adam, P. et al. Epidermal growth factor receptor in adrenocortical tumors: analysis of gene sequence, protein expression and correlation with clinical outcome. Mod. Pathol. 23, 1596–1604 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Hisada, M., Garber, J. E., Fung, C. Y., Fraumeni, J. F. Jr & Li, F. P. Multiple primary cancers in families with Li-Fraumeni syndrome. J. Natl Cancer Inst. 90, 606–611 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Wagner, J. et al. High frequency of germline p53 mutations in childhood adrenocortical cancer. J. Natl Cancer Inst. 86, 1707–1710 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Ohgaki, H., Kleihues, P. & Heitz, P. U. p53 mutations in sporadic adrenocortical tumors. Int. J. Cancer 54, 408–410 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Reincke, M. et al. p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J. Clin. Endocrinol. Metab. 78, 790–794 (1994).

    CAS  PubMed  Google Scholar 

  49. Libè, R. et al. Somatic TP53 mutations are relatively rare among adrenocortical cancers with the frequent 17p13 loss of heterozygosity. Clin. Cancer Res. 13, 844–850 (2007).

    Article  PubMed  Google Scholar 

  50. Soon, P. S., McDonald, K. L., Robinson, B. G. & Sidhu, S. B. Molecular markers and the pathogenesis of adrenocortical cancer. Oncologist 13, 548–561 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Beuschlein, F., Fassnacht, M., Klink, A., Allolio, B. & Reincke, M. ACTH-receptor expression, regulation and role in adrenocortial tumor formation. Eur. J. Endocrinol. 144, 199–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Giordano, T. J. et al. Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am. J. Pathol. 162, 521–531 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Reyniès, A. et al. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J. Clin. Oncol. 27, 1108–1115 (2009).

    Article  PubMed  Google Scholar 

  54. Giordano, T. J. et al. Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin. Cancer Res. 15, 668–676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Szabó, P. M. et al. Meta-analysis of adrenocortical tumour genomics data: novel pathogenic pathways revealed. Oncogene 29, 3163–3172 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Icard, P. et al. Adrenocortical carcinomas: surgical trends and results of a 253-patient series from the French Association of Endocrine Surgeons study group. World J. Surg. 25, 891–897 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Crucitti, F., Bellantone, R., Ferrante, A., Boscherini, M. & Crucitti, P. The Italian Registry for Adrenal Cortical Carcinoma: analysis of a multiinstitutional series of 129 patients. The ACC Italian Registry Study Group. Surgery 119, 161–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Kendrick, M. L. et al. Adrenocortical carcinoma: surgical progress or status quo? Arch. Surg. 136, 543–549 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Schulick, R. D. & Brennan, M. F. Adrenocortical carcinoma. World J. Urol. 17, 26–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Dackiw, A. P., Lee, J. E., Gagel, R. F. & Evans, D. B. Adrenal cortical carcinoma. World J. Surg. 25, 914–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Abiven, G. et al. Clinical and biological features in the prognosis of adrenocortical cancer: poor outcome of cortisol-secreting tumors in a series of 202 consecutive patients. J. Clin. Endocrinol. Metab. 91, 2650–2655 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Stewart, P. M., Walker, B. R., Holder, G., O'Halloran, D. & Shackleton, C. H. 11 beta-Hydroxysteroid dehydrogenase activity in Cushing's syndrome: explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J. Clin. Endocrinol. Metab. 80, 3617–3620 (1995).

    CAS  PubMed  Google Scholar 

  63. Seccia, T. M., Fassina, A., Nussdorfer, G. G., Pessina, A. C. & Rossi, G. P. Aldosterone-producing adrenocortical carcinoma: an unusual cause of Conn's syndrome with an ominous clinical course. Endocr. Relat. Cancer 12, 149–159 (2005).

    Article  PubMed  Google Scholar 

  64. Hyodo, T., Megyesi, K., Kahn, C. R., McLean, J. P. & Friesen, H. G. Adrenocortical carcinoma and hypoglycemia: evidence for production of nonsuppressible insulin-like activity by the tumor. J. Clin. Endocrinol. Metab. 44, 1175–1184 (1977).

    Article  CAS  PubMed  Google Scholar 

  65. Wajchenberg, B. et al. Adrenocortical carcinoma: clinical and laboratory observations. Cancer 88, 711–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Luton, J. P. et al. Clinical features of adrenocortical carcinoma, prognostic factors, and the effect of mitotane therapy. N. Engl. J. Med. 322, 1195–1201 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Allolio, B. & Fassnacht, M. Clinical review: Adrenocortical carcinoma: clinical update. J. Clin. Endocrinol. Metab. 91, 2027–2037 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Libè, R., Fratticci, A. & Bertherat, J. Adrenocortical cancer: pathophysiology and clinical management. Endocr. Relat. Cancer 14, 13–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. European Network for the Study of Adrenal Tumours Adrenocortical carcinomas [online], http://www.ensat.org/acc.htm (2010).

  70. Fassnacht, M. & Allolio, B. Clinical management of adrenocortical carcinoma. Best Pract. Res. Clin. Endocrinol. Metab. 23, 273–289 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Boland, G. W. et al. Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. AJR Am. J. Roentgenol. 171, 201–204 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Hamrahian, A. H. et al. Clinical utility of noncontrast computed tomography attenuation value (hounsfield units) to differentiate adrenal adenomas/hyperplasias from nonadenomas: Cleveland Clinic experience. J. Clin. Endocrinol. Metab. 90, 871–877 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Caoili, E. M. et al. Adrenal masses: characterization with combined unenhanced and delayed enhanced CT. Radiology 222, 629–633 (2002).

    Article  PubMed  Google Scholar 

  74. Ilias, I., Sahdev, A., Reznek, R. H., Grossman, A. B. & Pacak, K. The optimal imaging of adrenal tumours: a comparison of different methods. Endocr. Relat. Cancer 14, 587–599 (2007).

    Article  PubMed  Google Scholar 

  75. Heinz-Peer, G., Memarsadeghi, M. & Niederle, B. Imaging of adrenal masses. Curr. Opin. Urol. 17, 32–38 (2007).

    Article  PubMed  Google Scholar 

  76. Szolar, D. H. et al. Adrenocortical carcinomas and adrenal pheochromocytomas: mass and enhancement loss evaluation at delayed contrast-enhanced CT. Radiology 234, 479–485 (2005).

    Article  PubMed  Google Scholar 

  77. Park, B. K., Kim, C. K., Kim, B. & Lee, J. H. Comparison of delayed enhanced CT and chemical shift MR for evaluating hyperattenuating incidental adrenal masses. Radiology 243, 760–765 (2007).

    Article  PubMed  Google Scholar 

  78. Hönigschnabl, S. et al. How accurate is MR imaging in characterisation of adrenal masses: update of a long-term study. Eur. J. Radiol. 41, 113–122 (2002).

    Article  PubMed  Google Scholar 

  79. Groussin, L. et al. 18F-Fluorodeoxyglucose positron emission tomography for the diagnosis of adrenocortical tumors: a prospective study in 77 operated patients. J. Clin. Endocrinol. Metab. 94, 1713–1722 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Hahner, S. et al. [123 I]Iodometomidate for molecular imaging of adrenocortical cytochrome P450 family 11B enzymes. J. Clin. Endocrinol. Metab. 93, 2358–2365 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Khan, T. S. et al. 11C-metomidate PET imaging of adrenocortical cancer. Eur. J. Nucl. Med. Mol. Imaging 30, 403–410 (2003).

    Article  PubMed  Google Scholar 

  82. Hennings, J. et al. [11C]metomidate positron emission tomography of adrenocortical tumors in correlation with histopathological findings. J. Clin. Endocrinol. Metab. 91, 1410–1414 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Sasano, H. et al. Transcription factor adrenal 4 binding protein as a marker of adrenocortical malignancy. Hum. Pathol. 26, 1154–1156 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Hough, A. J., Hollifield, J. W., Page, D. L. & Hartmann, W. H. Prognostic factors in adrenal cortical tumors. A mathematical analysis of clinical and morphologic data. Am. J. Clin. Pathol. 72, 390–399 (1979).

    Article  CAS  PubMed  Google Scholar 

  85. van Slooten, H., Schaberg, A., Smeenk, D. & Moolenaar, A. J. Morphologic characteristics of benign and malignant adrenocortical tumors. Cancer 55, 766–773 (1985).

    Article  CAS  PubMed  Google Scholar 

  86. Weiss, L. M., Medeiros, L. J. & Vickery, A. L. Jr. Pathologic features of prognostic significance in adrenocortical carcinoma. Am. J. Surg. Pathol. 13, 202–206 (1989).

    Article  CAS  PubMed  Google Scholar 

  87. Weiss, L. M. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am. J. Surg. Pathol. 8, 163–169 (1984).

    Article  CAS  PubMed  Google Scholar 

  88. Morimoto, R. et al. Immunohistochemistry of a proliferation marker Ki67/MIB1 in adrenocortical carcinomas: Ki67/MIB1 labeling index is a predictor for recurrence of adrenocortical carcinomas. Endocr. J. 55, 49–55 (2008).

    Article  PubMed  Google Scholar 

  89. Terzolo, M. et al. Immunohistochemical assessment of Ki-67 in the differential diagnosis of adrenocortical tumors. Urology 57, 176–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Fassina, A. S., Borsato, S. & Fedeli, U. Fine needle aspiration cytology (FNAC) of adrenal masses. Cytopathology 11, 302–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Saeger, W. et al. High diagnostic accuracy of adrenal core biopsy: results of the German and Austrian adrenal network multicenter trial in 220 consecutive patients. Hum. Pathol. 34, 180–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Lumachi, F. et al. Fine-needle aspiration cytology of adrenal masses in noncancer patients: clinicoradiologic and histologic correlations in functioning and nonfunctioning tumors. Cancer 93, 323–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Lumachi, F. et al. Role and cost-effectiveness of adrenal imaging and image-guided FNA cytology in the management of incidentally discovered adrenal tumours. Anticancer Res. 25, 4559–4562 (2005).

    PubMed  Google Scholar 

  94. Quayle, F. J. et al. Needle biopsy of incidentally discovered adrenal masses is rarely informative and potentially hazardous. Surgery 142, 497–502 (2007).

    Article  PubMed  Google Scholar 

  95. Fassnacht, M. et al. Limited prognostic value of the 2004 International Union Against Cancer staging classification for adrenocortical carcinoma: proposal for a revised TNM classification. Cancer 115, 243–250 (2009).

    Article  PubMed  Google Scholar 

  96. Lee, J. E. et al. Surgical management, DNA content, and patient survival in adrenal cortical carcinoma. Surgery 118, 1090–1098 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Lughezzani, G. et al. The European Network for the Study of Adrenal Tumors staging system is prognostically superior to the international union against cancer-staging system: a North American validation. Eur. J. Cancer 46, 713–719 (2010).

    Article  PubMed  Google Scholar 

  98. Schteingart, D. E. et al. Management of patients with adrenal cancer: recommendations of an international consensus conference. Endocr. Relat. Cancer 12, 667–680 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Porpiglia, F. et al. Retrospective evaluation of the outcome of open versus laparoscopic adrenalectomy for stage I and II adrenocortical cancer. Eur. Urol. 57, 873–878 (2010).

    Article  PubMed  Google Scholar 

  100. Brix, D. et al. Laparoscopic versus open adrenalectomy for adrenocortical carcinoma: surgical and oncologic outcome in 152 patients. Eur. Urol. 58, 609–615 (2010).

    Article  PubMed  Google Scholar 

  101. Miller, B. S. et al. Laparoscopic resection is inappropriate in patients with known or suspected adrenocortical carcinoma. World J. Surg. 34, 1380–1385 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Leboulleux, S. et al. Adrenocortical carcinoma: is the surgical approach a risk factor of peritoneal carcinomatosis? Eur. J. Endocrinol. 162, 1147–1153 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Murphy, M. M. et al. Trends in adrenalectomy: a recent national review. Surg. Endosc. 24, 2518–2526 (2010).

    Article  PubMed  Google Scholar 

  104. Terzolo, M. et al. Adjuvant mitotane treatment for adrenocortical carcinoma. N. Engl. J. Med. 356, 2372–2380 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Huang, H. & Fojo, T. Adjuvant mitotane for adrenocortical cancer—a recurring controversy. J. Clin. Endocrinol. Metab. 93, 3730–3732 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Terzolo, M., Fassnacht, M., Ciccone, G., Allolio, B. & Berruti, A. Adjuvant mitotane for adrenocortical cancer--working through uncertainty. J. Clin. Endocrinol. Metab. 94, 1879–1880 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Berruti, A. et al. Adjuvant therapy in patients with adrenocortical carcinoma: a position of an international panel. J. Clin. Oncol. 28, e401–e402 (2010).

    Article  PubMed  Google Scholar 

  108. Fassnacht, M. et al. Efficacy of adjuvant radiotherapy of the tumor bed on local recurrence of adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 91, 4501–4504 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Polat, B. et al. Radiotherapy in adrenocortical carcinoma. Cancer 115, 2816–2823 (2009).

    Article  PubMed  Google Scholar 

  110. Sabolch, A. et al. Adjuvant and definitive radiotherapy for adrenocortical carcinoma. Int. J. Radiat. Oncol. Biol. Phys. doi:10.1016/j.ijrobp.2010.04.030.

  111. Fassnacht, M. et al. Improved survival in patients with stage II adrenocortical carcinoma followed up prospectively by specialized centers. J. Clin. Endocrinol. Metab. 95, 4925–4932 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. US National Institutes of Health Clinicaltrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT00777244 (2010).

  113. Bauditz, J., Quinkler, M. & Wermke, W. Radiofrequency thermal ablation of hepatic metastases of adrenocortical cancer—a case report and review of the literature. Exp. Clin. Endocrinol. Diabetes 117, 316–319 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Wood, B. J., Abraham, J., Hvizda, J. L., Alexander, H. R. & Fojo, T. Radiofrequency ablation of adrenal tumors and adrenocortical carcinoma metastases. Cancer 97, 554–560 (2003).

    Article  PubMed  Google Scholar 

  115. Jensen, J. C., Pass, H. I., Sindelar, W. F. & Norton, J. A. Recurrent or metastatic disease in select patients with adrenocortical carcinoma. Aggressive resection vs chemotherapy. Arch. Surg. 126, 457–461 (1991).

    Article  CAS  PubMed  Google Scholar 

  116. Pommier, R. F. & Brennan, M. F. An eleven-year experience with adrenocortical carcinoma. Surgery 112, 963–970 (1992).

    CAS  PubMed  Google Scholar 

  117. Bellantone, R. et al. Role of reoperation in recurrence of adrenal cortical carcinoma: results from 188 cases collected in the Italian National Registry for Adrenal Cortical Carcinoma. Surgery 122, 1212–1218 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Schulick, R. D. & Brennan, M. F. Long-term survival after complete resection and repeat resection in patients with adrenocortical carcinoma. Ann. Surg. Oncol. 6, 719–726 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Erdogan, I. et al. Impact of surgery on clinical outcome in patients with recurrence of adrenocortical carcinoma. Endocrine Abstracts (10th European Congress of Endocrinology), 20, P194 (2009).

    Google Scholar 

  120. Khan, T. S. et al. Streptozocin and o,p'DDD in the treatment of adrenocortical cancer patients: long-term survival in its adjuvant use. Ann. Oncol. 11, 1281–1287 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. First International Randomized Trial in locally advanced and Metastatic Adrenocortical Cancer Treatment (FIRM-ACT) [online], http://www.firm-act.org/ (2010).

  122. Berruti, A. et al. Etoposide, doxorubicin and cisplatin plus mitotane in the treatment of advanced adrenocortical carcinoma: a large prospective phase II trial. Endocr. Relat. Cancer 12, 657–666 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Hahner, S. & Fassnacht, M. Mitotane for adrenocortical carcinoma treatment. Curr. Opin. Investig. Drugs 6, 386–394 (2005).

    CAS  PubMed  Google Scholar 

  124. Daffara, F. et al. Prospective evaluation of mitotane toxicity in adrenocortical cancer patients treated adjuvantly. Endocr. Relat. Cancer 15, 1043–1053 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Sperone, P. et al. Gemcitabine plus metronomic 5-fluorouracil or capecitabine as a second-/third-line chemotherapy in advanced adrenocortical carcinoma: a multicenter phase II study. Endocr. Relat. Cancer 17, 445–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Hermsen, I. G., Groenen, Y. E., Dercksen, M. W., Theuws, J. & Haak, H. R. Response to radiation therapy in adrenocortical carcinoma. J. Endocrinol. Invest. doi:10.3275/6904.

  127. Miller, J. W. & Crapo, L. The medical treatment of Cushing's syndrome. Endocr. Rev. 14, 443–458 (1993).

    Article  CAS  PubMed  Google Scholar 

  128. Schulte, H. M., Benker, G., Reinwein, D., Sippell, W. G. & Allolio, B. Infusion of low dose etomidate: correction of hypercortisolemia in patients with Cushing's syndrome and dose-response relationship in normal subjects. J. Clin. Endocrinol. Metab. 70, 1426–1430 (1990).

    Article  CAS  PubMed  Google Scholar 

  129. Fassnacht, M. et al. New mechanisms of adrenostatic compounds in a human adrenocortical cancer cell line. Eur. J. Clin. Invest. 30 (Suppl. 3), 76–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Johanssen, S. & Allolio, B. Mifepristone (RU 486) in Cushing's syndrome. Eur. J. Endocrinol. 157, 561–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Castinetti, F. et al. Merits and pitfalls of mifepristone in Cushing's syndrome. Eur. J. Endocrinol. 160, 1003–1010 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Quinkler, M. et al. Treatment of advanced adrenocortical carcinoma with erlotinib plus gemcitabine. J. Clin. Endocrinol. Metab. 93, 2057–2062 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Wortmann, S. et al. Bevacizumab plus capecitabine as a salvage therapy in advanced adrenocortical carcinoma. Eur. J. Endocrinol. 162, 349–356 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Fassnacht, M., Kreissl, M. C., Weismann, D. & Allolio, B. New targets and therapeutic approaches for endocrine malignancies. Pharmacol. Ther. 123, 117–141 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Berruti, A. et al. Emerging drugs for adrenocortical carcinoma. Expert Opin. Emerg. Drugs 13, 497–509 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Carden, C. P. et al. Phase I study of intermittent dosing of OSI-906, a dual tyrosine kinase inhibitor of insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (IR) in patients with advanced solid tumors. J. Clin. Oncol. 28 (Suppl.), abstr 2530 (2010).

    Article  Google Scholar 

  137. Venkatesh, S., Hickey, R. C., Sellin, R. V., Fernandez, J. F. & Samaan, N. A. Adrenal cortical carcinoma. Cancer 64, 765–769 (1989).

    Article  CAS  PubMed  Google Scholar 

  138. Vassilopoulou-Sellin, R. & Schultz, P. N. Adrenocortical carcinoma. Clinical outcome at the end of the 20th century. Cancer 92, 1113–1121 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Stojadinovic, A. et al. Adrenocortical carcinoma: clinical, morphologic, and molecular characterization. J. Clin. Oncol. 20, 941–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Assié, G. et al. Prognostic parameters of metastatic adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 92, 148–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Volante, M. et al. Matrix metalloproteinase type 2 expression in malignant adrenocortical tumors: Diagnostic and prognostic significance in a series of 50 adrenocortical carcinomas. Mod. Pathol. 19, 1563–1569 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Fenske, W. et al. Glucose transporter GLUT1 expression is an stage-independent predictor of clinical outcome in adrenocortical carcinoma. Endocr. Relat. Cancer 16, 919–928 (2009).

    Article  PubMed  Google Scholar 

  143. Soon, P. S. et al. Microarray gene expression and immunohistochemistry analyses of adrenocortical tumors identify IGF2 and Ki-67 as useful in differentiating carcinomas from adenomas. Endocr. Relat. Cancer 16, 573–583 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Ronchi, C. L. et al. Expression of excision repair cross complementing group 1 and prognosis in adrenocortical carcinoma patients treated with platinum-based chemotherapy. Endocr. Relat. Cancer 16, 907–918 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Malandrino, P. et al. Prognostic markers of survival after combined mitotane- and platinum-based chemotherapy in metastatic adrenocortical carcinoma (ACC). Endocr. Relat. Cancer 17, 797–807 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work described in this Review was supported by grants of the Deutsche Krebshilfe (grant #107111 to M. Fassnacht), the German Ministry of Research BMBF (grant #01KG0501 to M. Fassnacht and B. Allolio) and the German Research Foundation DFG (grant #FA466/3-1 to M. Fassnacht). C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided a substantial contribution to discussions of the content, wrote the review and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Martin Fassnacht.

Ethics declarations

Competing interests

M. Fassnacht and B. Allolio are participating as investigators in clinical trials on the pharmacokinetics of mitotane sponsored by HRA Pharma (France) and on the efficacy of OSI-906 in advanced ACC sponsored by OSI Pharma (USA). The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fassnacht, M., Libé, R., Kroiss, M. et al. Adrenocortical carcinoma: a clinician's update. Nat Rev Endocrinol 7, 323–335 (2011). https://doi.org/10.1038/nrendo.2010.235

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing