Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autoimmune polyglandular syndromes

Abstract

The autoimmune polyglandular syndromes—a group of syndromes comprising a combination of endocrine and nonendocrine autoimmune diseases—differ in their component diseases and in the immunologic features of their pathogenesis. One of the three main syndromes, type 1 autoimmune polyglandular syndrome (APS-1), has a unique pathogenic mechanism owing to mutations in the autoimmune regulator (AIRE) gene, which results in the loss of central tolerance—a process by which developing T cells with potential reactivity for self-antigens are eliminated during early differentiation in the thymus. Patients with IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) syndrome harbor mutations in the forkhead box P3 (FOXP3) gene in regulatory T cells, which leads to severe autoimmunity and immune deficiency. Although both of these disorders are rare, their well-defined mechanisms of disease provide a basis for the understanding of the more common condition, APS-2. In this syndrome, alleles of human leukocyte antigens (HLAs) determine the targeting of specific tissues by autoreactive T cells, which leads to organ-specific autoimmunity as a result of this loss of tolerance. Non-HLA genes also contribute to autoimmunity in APS-2 and, depending on the polymorphism, potentially predispose to a loss of tolerance or influence which organ is specifically targeted. This Review discusses the genetic basis of APS-1, APS-2 and IPEX syndrome, with an emphasis on the mechanisms of autoimmunity and presents currently available therapies to treat their underlying autoimmune disorders.

Key Points

  • The type 1 autoimmune polyglandular syndrome results from mutations in the AIRE gene, which modulates transcription of peripheral self-antigens in the thymus presented by human leukocyte antigen (HLA) molecules to maturing T cells

  • The type 2 autoimmune polyglandular syndrome is the most frequent autoimmune polyglandular syndrome, with underlying pathologies that develop years to decades apart in an affected individual

  • Patients with Addison disease have a 50% risk of developing a second autoimmune disease during their lifetime

  • Mutations in HLA genes, which encode the MHC (major histocompatibility complex) class II molecules expressed by antigen-presenting cells, contribute to the targeting of specific tissues by autoreactive T cells

  • Non-HLA genes contribute to the risk of autoimmune disease, as they may reduce the threshold of autoimmunity or influence the organs affected in type 2 autoimmune polyglandular syndrome

  • IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) syndrome results from mutations in the forkhead box protein P3 (FOXP3) gene, which is necessary for normal function of regulatory T cells

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages in the development of Addison disease.
Figure 2: Pathogenic model for the autoimmune polyglandular syndromes.

Similar content being viewed by others

References

  1. Michels, A. W. & Eisenbarth, G. S. Autoimmune polyendocrine syndrome type 1 (APS-1) as a model for understanding autoimmune polyendocrine syndrome type 2 (APS-2). J. Intern. Med. 265, 530–540 (2009).

    Article  CAS  Google Scholar 

  2. Friedman, T. C. et al. Frequent occurrence of asplenism and cholelithiasis in patients with autoimmune polyglandular disease type I. Am. J. Med. 91, 625–630 (1991).

    Article  CAS  Google Scholar 

  3. The Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17, 399–403 (1997).

  4. Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  5. Gardner, J. M. et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321, 843–847 (2008).

    Article  CAS  Google Scholar 

  6. Fan, Y. et al. Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J. 28, 2812–2824 (2009).

    Article  CAS  Google Scholar 

  7. Kyewski, B., Derbinski, J., Gotter, J. & Klein, L. Promiscuous gene expression and central T-cell tolerance: more than meets the eye. Trends Immunol. 23, 364–371 (2002).

    Article  CAS  Google Scholar 

  8. Kumar, P. G., Laloraya, M. & She, J. X. Population genetics and functions of the autoimmune regulator (AIRE). Endocrinol. Metab. Clin. North Am. 31, 321–338 (2002).

    Article  CAS  Google Scholar 

  9. Su, M. A. et al. Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. J. Clin. Invest. 118, 1712–1726 (2008).

    Article  CAS  Google Scholar 

  10. Su, M. A. & Anderson, M. S. Aire: an update. Curr. Opin. Immunol. 16, 746–752 (2004).

    Article  CAS  Google Scholar 

  11. Halonen, M. et al. AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype. J. Clin. Endocrinol. Metab. 87, 2568–2574 (2002).

    Article  CAS  Google Scholar 

  12. Ramsey, C. et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet. 11, 397–409 (2002).

    Article  CAS  Google Scholar 

  13. Meyer, G. et al. Screening for an AIRE-1 mutation in patients with Addison's disease, type 1 diabetes, Graves' disease and Hashimoto's thyroiditis as well as in APECED syndrome. Clin. Endocrinol. (Oxf.) 54, 335–338 (2001).

    Article  CAS  Google Scholar 

  14. Meager, A. et al. Anti-Interferon Autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 3, e289 (2006).

    Article  Google Scholar 

  15. Meloni, A. et al. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J. Clin. Endocrinol. Metab. 93, 4389–4397 (2008).

    Article  CAS  Google Scholar 

  16. Cervato, S. et al. Evaluation of the autoimmune regulator (AIRE) gene mutations in a cohort of Italian patients with autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED) and in their relatives. Clin. Endocrinol. (Oxf.) 70, 421–428 (2009).

    Article  Google Scholar 

  17. Perheentupa, J. in Autoimmune Polyendocrine Syndromes (ed. Eisenbarth, G. S.) 295–320 (W. B. Saunders Company, Philadelphia, 2002).

    Google Scholar 

  18. Wenzlau, J. M. et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc. Natl Acad. Sci. USA 104, 17040–17045 (2007).

    Article  CAS  Google Scholar 

  19. Lieberman, S. M. & DiLorenzo, T. P. A comprehensive guide to antibody and T-cell responses in type 1 diabetes. Tissue Antigens 62, 359–377 (2003).

    Article  CAS  Google Scholar 

  20. Eisenbarth, G. S., Wilson, P. W., Ward, F., Buckley, C. & Lebovitz, H. E. The polyglandular failure syndrome: disease inheritance, HLA- type and immune function. Ann. Intern. Med. 91, 528–533 (1979).

    Article  CAS  Google Scholar 

  21. Klein, J. & Sato, A. The HLA system. First of two parts. N. Engl. J. Med. 343, 702–709 (2000).

    Article  CAS  Google Scholar 

  22. Klein, J. & Sato, A. The HLA system. Second of two parts. N. Engl. J. Med. 343, 782–786 (2000).

    Article  CAS  Google Scholar 

  23. Kwon, O. J. et al. Immunogenetics of HLA class II in Israeli Ashkenazi Jewish, Israeli non-Ashkenazi Jewish, and in Israeli Arab IDDM patients. Hum. Immunol. 62, 85–91 (2001).

    Article  CAS  Google Scholar 

  24. Undlien, D. E., Lie, B. A. & Thorsby, E. HLA complex genes in type 1 diabetes and other autoimmune diseases. Which genes are involved? Trends Genet. 17, 93–100 (2001).

    Article  CAS  Google Scholar 

  25. Eisenbarth, G. S. & Gottlieb, P. A. Autoimmune polyendocrine syndromes. N. Engl. J. Med. 350, 2068–2079 (2004).

    Article  CAS  Google Scholar 

  26. Maclaren, N. K. & Riley, W. J. Inherited susceptibility to autoimmune Addison's disease is linked to human leukocyte antigens-DR3 and/or DR4, except when associated with type 1 autoimmune polyglandular syndrome. J. Clin. Endocrinol. Metab. 62, 455–459 (1986).

    Article  CAS  Google Scholar 

  27. Betterle, C. et al. The natural history of adrenal function in autoimmune patients with adrenal autoantibodies. J. Endocrinol. 117, 467–475 (1988).

    Article  CAS  Google Scholar 

  28. Betterle, C. et al. I. Adrenal cortex and steroid 21-hydroxylase autoantibodies in adult patients with organ-specific autoimmune diseases: markers of low progression to clinical Addison's disease. J. Clin. Endocrinol. Metab. 82, 932–938 (1997).

    CAS  PubMed  Google Scholar 

  29. Betterle, C. et al. II. Adrenal cortex and steroid 21-hydroxylase autoantibodies in children with organ-specific autoimmune diseases: markers of high progression to clinical Addison's disease. J. Clin. Endocrinol. Metab. 82, 939–942 (1997).

    CAS  PubMed  Google Scholar 

  30. Falorni, A. et al. 21-hydroxylase autoantibodies in adult patients with endocrine autoimmune diseases are highly specific for Addison's disease. Clin. Exp. Immunol. 107, 341–346 (1997).

    Article  CAS  Google Scholar 

  31. Yu, L. et al. DRB1*04 and DQ alleles: expression of 21-hydroxylase autoantibodies and risk of progression to Addison's disease. J. Clin. Endocrinol. Metab. 84, 328–335 (1999).

    CAS  PubMed  Google Scholar 

  32. Liu, E., Yu, L., Moriyama, H. & Eisenbarth, G. S. Animal models of insulin-dependent diabetes. Methods Mol. Med. 102, 195–212 (2004).

    CAS  PubMed  Google Scholar 

  33. Lord, C. J. et al. The murine type 1 diabetes loci, Idd1, Idd3, Idd5, Idd9, and Idd17/10/18, do not control thymic CD4-CD8-/TCRαβ+ deficiency in the nonobese diabetic mouse. Mamm. Genome 12, 175–176 (2001).

    Article  CAS  Google Scholar 

  34. Moriyama, H. et al. Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide. Proc. Natl Acad. Sci. USA 99, 5539–5544 (2002).

    Article  CAS  Google Scholar 

  35. Nakayama, M. et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435, 220–223 (2005).

    Article  CAS  Google Scholar 

  36. Nakayama, M. et al. Priming and effector dependence on insulin B:9–23 peptide in NOD islet autoimmunity. J. Clin. Invest. 117, 1835–1843 (2007).

    Article  CAS  Google Scholar 

  37. Amrani, A. et al. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 406, 739–742 (2000).

    Article  CAS  Google Scholar 

  38. Hutton, J. C. & Eisenbarth, G. S. A pancreatic β-cell-specific homolog of glucose-6-phosphatase emerges as a major target of cell-mediated autoimmunity in diabetes. Proc. Natl Acad. Sci. USA 100, 8626–8628 (2003).

    Article  CAS  Google Scholar 

  39. Lieberman, S. M. et al. Identification of the β cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc. Natl Acad. Sci. USA 100, 8384–8388 (2003).

    Article  CAS  Google Scholar 

  40. Gottlieb, P. A. & Rossini, A. A. in Autoimmune Disease Models: A Guidebook (eds Cohen, I. R. & Miller, A.) 163–174 (Academic Press, 1994).

    Book  Google Scholar 

  41. Martin, A. M. et al. Diabetes-prone and diabetes-resistant BB rats share a common major diabetes susceptibility locus, iddm4: additional evidence for a “universal autoimmunity locus” on rat chromosome 4. Diabetes 48, 2138–2144 (1999).

    Article  CAS  Google Scholar 

  42. Hornum, L., Romer, J. & Markholst, H. The diabetes-prone BB rat carries a frameshift mutation in Ian4, a positional candidate of Iddm1. Diabetes 51, 1972–1979 (2002).

    Article  CAS  Google Scholar 

  43. MacMurray, A. J. et al. Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (ian)-related gene. Genome Res. 12, 1029–1039 (2002).

    Article  CAS  Google Scholar 

  44. Awata, T., Guberski, D. L. & Like, A. A. Genetics of the BB rat: association of autoimmune disorders (diabetes, insulitis, and thyroiditis) with lymphopenia and major histocompatibility complex class II. Endocrinology 136, 5731–5735 (1995).

    Article  CAS  Google Scholar 

  45. Zipris, D. et al. TLR activation synergizes with Kilham rat virus infection to induce diabetes in BBDR rats. J. Immunol. 174, 131–142 (2005).

    Article  CAS  Google Scholar 

  46. Gambelunghe, G. et al. Contribution of MHC class I chain-related A (MICA) gene polymorphism to genetic susceptibility for systemic lupus erythematosus. Rheumatology (Oxford) 44, 287–292 (2005).

    Article  CAS  Google Scholar 

  47. Hue, S., Monteiro, R. C., Berrih-Aknin, S. & Caillat-Zucman, S. Potential role of NKG2D/MHC class I-related chain A interaction in intrathymic maturation of single-positive CD8 T cells. J. Immunol. 171, 1909–1917 (2003).

    Article  Google Scholar 

  48. Maasho, K., Opoku-Anane, J., Marusina, A. I., Coligan, J. E. & Borrego, F. NKG2D is a costimulatory receptor for human naive CD8+ T cells. J. Immunol. 174, 4480–4484 (2005).

    Article  CAS  Google Scholar 

  49. Ota, M. et al. Trinucleotide repeat polymorphism within exon 5 of the MICA gene (MHC class I chain-related gene A): allele frequency data in the nine population groups Japanese, Northern Han, Hui, Uygur, Kazakhstan, Iranian, Saudi Arabian, Greek and Italian. Tissue Antigens 49, 448–454 (1997).

    Article  CAS  Google Scholar 

  50. Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet. 15, 293–297 (1997).

    Article  CAS  Google Scholar 

  51. Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37, 1317–1319 (2005).

    Article  CAS  Google Scholar 

  52. Noel, P. J., Boise, L. H. & Thompson, C. B. Regulation of T cell activation by CD28 and CTLA4. Adv. Exp. Med. Biol. 406, 209–217 (1996).

    Article  CAS  Google Scholar 

  53. Anjos, S. M., Tessier, M. C. & Polychronakos, C. Association of the cytotoxic T lymphocyte-associated antigen 4 gene with type 1 diabetes: evidence for independent effects of two polymorphisms on the same haplotype block. J. Clin. Endocrinol. Metab. 89, 6257–6265 (2004).

    Article  CAS  Google Scholar 

  54. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    Article  CAS  Google Scholar 

  55. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  Google Scholar 

  56. Herold, K. C. et al. A single course of anti-CD3 monoclonal antibody hOKT3{gamma}1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54, 1763–1769 (2005).

    Article  CAS  Google Scholar 

  57. Keymeulen, B. et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 352, 2598–2608 (2005).

    Article  CAS  Google Scholar 

  58. Eisenbarth, G. S. et al. Anti-thymocyte globulin and prednisone immunotherapy of recent onset type I diabetes mellitus. Diabetes Res. 2, 271–276 (1985).

    CAS  PubMed  Google Scholar 

  59. Jenner, M., Bradish, G., Stiller, C. & Atkison, P. Cyclosporin A treatment of young children with newly-diagnosed type 1 (insulin-dependent) diabetes mellitus. London Diabetes Study Group. Diabetologia 35, 884–888 (1992).

    Article  CAS  Google Scholar 

  60. Bour-Jordan, H. & Bluestone, J. A. B cell depletion: a novel therapy for autoimmune diabetes? J. Clin. Invest. 117, 3642–3645 (2007).

    Article  CAS  Google Scholar 

  61. Pescovitz, M. D. et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 361, 2143–2152 (2009).

    Article  CAS  Google Scholar 

  62. Ludvigsson, J. et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N. Engl. J. Med. 359, 1909–1920. (2008).

    Article  CAS  Google Scholar 

  63. Staeva-Vieira, T., Peakman, M. & von Herrath, M. Translational mini-review series on type 1 diabetes: immune-based therapeutic approaches for type 1 diabetes. Clin. Exp. Immunol. 148, 17–31 (2007).

    Article  CAS  Google Scholar 

  64. Bacchetta, R. et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Invest. 116, 1713–1722 (2006).

    Article  CAS  Google Scholar 

  65. Ziegler, S. F. FOXP3: of mice and men. Annu. Rev. Immunol. 24, 209–226 (2006).

    Article  CAS  Google Scholar 

  66. Le, B. S. & Geha, R. S. IPEX and the role of Foxp3 in the development and function of human Tregs. J. Clin. Invest. 116, 1473–1475 (2006).

    Article  Google Scholar 

  67. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    Article  CAS  Google Scholar 

  68. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  Google Scholar 

  69. Blair, P. J. et al. CD4+CD8- T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse. J. Immunol. 153, 3764–3774 (1994).

    CAS  PubMed  Google Scholar 

  70. Singh, N. et al. Role of CD28 in fatal autoimmune disorder in scurfy mice. Blood 110, 1199–1206 (2007).

    Article  CAS  Google Scholar 

  71. Levy-Lahad, E. & Wildin, R. S. Neonatal diabetes mellitus, enteropathy, thrombocytopenia, and endocrinopathy: Further evidence for an X-linked lethal syndrome. J. Pediatr. 138, 577–580 (2001).

    Article  CAS  Google Scholar 

  72. Wildin, R. S., Smyk-Pearson, S. & Filipovich, A. H. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet. 39, 537–545 (2002).

    Article  CAS  Google Scholar 

  73. Bindl, L. et al. Successful use of the new immune-suppressor sirolimus in IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome). J. Pediatr. 147, 256–259 (2005).

    Article  Google Scholar 

  74. Battaglia, M. et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J. Immunol. 177, 8338–8347 (2006).

    Article  CAS  Google Scholar 

  75. Coenen, J. J. et al. Rapamycin, not cyclosporine, permits thymic generation and peripheral preservation of CD4+ CD25+ FoxP3+ T cells. Bone Marrow Transplant. 39, 537–545 (2007).

    Article  CAS  Google Scholar 

  76. Patel, D. D. Escape from tolerance in the human X-linked autoimmunity-allergic disregulation syndrome and the Scurfy mouse. J. Clin. Invest. 107, 155–157 (2001).

    Article  CAS  Google Scholar 

  77. Rao, A. et al. Successful bone marrow transplantation for IPEX syndrome after reduced-intensity conditioning. Blood 109, 383–385 (2007).

    Article  CAS  Google Scholar 

  78. Lucas, K. G., Ungar, D., Comito, M., Bayerl, M. & Groh, B. Submyeloablative cord blood transplantation corrects clinical defects seen in IPEX syndrome. Bone Marrow Transplant. 39, 55–56 (2007).

    Article  CAS  Google Scholar 

  79. Mazzolari, E. et al. A new case of IPEX receiving bone marrow transplantation. Bone Marrow Transplant. 35, 1033–1034 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron W. Michels.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michels, A., Gottlieb, P. Autoimmune polyglandular syndromes. Nat Rev Endocrinol 6, 270–277 (2010). https://doi.org/10.1038/nrendo.2010.40

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.40

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing