Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of diabetes mellitus in infants

Abstract

Diabetes mellitus diagnosed during the first 2 years of life differs from the disease in older children regarding its causes, clinical characteristics, treatment options and needs in terms of education and psychosocial support. Over the past decade, new genetic causes of neonatal diabetes mellitus have been elucidated, including monogenic β-cell defects and chromosome 6q24 abnormalities. In patients with KCNJ11 or ABCC8 mutations and diabetes mellitus, oral sulfonylurea offers an easy and effective treatment option. Type 1 diabetes mellitus in infants is characterized by a more rapid disease onset, poorer residual β-cell function and lower rate of partial remission than in older children. Insulin therapy in infants with type 1 diabetes mellitus or other monogenic causes of diabetes mellitus is a challenge, and novel data highlight the value of continuous subcutaneous insulin infusion in this very young patient population. Infants are entirely dependent on caregivers for insulin therapy, nutrition and glucose monitoring, which emphasizes the need for appropriate education and psychosocial support of parents. To achieve optimal long-term metabolic control with low rates of acute and chronic complications, continuous and structured diabetes care should be provided by a multidisciplinary health-care team.

Key Points

  • Diabetes mellitus in infants and children differs in etiology, clinical presentation and therapeutic options; heterogeneous etiologies of diabetes mellitus in infancy include genetic abnormalities, developmental defects and autoimmune disease

  • Monogenic forms of neonatal diabetes mellitus almost always occur in the first 6 months of life and very rarely after 12 months; onset of diabetes mellitus in infants aged >6 months is mostly due to type 1 diabetes mellitus (T1DM)

  • Infants with T1DM exhibit rapid disease onset, poor residual β-cell function and a low rate of transient recovery

  • Insulin is preferentially provided by continuous subcutaneous infusion

  • Treatment with sulfonylurea is possible in most patients with mutations in the genes that encode the ATP-sensitive inward rectifier potassium (KATP) channel

  • Special needs of infants with diabetes mellitus include comprehensive education of caregivers and provision of ongoing diabetes care

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Causes of neonatal diabetes mellitus with onset ≤6 months of age (in percent of total) in 225 infants from the DPV cohort (period of 2000–2010).
Figure 2: Pathogenesis of decreased insulin secretion in neonatal diabetes mellitus.
Figure 3: Proportion of different insulin therapeutic strategies in infants ≤2 years of age (n = 176) and older children (>2–11 years, n = 8,866, and >11–18 years, n = 15,833) with diabetes mellitus from the DPV initiative (period of 2009–2010).
Figure 4: Molecular mechanism of sulfonylurea therapy in neonatal diabetes mellitus.

Similar content being viewed by others

References

  1. Komulainen, J. et al. Clinical, autoimmune, and genetic characteristics of very young children with type 1 diabetes. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes Care 22, 1950–1955 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Nimri, R., Phillip, M. & Shalitin, S. Children diagnosed with diabetes during infancy have unique clinical characteristics. Horm. Res. 67, 263–267 (2007).

    CAS  PubMed  Google Scholar 

  3. Aguilar-Bryan, L. & Bryan, J. Neonatal diabetes mellitus. Endocr. Rev. 29, 265–291 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Metz, C. et al. Neonatal diabetes mellitus: chromosomal analysis in transient and permanent cases. J. Pediatr. 141, 483–489 (2002).

    Article  PubMed  Google Scholar 

  5. Temple, I. K. et al. Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes. Diabetes 49, 1359–1366 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Babenko, A. P. et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med. 355, 456–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Flanagan, S. E. et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 56, 1930–1937 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Garin, I. et al. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc. Natl Acad. Sci. USA 107, 3105–3110 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mackay, D. J. & Temple, I. K. Transient neonatal diabetes mellitus type 1. Am. J. Med. Genet. C Semin. Med. Genet. 154C, 335–342 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Mackay, D. J. et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40, 949–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Søvik, O. et al. Familial occurrence of neonatal diabetes with duplications in chromosome 6q24: treatment with sulfonylurea and 40-yr follow-up. Pediatr. Diabetes 10.1111/j.1399-5448.2011.00776.x.

  12. Edghill, E. L. et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 57, 1034–1042 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Ellard, S. et al. Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. Am. J. Hum. Genet. 81, 375–382 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gloyn, A. L. et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 350, 1838–1849 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Sagen, J. V. et al. Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 53, 2713–2718 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. de Wet, H. et al. Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of ABCC8 causes neonatal diabetes. Proc. Natl Acad. Sci. USA 104, 18988–18992 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Proks, P. et al. A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Hum. Mol. Genet. 15, 1793–1800 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Thomas, P. M. et al. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268, 426–429 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Pearson, E. R. et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N. Engl. J. Med. 355, 467–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Rafiq, M. et al. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care 31, 204–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Zwaveling-Soonawala, N. et al. Successful transfer to sulfonylurea therapy in an infant with developmental delay, epilepsy and neonatal diabetes (DEND) syndrome and a novel ABCC8 gene mutation. Diabetologia 54, 469–471 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Slingerland, A. S. et al. Referral rates for diagnostic testing support an incidence of permanent neonatal diabetes in three European countries of at least 1 in 260,000 live births. Diabetologia 52, 1683–1685 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Colombo, C. et al. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. J. Clin. Invest. 118, 2148–2156 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Polak, M. et al. Heterozygous missense mutations in the insulin gene are linked to permanent diabetes appearing in the neonatal period or in early infancy: a report from the French ND (Neonatal Diabetes) Study Group. Diabetes 57, 1115–1119 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Støy, J. et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc. Natl Acad. Sci. USA 104, 15040–15044 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Njølstad, P. R. et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N. Engl. J. Med. 344, 1588–1592 (2001).

    Article  PubMed  Google Scholar 

  27. Russo, L. et al. Permanent diabetes during the first year of life: multiple gene screening in 54 patients. Diabetologia 54, 1693–1701 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rubio-Cabezas, O. et al. Wolcott–Rallison syndrome is the most common genetic cause of permanent neonatal diabetes in consanguineous families. J. Clin. Endocrinol. Metab. 94, 4162–4170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Senée, V. et al. Wolcott-Rallison syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes 53, 1876–1883 (2004).

    Article  PubMed  Google Scholar 

  30. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Rubio-Cabezas, O. et al. Clinical heterogeneity in patients with FOXP3 mutations presenting with permanent neonatal diabetes. Diabetes Care 32, 111–116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rubio-Cabezas, O. et al. Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes 60, 1349–1353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rubio-Cabezas, O. et al. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 59, 2326–2331 (2011).

    Article  Google Scholar 

  34. Wang, J. et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N. Engl. J. Med. 355, 270–280 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Dimitri, P. et al. Novel GLIS3 mutations demonstrate an extended multisystem phenotype. Eur. J. Endocrinol. 164, 437–443 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Senée, V. et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat. Genet. 38, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Solomon, B. D. et al. Compound heterozygosity for mutations in PAX6 in a patient with complex brain anomaly, neonatal diabetes mellitus, and microophthalmia. Am. J. Med. Genet. A 149A, 2543–2546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wen, J. H. et al. Paired box 6 (PAX6) regulates glucose metabolism via proinsulin processing mediated by prohormone convertase 1/3 (PC1/3). Diabetologia 52, 504–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Bergmann, A. K. et al. Thiamine-responsive megaloblastic anemia: identification of novel compound heterozygotes and mutation update. J. Pediatr. 155, 888–892 e1 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Labay, V. et al. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat. Genet. 22, 300–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Kentrup, H., Altmüller, J., Pfäffle, R. & Heimann, G. Neonatal diabetes mellitus with hypergalactosemia. Eur. J. Endocrinol. 141, 379–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Santer, R. et al. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi–Bickel syndrome. Nat. Genet. 17, 324–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Yoo, H. W., Shin, Y. L., Seo, E. J. & Kim, G. H. Identification of a novel mutation in the GLUT2 gene in a patient with Fanconi–Bickel syndrome presenting with neonatal diabetes mellitus and galactosaemia. Eur. J. Pediatr. 161, 351–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Nicolino, M. et al. A novel hypomorphic PDX1 mutation responsible for permanent neonatal diabetes with subclinical exocrine deficiency. Diabetes 59, 733–740 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Stoffers, D. A., Zinkin, N. T., Stanojevic, V., Clarke, W. L. & Habener, J. F. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 15, 106–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Sellick, G. S. et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat. Genet. 36, 1301–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, S. B. et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature 463, 775–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beardsall, K., Pesterfield, C. L. & Acerini, C. L. Neonatal diabetes and insulin pump therapy. Arch. Dis. Child. Fetal Neonatal Ed. 96, F223–F224 (2011).

    Article  PubMed  Google Scholar 

  49. Grulich-Henn, J. et al. Entities and frequency of neonatal diabetes: data from the diabetes documentation and quality management system (DPV). Diabet. Med. 27, 709–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Vaziri-Sani, F. et al. ZnT8 autoantibody titers in type 1 diabetes patients decline rapidly after clinical onset. Autoimmunity 43, 598–606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Erlich, H. et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 57, 1084–1092 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Barrett, J. C. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703–707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Concannon, P. et al. Genome-wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium. Diabetes 58, 1018–1022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Holmberg, H., Wahlberg, J., Vaarala, O. & Ludvigsson, J. Short duration of breast-feeding as a risk-factor for beta-cell autoantibodies in 5-year-old children from the general population. Br. J. Nutr. 97, 111–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Norris, J. M. et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290, 1713–1720 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Virtanen, S. M. et al. Early introduction of root vegetables in infancy associated with advanced ss-cell autoimmunity in young children with human leukocyte antigen-conferred susceptibility to type 1 diabetes. Diabet. Med. 28, 965–971 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Ziegler, A. G., Schmid, S., Huber, D., Hummel, M. & Bonifacio, E. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 290, 1721–1728 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Yeung, W. C., Rawlinson, W. D. & Craig, M. E. Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342, d35 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zipitis, C. S. & Akobeng, A. K. Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis. Arch. Dis. Child. 93, 512–517 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Harder, T. et al. Birth weight, early weight gain, and subsequent risk of type 1 diabetes: systematic review and meta-analysis. Am. J. Epidemiol. 169, 1428–1436 (2009).

    Article  PubMed  Google Scholar 

  61. Vaarala, O., Atkinson, M. A. & Neu, J. The “perfect storm” for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 57, 2555–2562 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dahlquist, G. G., Nyström, L. & Patterson, C. C. Incidence of type 1 diabetes in Sweden among individuals aged 0–34 years, 1983–2007: an analysis of time trends. Diabetes Care 34, 1754–1759 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Patterson, C. C., Dahlquist, G. G., Gyürüs, E., Green, A. & Soltész, G. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373, 2027–2033 (2009).

    Article  PubMed  Google Scholar 

  64. Rubio-Cabezas, O., Klupa, T. & Malecki, M. T. Permanent neonatal diabetes mellitus--the importance of diabetes differential diagnosis in neonates and infants. Eur. J. Clin. Invest. 41, 323–333 (2011).

    Article  PubMed  Google Scholar 

  65. Berhan, Y., Waernbaum, I., Lind, T., Möllsten, A. & Dahlquist, G. Thirty years of prospective nationwide incidence of childhood type 1 diabetes: the accelerating increase by time tends to level off in Sweden. Diabetes 60, 577–581 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Altamirano-Bustamante, N. et al. Economic family burden of metabolic control in children and adolescents with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 21, 1163–1168 (2008).

    Article  PubMed  Google Scholar 

  67. Ying, A. K. et al. Predictors of direct costs of diabetes care in pediatric patients with type 1 diabetes. Pediatr. Diabetes 12, 177–182 (2011).

    Article  PubMed  Google Scholar 

  68. Icks, A. et al. Direct costs of pediatric diabetes care in Germany and their predictors. Exp. Clin. Endocrinol. Diabetes 112, 302–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Wiréhn, A. B., Andersson, A., Ostgren, C. J. & Carstensen, J. Age-specific direct healthcare costs attributable to diabetes in a Swedish population: a register-based analysis. Diabet. Med. 25, 732–737 (2008).

    Article  PubMed  Google Scholar 

  70. Bächle, C. et al. Direct diabetes-related costs in young patients with early onset and long-lasting type 1 diabetes [a864]. Diabetologia 54 (Suppl. 1), S353 (2011).

    Google Scholar 

  71. Greeley, S. A. et al. The cost-effectiveness of personalized genetic medicine: the case of genetic testing in neonatal diabetes. Diabetes Care 34, 622–627 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hekkala, A., Reunanen, A., Koski, M., Knip, M. & Veijola, R. Age-related differences in the frequency of ketoacidosis at diagnosis of type 1 diabetes in children and adolescents. Diabetes Care 33, 1500–1502 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dahlquist, G. & Källén, B. Mortality in childhood-onset type 1 diabetes: a population-based study. Diabetes Care 28, 2384–2387 (2005).

    Article  PubMed  Google Scholar 

  74. Temple, I. K. & Shield, J. P. 6q24 transient neonatal diabetes. Rev. Endocr. Metab. Disord. 11, 199–204 (2010).

    Article  PubMed  Google Scholar 

  75. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 33 (Suppl. 1), S62–S69 (2010).

  76. Edghill, E. L., Flanagan, S. E. & Ellard, S. Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11. Rev. Endocr. Metab. Disord. 11, 193–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Bonnefond, A. et al. Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome. Plos ONE 5, e13630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wambach, J. A., Marshall, B. A., Koster, J. C., White, N. H. & Nichols, C. G. Successful sulfonylurea treatment of an insulin-naive neonate with diabetes mellitus due to a KCNJ11 mutation. Pediatr. Diabetes 11, 286–288 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Danne, T. et al. A comparison of postprandial and preprandial administration of insulin aspart in children and adolescents with type 1 diabetes. Diabetes Care 26, 2359–2364 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Danne, T. et al. Parental preference of prandial insulin aspart compared with preprandial human insulin in a basal-bolus scheme with NPH insulin in a 12-wk crossover study of preschool children with type 1 diabetes. Pediatr. Diabetes 8, 278–285 (2007).

    Article  PubMed  Google Scholar 

  81. Bachran, R. et al. Basal rates and circadian profiles in continuous subcutaneous insulin infusion (CSII) differ for preschool children, prepubertal children, adolescents and young adults. Pediatr. Diabetes 10.1111/j.1399-5448.2011.00777.x.

  82. Szypowska, A., Lipka, M., Błazik, M., Groele, L. & Pańkowska, E. Insulin requirement in preschoolers treated with insulin pumps at the onset of type 1 diabetes mellitus. Acta Paediatr. 98, 527–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Alemzadeh, R., Berhe, T. & Wyatt, D. T. Flexible insulin therapy with glargine insulin improved glycemic control and reduced severe hypoglycemia among preschool-aged children with type 1 diabetes mellitus. Pediatrics 115, 1320–1324 (2005).

    Article  PubMed  Google Scholar 

  84. Tubiana-Rufi, N. Insulin pump therapy in neonatal diabetes. Endocr. Dev. 12, 67–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Kapellen, T. M. et al. Changes in the use of analogue insulins in 37,206 children and adolescents with type 1 diabetes in 275 German and Austrian centers during the last twelve years. Exp. Clin. Endocrinol. Diabetes 117, 329–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Fox, L. A., Buckloh, L. M., Smith, S. D., Wysocki, T. & Mauras, N. A randomized controlled trial of insulin pump therapy in young children with type 1 diabetes. Diabetes Care 28, 1277–1281 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Mack-Fogg, J. E., Orlowski, C. C. & Jospe, N. Continuous subcutaneous insulin infusion in toddlers and children with type 1 diabetes mellitus is safe and effective. Pediatr. Diabetes 6, 17–21 (2005).

    Article  PubMed  Google Scholar 

  88. Pańkowska, E., Błazik, M., Dziechciarz, P., Szypowska, A. & Szajewska, H. Continuous subcutaneous insulin infusion vs. multiple daily injections in children with type 1 diabetes: a systematic review and meta-analysis of randomized control trials. Pediatr. Diabetes 10, 52–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Berghaeuser, M. A. et al. Continuous subcutaneous insulin infusion in toddlers starting at diagnosis of type 1 diabetes mellitus. A multicenter analysis of 104 patients from 63 centres in Germany and Austria. Pediatr. Diabetes 9, 590–595 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Wilson, D. M. et al. A two-center randomized controlled feasibility trial of insulin pump therapy in young children with diabetes. Diabetes Care 28, 15–19 (2005).

    Article  PubMed  Google Scholar 

  91. Sulmont, V. et al. Metabolic control in children with diabetes mellitus who are younger than 6 years at diagnosis: continuous subcutaneous insulin infusion as a first line treatment? J. Pediatr. 157, 103–107 (2010).

    Article  PubMed  Google Scholar 

  92. Müller, G. The molecular mechanism of the insulin-mimetic/sensitizing activity of the antidiabetic sulfonylurea drug Amaryl. Mol. Med. 6, 907–933 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hattersley, A. & Pearson, E. Transferring patients with diabetes due to Kir6.2 mutation from insulin to suphonylureas. Diabetes Genes [online], (2011).

    Google Scholar 

  94. Klupa, T. et al. Efficacy and safety of sulfonylurea use in permanent neonatal diabetes due to KCNJ11 gene mutations: 34-month median follow-up. Diabetes Technol. Ther. 12, 387–391 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Ziegler, R. et al. Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes. Pediatr. Diabetes 12, 11–17 (2011).

    Article  PubMed  Google Scholar 

  96. Kordonouri, O. et al. Sensor-augmented pump therapy from the diagnosis of childhood type 1 diabetes: results of the Paediatric Onset Study (ONSET) after 12 months of treatment. Diabetologia 53, 2487–2495 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Deiss, D., Kordonouri, O., Meyer, K. & Danne, T. Long hypoglycaemic periods detected by subcutaneous continuous glucose monitoring in toddlers and pre-school children with diabetes mellitus. Diabet. Med. 18, 337–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Slover, R. H. et al. Effectiveness of sensor-augmented pump therapy in children and adolescents with type 1 diabetes in the STAR 3 study. Pediatr. Diabetes 10.1111/j.1399-5448.2011.00793.x.

  99. Tamborlane, W. V. et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med. 359, 1464–1476 (2008).

    Article  PubMed  Google Scholar 

  100. Hovorka, R. et al. Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. BMJ 342, d1855 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Elleri, D. et al. Automated overnight closed-loop glucose control in young children with type 1 diabetes. Diabetes Technol. Ther. 13, 419–424 (2011).

    Article  PubMed  Google Scholar 

  102. Keymeulen, B. et al. Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia 53, 614–623 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Ludvigsson, J. et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N. Engl. J. Med. 359, 1909–1920 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Mastrandrea, L. et al. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care 32, 1244–1249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wherrett, D. K. et al. Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet 378, 319–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Näntö-Salonen, K. et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet 372, 1746–1755 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Knip, M. et al. Dietary intervention in infancy and later signs of beta-cell autoimmunity. N. Engl. J. Med. 363, 1900–1908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Couri, C. E. et al. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 301, 1573–1579 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Smart, C., Aslander-van Vliet, E. & Waldron, S. Nutritional management in children and adolescents with diabetes. Pediatr. Diabetes 10 (Suppl. 12), 100–117 (2009).

    Article  PubMed  Google Scholar 

  110. Sauer, C. W. & Kim, J. H. Human milk macronutrient analysis using point-of-care near-infrared spectrophotometry. J. Perinatol. 31, 339–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Detlofson, I., Kroon, M. & Aman, J. Oral bedtime cornstarch supplementation reduces the risk for nocturnal hypoglycaemia in young children with type 1 diabetes. Acta Paediatr. 88, 595–597 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Lange, K., Sassmann, H., von Schütz, W., Kordonouri, O. & Danne, T. Prerequisites for age-appropriate education in type 1 diabetes: a model programme for paediatric diabetes education in Germany. Pediatr. Diabetes 8 (Suppl. 6), 63–71 (2007).

    Article  PubMed  Google Scholar 

  113. Swift, P. G. Diabetes education in children and adolescents. Pediatr. Diabetes 10 (Suppl. 12), 51–57 (2009).

    Article  PubMed  Google Scholar 

  114. McCrimmon, R. J., Gold, A. E., Deary, I. J., Kelnar, C. J. & Frier, B. M. Symptoms of hypoglycemia in children with IDDM. Diabetes Care 18, 858–861 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Hershey, T. et al. Frequency and timing of severe hypoglycemia affects spatial memory in children with type 1 diabetes. Diabetes Care 28, 2372–2377 (2005).

    Article  PubMed  Google Scholar 

  116. Wagner, V. M., Grabert, M. & Holl, R. W. Severe hypoglycaemia, metabolic control and diabetes management in children with type 1 diabetes in the decade after the Diabetes Control and Complications Trial—a large-scale multicentre study. Eur. J. Pediatr. 164, 73–79 (2005).

    Article  PubMed  Google Scholar 

  117. Schoenle, E. J., Schoenle, D., Molinari, L. & Largo, R. H. Impaired intellectual development in children with Type I diabetes: association with HbA(1c), age at diagnosis and sex. Diabetologia 45, 108–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Ferguson, S. C. et al. Influence of an early-onset age of type 1 diabetes on cerebral structure and cognitive function. Diabetes Care 28, 1431–1437 (2005).

    Article  PubMed  Google Scholar 

  119. Northam, E. A. et al. Neuropsychological profiles of children with type 1 diabetes 6 years after disease onset. Diabetes Care 24, 1541–1546 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Brink, S. et al. Sick day management in children and adolescents with diabetes. Pediatr. Diabetes 10 (Suppl. 12), 146–153 (2009).

    Article  PubMed  Google Scholar 

  121. Laffel, L. M. et al. Sick day management using blood 3-hydroxybutyrate (3-OHB) compared with urine ketone monitoring reduces hospital visits in young people with T1DM: a randomized clinical trial. Diabet. Med. 23, 278–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Hatton, D. L., Canam, C., Thorne, S. & Hughes, A. M. Parents' perceptions of caring for an infant or toddler with diabetes. J. Adv. Nurs. 22, 569–577 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Karges, B. et al. Low discomfort and pain associated with intensified insulin therapy in children and adolescents. Diabetes Res. Clin. Pract. 80, 96–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Haugstvedt, A., Wentzel-Larsen, T., Rokne, B. & Graue, M. Perceived family burden and emotional distress: similarities and differences between mothers and fathers of children with type 1 diabetes in a population-based study. Pediatr. Diabetes 12, 107–114 (2011).

    Article  PubMed  Google Scholar 

  125. Patton, S. R., Dolan, L. M., Smith, L. B., Thomas, I. H. & Powers, S. W. Pediatric parenting stress and its relation to depressive symptoms and fear of hypoglycemia in parents of young children with type 1 diabetes mellitus. J. Clin. Psychol. Med. Settings http://dx.doi.org/10.1007/s10880-011-9256-1.

  126. Forsander, G. A., Sundelin, J. & Persson, B. Influence of the initial management regimen and family social situation on glycemic control and medical care in children with type I diabetes mellitus. Acta Paediatr. 89, 1462–1468 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Sullivan-Bolyai, S. et al. Helping other mothers effectively work at raising young children with type 1 diabetes. Diabetes Educ. 30, 476–484 (2004).

    Article  PubMed  Google Scholar 

  128. Chisholm, V. et al. Predictors of treatment adherence in young children with type 1 diabetes. J. Adv. Nurs. 57, 482–493 (2007).

    Article  PubMed  Google Scholar 

  129. Winkley, K., Ismail, K., Landau, S. & Eisler, I. Psychological interventions to improve glycaemic control in patients with type 1 diabetes: systematic review and meta-analysis of randomised controlled trials. BMJ 333, 65 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Pihoker, C., Forsander, G., Wolfsdorf, J. & Klingensmith, G. J. The delivery of ambulatory diabetes care to children and adolescents with diabetes. Pediatr. Diabetes 10 (Suppl. 12), 58–70 (2009).

    Article  PubMed  Google Scholar 

  131. Fröhlich-Reiterer, E. E. et al. Anthropometry, metabolic control, and follow-up in children and adolescents with type 1 diabetes mellitus and biopsy-proven celiac disease. J. Pediatr. 158, 589–593 e2 (2011).

    Article  PubMed  Google Scholar 

  132. Warncke, K. et al. Polyendocrinopathy in children, adolescents, and young adults with type 1 diabetes: a multicenter analysis of 28,671 patients from the German/Austrian DPV-Wiss database. Diabetes Care 33, 2010–2012 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jansà, M. et al. Telecare in a structured therapeutic education programme addressed to patients with type 1 diabetes and poor metabolic control. Diabetes Res. Clin. Pract. 74, 26–32 (2006).

    Article  PubMed  Google Scholar 

  134. Gerstl, E. M. et al. Metabolic control as reflected by HbA1c in children, adolescents and young adults with type-1 diabetes mellitus: combined longitudinal analysis including 27,035 patients from 207 centers in Germany and Austria during the last decade. Eur. J. Pediatr. 167, 447–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Margeirsdottir, H. D., Larsen, J. R., Kummernes, S. J., Brunborg, C. & Dahl-Jorgensen, K. The establishment of a new national network leads to quality improvement in childhood diabetes: implementation of the ISPAD Guidelines. Pediatr. Diabetes 11, 88–95 (2010).

    Article  PubMed  Google Scholar 

  136. Svensson, J., Johannesen, J., Mortensen, H. B. & Nordly, S. Improved metabolic outcome in a Danish diabetic paediatric population aged 0–18 yr: results from a nationwide continuous Registration. Pediatr. Diabetes 10, 461–467 (2009).

    Article  PubMed  Google Scholar 

  137. de Beaufort, C. E. et al. Continuing stability of center differences in pediatric diabetes care: do advances in diabetes treatment improve outcome? The Hvidoere Study Group on Childhood Diabetes. Diabetes Care 30, 2245–2250 (2007).

    Article  PubMed  Google Scholar 

  138. Karges, B. et al. Long-acting insulin analogs and the risk of diabetic ketoacidosis in children and adolescents with type 1 diabetes: a prospective study of 10,682 patients from 271 institutions. Diabetes Care 33, 1031–1033 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work was supported by the BMBF Kompetenznetz Diabetes Mellitus (Competence Network for Diabetes Mellitus) funded by the Federal Ministry of Education and Research (FKZ 01GI0859).

Author information

Authors and Affiliations

Authors

Contributions

B. Karges, A. Icks, T. Kapellen and R. W. Holl researched the data for the article. All authors contributed equally to all other aspects of the article.

Corresponding author

Correspondence to Beate Karges.

Ethics declarations

Competing interests

T. Kapellen declares an association with the following companies: Medtronic (speakers bureau), Roche (speakers bureau). The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karges, B., Meissner, T., Icks, A. et al. Management of diabetes mellitus in infants. Nat Rev Endocrinol 8, 201–211 (2012). https://doi.org/10.1038/nrendo.2011.204

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing