Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifactorial role of leptin in driving the breast cancer microenvironment

Abstract

Adipose-tissue-derived signaling molecules, including the adipokines, are emerging as key candidate molecules that link obesity with cancer. Peritumoral, stromal, adipose tissue and secreted adipokines, particularly leptin, have important roles in breast cancer biology. For example, leptin signaling contributes to the metabolic features associated with breast cancer malignancy, such as switching the cells' energy balance from mitochondrial β-oxidation to the aerobic glycolytic pathway. Leptin also shapes the tumor microenvironment, mainly through its ability to potentiate both migration of endothelial cells and angiogenesis, and to sustain the recruitment of macrophages and monocytes, which in turn secrete vascular endothelial growth factor and proinflammatory cytokines. This article presents an overview of current knowledge on the involvement of leptin in the pathogenesis and progression of breast cancer, highlighted by human, in vitro and animal studies. Data are presented on the functional crosstalk between leptin and estrogen signaling, which further contributes to promotion of breast carcinogenesis. Finally, future perspectives and clinical applications in which leptin and the leptin receptor are considered as potential therapeutic targets for breast cancer are reviewed.

Key Points

  • Breast tumor development and progression is a long-term and continuous process that relies on reciprocal interactions between the tumor cell and its surrounding microenvironment

  • Leptin is one of the adipokines secreted by adipocytes—the most abundant cell type surrounding breast cancer cells—and is linked to breast cancer development

  • Breast cancer cells also produce leptin, which acts in an autocrine and paracrine manner to promote angiogenesis, tumor cell proliferation, migration and invasion, and has proinflammatory effects

  • Local estrogen production is increased by leptin, which amplifies estrogen signaling, further contributing to breast tumorigenesis

  • Leptin and leptin-receptor signaling might represent a potential therapeutic target for breast cancer treatment—particularly in women with obesity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leptin signaling.
Figure 2: Leptin-induced endothelial cell migration and angiogenesis.
Figure 3: Leptin-mediated activation of macrophages.
Figure 4: Proposed model of leptin-mediated modulation of cadherin-1 expression in breast cancer.
Figure 5: Crosstalk between leptin and estrogen signaling in human breast tissue.
Figure 6: Proposed model of PPARγ-mediated regulation of leptin expression and function in breast cancer cells.

Similar content being viewed by others

References

  1. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of, US adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    Article  PubMed  Google Scholar 

  2. Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Lahmann, P. H. et al. Body size and breast cancer risk: findings from the European Prospective Investigation into Cancer And Nutrition (EPIC). Int. J. Cancer 111, 762–771 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. van den Brandt, P. A. et al. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am. J. Epidemiol. 152, 514–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Michels, K. B., Terry, K. L. & Willett, W. C. Longitudinal study on the role of body size in premenopausal breast cancer. Arch. Intern. Med. 166, 2395–2402 (2006).

    Article  PubMed  Google Scholar 

  6. Harvie, M., Hooper, L. & Howell, A. H. Central obesity and breast cancer risk: a systematic review. Obes. Rev. 4, 157–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Renehan, A. G., Tyson, M., Egger, M., Heller, R. F. & Zwahlen, M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008).

    Article  PubMed  Google Scholar 

  8. Paz-Filho, G., Lim, E. L., Wong, M. L. & Licinio, J. Associations between adipokines and obesity-related cancer. Front. Biosci. 16, 1634–1650 (2011).

    Article  CAS  Google Scholar 

  9. Witz, I. P. The tumor microenvironment—Introduction. Semin. Cancer Biology 12, 87–88 (2002).

    Article  Google Scholar 

  10. Witz, I. P. The tumor microenvironment: the making of a paradigm. Cancer Microenviron. 1, 9–17 (2009).

    Article  Google Scholar 

  11. Polyak, K. & Kalluri, R. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb. Perspect. Biol. 2, a003244 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wiseman, B. S. & Werb, Z. Stromal effects on mammary gland development and breast cancer. Science 296, 1046–1049 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Coussens, L. M. & Werb, Z. Inflammatory cells and cancer: think different! J. Exp. Med. 193, F23–F26 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meng, L. et al. Tumor necrosis factor α and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein α and peroxisome proliferator-activated receptor γ: mechanism of desmoplastic reaction. Cancer Res. 61, 2250–2255 (2001).

    CAS  PubMed  Google Scholar 

  17. Andarawewa, K. L. et al. Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell–adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res. 65, 10862–10871 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Iyengar, P. et al. Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene 22, 6408–6423 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. MacDougald, O. A. & Burant, C. F. The rapidly expanding family of adipokines. Cell Metab. 6, 159–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Ahima, R. S. & Flier, J. S. Leptin. Annu. Rev. Physiol. 62, 413–437 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Garofalo, C. & Surmacz, E. Leptin and cancer. J. Cell. Physiol. 207, 12–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Catalano, S. et al. Evidence that leptin through STAT and CREB signalling enhances cyclin D1 expression and promotes human endometrial cancer proliferation. J. Cell. Physiol. 218, 490–500 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Neville, M. C., McFadden, T. B. & Forsyth, I. Hormonal regulation of mammary differentiation and milk secretion. J. Mammary Gland Biol. Neoplasia 7, 49–66 (2002).

    Article  PubMed  Google Scholar 

  24. Cirillo, D., Rachiglio, A. M., La Montagna, R., Giordano, A. & Normanno, N. Leptin signaling in breast cancer: an overview. J. Cell. Biochem. 105, 956–964 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, Q. et al. Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth and abrogates tumor initiating cell survival. Endocr. Relat. Cancer 18, 491–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sweeney, G. Leptin signalling. Cell. Signal. 14, 655–663 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Ahima, R. S. & Osei, S. Y. Leptin signalling. Physiol. Behav. 81, 223–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Hu, X., Juneja, S. C., Maihle, N. J. & Cleary, M. P. Leptin—a growth factor in normal and malignant breast cells and for normal mammary gland development. J. Natl Cancer Inst. 94, 1704–1711 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Ray, A., Nkhata, K. J. & Cleary, M. P. Effects of leptin on human breast cancer cell lines in relationship to estrogen receptor and HER2 status. Int. J. Oncol. 30, 1499–1509 (2007).

    CAS  PubMed  Google Scholar 

  30. Yin, N. et al. Molecular mechanisms involved in the growth stimulation of breast cancer cells by leptin. Cancer Res. 64, 5870–5875 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Saxena, N. K., Vertino, P. M., Anania, F. A. & Sharma, D. Leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to cyclin D1 promoter via activation of Stat3. J. Biol. Chem. 282, 13316–13325 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Laud, K., Gourdou, I., Pessemesse, L., Peyrat, J. P. & Djiane, J. Identification of leptin receptors in human breast cancer: functional activity in the T47-D breast cancer cell line. Mol. Cell. Endocrinol. 188, 219–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Okumura, M. et al. Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal involvement of PKC-α and PPAR expression. Biochim. Biophys. Acta 1592, 107–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Somasundar, P., Yu, A. K., Vona-Davis, L. & Mc Fadden, D. W. Differential effects of leptin on cancer in vitro. J. Surg. Res. 113, 50–55 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Dieudonne, M. N. et al. Leptin mediates a proliferative response in human MCF7 breast cancer cells. Biochem. Biophys. Res. Commun. 293, 622–628 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Orban, Z., Remaley, A. T., Sampson, M., Trajanoski, Z. & Chrousos, G. P. The differential effect of food intake and β-adrenergic stimulation on adipose-derived hormones and cytokines in man. J. Clin. Endocrinol. Metab. 84, 2126–2133 (1999).

    CAS  PubMed  Google Scholar 

  38. Lee, W. M., Lu, S., Medline, A. & Archer, M. C. Susceptibility of lean and obese Zucker rats to tumorigenesis induced by N-methyl-N-nitrosurea. Cancer Lett. 162, 155–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Cleary, M. P. et al. Genetically obese MMTV-TGF-α/LepobLepob female mice do not develop mammary tumors. Breast Cancer Res. Treat 77, 205–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Cleary, M. P. et al. Leptin receptor-deficient MMTV-TGF-α/LeprdbLeprdb female mice do not develop oncogene-induced mammary tumors. Exp. Biol. Med. 229, 182–193 (2004).

    Article  CAS  Google Scholar 

  41. Cleary, M. P., Grande, J. P. & Maihle, N. J. Effect of a high fat diet on body weight and mammary tumor latency in MMTV-TGF-α mice. Int. J. Obesity 28, 956–962 (2004).

    Article  CAS  Google Scholar 

  42. Dogan, S. et al. Effects of high fat diet and/or body weight on mammary tumor leptin and apoptosis signalling pathways in MMTV-TGF-α mice. Breast Cancer Res. 9, R91 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cleary, M. P., Grande, J. P., Juneja, S. C. & Maihle, N. J. Effect of dietary-induced obesity and mammary tumor development in MMTV-Neu female mice. Nutr. Cancer 50, 174–180 (2004).

    Article  PubMed  Google Scholar 

  44. Park, J., Kusminski, C. M., Chua, S. C. & Scherer, P. E. Leptin receptor signalling supports cancer cell metabolism through suppression of mitochondrial respiration in vivo. Am. J. Pathol. 177, 3133–3144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Luca, C. et al. Complete rescue of obesity, diabetes and infertility in db/db mice by neuron-specific LeprB transgenes. J. Clin. Invest. 115, 3484–3493 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reich, N. C. STAT3 revs up the powerhouse. Sci. Signal. 2, pe61 (2009).

    Article  PubMed  Google Scholar 

  47. Gough, D. J. et al. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324, 1713–1716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wegrzyn, J. et al. Function of mitochondrial STAT3 in cellular respiration. Science 323, 793–797 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sottnik, J. L., Lori, J. C., Rose, B. J. & Thamm, D. H. Glycolysis inhibition by 2-deoxy-D-glucose reverts the metastatic phenotype in vitro and in vivo. Clin. Exp. Metastasis doi:10.1007/s10585-011-9417-5.

  51. Elstrom, R. L. et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64, 3892–3899 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Plas, D. R. & Thompson, C. B. Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24, 7435–7442 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Gonzalez-Perez, R. R. et al. Leptin upregulates VEGF in breast cancer via canonic and non-canonical signalling pathways and NFκB/HIF-1α activation. Cell Signal 22, 1350–1362 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sierra-Honigmann, M. R. et al. Biological action of leptin as an angiogenic factor. Science 281, 1683–1686 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Bouloumie, A., Drexler, H. C., Lafontan, M. & Busse, R. Leptin, the product of Ob gene, promotes angiogenesis. Circ. Res. 83, 1059–1066 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Goetze, S. et al. Leptin induces endothelial cell migration through Akt, which is inhibited by PPARγ-ligands. Hypertension 40, 748–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Friedl, P. & Wolf, K. Tumor cell invasion and migration: diversity and escape mechanism. Nat. Rev. Cancer 3, 362–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Morales-Ruiz, M. et al. Vascular endothelial growth factor-stimulated actin reorganization and migration of endothelial cells is regulated via the serine/threonine kinase Akt. Circ. Res. 86, 892–896 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Dimmeler, S., Dernbach, E. &, Zeiher, A. M. Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 477, 258–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Papapetropoulos, A., Garcia-Cardena, G., Madri, J. A. & Sessa, W. C. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Invest. 100, 3131–3139 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cho, S. Y. & Klemke, R. L. Extracellular-regulated kinase activation and CAS/Crk coupling regulate cell migration and suppress apoptosis during invasion of the extracellular matrix. J. Cell. Biol. 149, 223–236 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zempo, N., Koyama, N., Kenagy, R. D., Lea, H. J. & Clowes, A. W. Regulation of vascular smooth muscle cell migration and proliferation in vitro and in injured rat arteries by a synthetic matrix metalloproteinase inhibitor. Arterioscler Thromb. Vasc. Biol. 16, 28–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Cho, A., Graves, J. & Reidy, M. A. Mitogen-activated protein kinases mediate matrix metalloproteinase-9 expression in vascular smooth muscle cells. Arterioscler Thromb. Vasc. Biol. 20, 2527–2532 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Park, H. Y. et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp. Mol. Med. 33, 95–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Gonzalez, R. R. et al. Leptin signalling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2). J. Biol. Chem. 281, 26320–26328 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Cao, R., Brakenhielm, E., Wahlestedt, C., Thyberg, J. & Cao, Y. Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc. Natl Acad. Sci. USA 98, 6390–6395 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou, W., Guo, S. & Gonzalez-Perez, R. R. Leptin proangiogenic signature in breast cancer is linked to IL-1 signalling. Br. J. Cancer 104, 128–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Wood, I. S., de Heredia, F. P., Wang, B. & Trayhurn, P. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc. Nutr. Soc. 68, 370–377 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Hirota, K. & Semenza, G. L. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit. Rev. Oncol. Hematol. 59, 15–26 (2006).

    Article  PubMed  Google Scholar 

  71. Ke, Q. & Costa, M. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 70, 1469–1480 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Cascio, S. et al. Mechanism of leptin expression in breast cancer cells: role of hypoxia-inducible factor-1α. Oncogene 27, 540–547 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Bartella, V. et al. Insulin-dependent leptin expression in breast cancer cells. Cancer Res. 68, 4919–4927 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Garofalo, C. et al. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin. Cancer Res. 12, 1447–1453 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Gruen, M. L., Hao, M., Piston, D. W. & Hasty, A. H. Leptin requires canonical migratory signalling pathways for induction of monocyte and macrophage chemotaxis. Am. J. Physiol. Cell Physiol. 293, C1481–C1488 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Leek, R. D. et al. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J. Pathol. 190, 430–436 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Bolat, F. et al. Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. J. Exp. Clin. Cancer Res. 25, 365–372 (2006).

    CAS  PubMed  Google Scholar 

  78. Santos-Alvarez, J., Goberna, R. & Sanchez-Margalet, V. Human leptin stimulates proliferation and activation of human circulating monocytes. Cell. Immunol. 194, 6–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Zarkesh-Esfahani, H. et al. Leptin indirectly activates human neutrophils via induction of TNFα. J. Immunol. 172, 1809–1814 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Maya-Monteiro, C. M. et al. Leptin induces macrophage lipid body formation by phosphatidylinositol 3-kinase- and mammalian target of rapamycin-dependent mechanism. J. Biol. Chem. 283, 2203–2210 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Maya-Monteiro, C. M. & Bozza, P. T. Leptin and mTOR. Partners in metabolism and inflammation. Cell Cycle 7, 1713–1717 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Larigauderie, G. et al. Adipophilin enhances lipid accumulation and prevents lipid efflux from THP-1 macrophages: potential role in atherogenesis. Arterioscler. Thromb. Vasc. Biol. 24, 504–510 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Lindsley, J. E. & Rutter, J. Nutrient sensing and metabolic decisions. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 543–559 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, J., Liu, R., Hawkins, M., Barzilai, N. & Rossetti, L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393, 684–688 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Roh, C., Han, J., Tzatsos, A. & Kandror, K. V. Nutrient-sensing mTOR-mediated pathway regulates leptin production in isolated rat adipocytes. Am. J. Physiol. Endocrinol. Metab. 284, 322–330 (2003).

    Article  Google Scholar 

  86. Lynch, C. J. et al. Leucine in food mediates some of the postprandial rise in plasma leptin concentrations. Am. J. Physiol. Endocrinol. Metab. 291, E621–E630 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Grgor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  Google Scholar 

  88. Matarese, G., Procaccini, C., De Rosa, V., Horvath, T. L. & La Cava, A. Regulatory T cells in obesity: the leptin connection. Trends Mol. Med. 16, 247–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Vona-Davis, L. & Rose, D. P. Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr. Relat. Cancer 14, 189–206 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Ishikawa, M., Kitayama, J. & Nagawa, H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin. Cancer Res. 10, 4325–4331 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Karaduman, M. et al. Tissue leptin levels in patients with breast cancer. J. BUON 15, 369–372 (2010).

    CAS  PubMed  Google Scholar 

  92. Miyoshi, Y. et al. High expression of leptin receptor mRNA in breast cancer tissue predicts poor prognosis for patients with high, but not low, serum leptin levels. Int. J. Cancer 118, 1414–1419 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Révillion, F. et al. Messenger RNA expression of leptin and leptin receptors and their prognostic value in 322 human primary breast cancers. Clin. Cancer Res. 12, 2088–2094 (2006).

    Article  PubMed  Google Scholar 

  94. Jardé, T. et al. Leptin and leptin receptor involvement in cancer development: a study on human primary breast carcinoma. Oncol. Rep. 19, 905–911 (2008).

    PubMed  Google Scholar 

  95. Simpson, E. R. et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr. Rev. 15, 342–355 (1994).

    CAS  PubMed  Google Scholar 

  96. Yager, J. D. & Davidson, N. E. Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 354, 270–282 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Bennett, P. A. et al. Differential expression and regulation of leptin receptor isoforms in the rat brain: effects of fasting and oestrogen. Neuroendocrinology 67, 29–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Machinal-Quelin, F., Dieudonne, M. N., Pecquery, R., Leneveu, M. C. & Giudicelli, Y. Direct in vitro effects of androgens and estrogens on ob gene expression and leptin secretion in human adipose tissue. Endocrine 18, 179–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Tessitore, L. et al. Adipocyte expression and circulating levels of leptin increase in both gynaecological and breast cancer patients. Int. J. Oncol. 24, 1529–1535 (2004).

    CAS  PubMed  Google Scholar 

  100. Mauro, L. et al. Evidence that leptin up-regulates E-cadherin expression in breast cancer: effects on tumor growth and progression. Cancer Res. 67, 3412–3421 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Catalano, S. et al. Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor α in MCF-7 cells. J. Biol. Chem. 279, 19908–19915 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Catalano, S. et al. Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line. J. Biol. Chem. 278, 28668–28676 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Garofalo, C., Sisci, D. & Surmacz, E. Leptin interferes with the effects of the antiestrogen ICI 182780 in MCF-7 breast cancer cells. Clin. Cancer Res. 10, 6466–6475 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Fusco, R. et al. Cellular and molecular crosstalk between leptin receptor and estrogen receptor-α in breast cancer: molecular basis for a novel therapeutic setting. Endocr. Relat Cancer 17, 373–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Binai, N. A. et al. Expression of estrogen receptor α increases leptin-induced STAT3 activity in breast cancer cells. Int. J. Cancer 127, 55–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Yu, W. et al. Regulation of estrogen receptors α and β in human breast carcinoma by exogenous leptin in nude mouse xenograft model. Chin. Med. J. (Engl.) 123, 337–343 (2010).

    CAS  Google Scholar 

  107. Magoffin, D. A., Weitsman, S. R., Aagarwal, S. K. & Jakimiuk, A. J. Leptin regulation of aromatase activity in adipose stromal cells from regularly cycling women. Ginekol Pol. 70, 1–7 (1999).

    CAS  PubMed  Google Scholar 

  108. Lindell, K. et al. Leptin receptor 5′ untranslated regions in the rat: relative abundance, genomic organization and relation to putative response elements. Mol. Cell. Endocrinol. 172, 37–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Pasqualini, J. R. et al. Concentrations of estrone, estradiol, and estrone sulfate and evaluation of sulfatase and aromatase activities in pre- and postmenopausal breast cancer patients. J. Clin. Endocrinol. Metab. 81, 1460–1464 (1996).

    CAS  PubMed  Google Scholar 

  110. Geisler, J., Haynes, B., Ekse, D., Dowsett, M. & Lønning, P. E. Total body aromatization in postmenopausal breast cancer patients is strongly correlated to plasma leptin levels. J. Steroid Biochem. Mol. Biol. 104, 27–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Brown, K. A. et al. Subcellular localization of cyclic AMP-responsive element binding protein-regulated transcription coactivator 2 provides a link between obesity and breast cancer in postmenopausal women. Cancer Res. 69, 5392–5399 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Deb, S. et al. Estrogen regulates expression of tumor necrosis factor receptors in breast adipose fibroblasts. J. Clin. Endocrinol. Metab. 89, 4018–4024 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Schäffler, A., Schölmerich, J. & Buechler, C. Mechanisms if disease: adipokines and breast cancer- endocrine and paracrine mechainisms that connect adiposity and breast cancer. Nat. Clin. Pract Endocrinol. Metab. 3, 345–354 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Gertler, A. Development of leptin antagonists and their potential use in experimental biology and medicine. Trends Endocrinol. Metab. 17, 372–378 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Ray, A. & Cleary, M. P. Leptin as a potential therapeutic target for breast cancer prevention and treatment. Expert Opin. Ther. Targets. 14, 443–451 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Sandowski, Y. et al. Subcloning, expression, purification, and characterization of recombinant human leptin-binding domain. J. Biol. Chem. 277, 46304–46309 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Niv-Spector, L. et al. Mapping leptin-interacting sites in recombinant leptin-binding domain (LBD) subcloned from chicken leptin receptor. Biochem. J. 390, 475–484 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Otvos, L. et al. Development of a pharmacologically improved peptide agonist of the leptin receptor. Biochim. Biophys. Acta 1783, 1745–1754 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Otvos, L. et al. Peptide-based leptin receptor antagonists for cancer treatment and appetite regulation. Biopolymers 96, 117–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Otvos, L. et al. Efficacy of a leptin receptor antagonist peptide in a mouse model of triple-negative breast cancer. Eur. J. Cancer 47, 1578–1584 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Raver, N., Vardy, E., Livnah, O., Devos, R. & Gertler, A. Comparison of R128Q mutations in human, ovine, and chicken leptins. Gen. Comp. Endocrinol. 126, 52–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Gonzalez, R. R. & Leavis, P. C. A peptide derived from the human leptin molecule is a potent inhibitor of the leptin receptor function in rabbit endometrial cells. Endocrine 21, 185–195 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Gonzalez, R. R. et al. Leptin-signalling inhibition results in efficient antitumor activity in estrogen receptor positive or negative breast cancer. Breast Cancer Res. 11, R36 (2009).

    Article  CAS  Google Scholar 

  124. Elinav, E. et al. Competitive inhibition of leptin signaling results in amelioration of liver fibrosis through modulation of stellate cell function. Hepatology 49, 278–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Elinav, E. et al. Pegylated leptin antagonist is a potent orexigenic agent: preparation and mechanism of activity. Endocrinology 150, 3083–3091 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shpilman, M. et al. Development and characterization of high affinity leptins and leptin antagonists. J. Biol. Chem. 286, 4429–4442 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Catalano, S. et al. In vivo and in vitro evidence that PPARγ ligands are antagonists of leptin signaling in breast cancer. Am. J. Pathol. 179, 1030–1040 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fazeli, M. et al. Identification of a monoclonal antibody against the leptin receptor that acts as an antagonist and blocks human monocyte and T cell activation. J. Immunol. Methods 312, 190–200 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Matarese, G. et al. Leptin increase in multiple sclerosis associates with reduced number of CD4+CD25+ regulatory T cells. Proc. Natl Acad. Sci. USA 102, 5150–5155 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. De Rosa, V. et al. Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J. Clin. Invest. 116, 447–455 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jardé, T., Perrier, S., Vasson, M. P. & Caldefie-Chézet, F. Molecular mechanisms of leptin and adiponectin in breast cancer. Eur. J. Cancer 47, 33–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Chen, D. C. et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett. 237, 109–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Nkhata, K. J., Ray, A., Dogan, S., Grande, J. P. & Cleary, M. P. Mammary tumor development from T47D human breast cancer cells in obese ovariectomized mice with and without estradiol supplements. Breast Cancer Res. Treat 114, 71–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Dogan, S., Rogozina, O. P., Loshkin, A., Grande, J. P. & Cleary, M. P. Effects of chronic vs intermittent calorie restriction on mammary tumor incidence and serum adiponectin and leptin levels in MMTV-TGF-α mice at different ages. Oncol. Lett. 1, 167–176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bullen, J. W., Bluher, S., Kelesidis, T. & Mantzoros, C. Regulation of adiponectin and its receptors in response to development of diet-induced obesity in mice. Am. J. Physiol. 292, E1079–E1086 (2007).

    CAS  Google Scholar 

  136. Varady, K. A., Allister, C. A., Roohk, D. J. & Hellerstein, M. K. Improvements in body fat distribution and circulating adiponectin by alternate-day fasting versus caloric restriction. J. Nutr. Biochem. 21, 188–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Miyazaki, Y. & DeFronzo, R. A. Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients. Diabetes Obes. Metab. 10, 1204–1211 (2008).

    CAS  PubMed  Google Scholar 

  138. Oz, O. et al. Arterial elasticity and plasma levels of adiponectin and leptin in type 2 diabetic patients treated with thiazolidinediones. Endocrine 33, 101–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Ferrara, A. et al. Cohort study of pioglitazone and cancer incidence in patients with diabetes. Diabetes Care 34, 923–929 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Schoonjans K and Auwerx, J. Thiazolidinediones: an update. Lancet 355, 1008–1010 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Sharma, P. K., Bhansali, A., Sialy, R., Malhotra, S. & Pandhi, P. Effects of pioglitazone and metformin on plasma adiponectin in newly detected type 2 diabetes mellitus. Clin. Endocrinol. 65, 722–728 (2006).

    Article  CAS  Google Scholar 

  142. Steinberg, G. R., Macaulay, S. L., Febbraio, M. A. & Kemp, B. E. AMP-activated protein kinase—the fat controller of the energy railroad. Can. J. Physiol. Pharmacol. 84, 655–665 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S. Andò's and S. Catalano's research work is supported by Associazione Italiana per la Ricerca sul Cancro (AIRC) grant I G 1482.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript, including researching data for the article, writing and discussions of the content, as well as review and/or editing of the article before submission.

Corresponding author

Correspondence to Sebastiano Andò.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andò, S., Catalano, S. The multifactorial role of leptin in driving the breast cancer microenvironment. Nat Rev Endocrinol 8, 263–275 (2012). https://doi.org/10.1038/nrendo.2011.184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.184

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer