Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New perspectives on osteogenesis imperfecta

Abstract

A new paradigm has emerged for osteogenesis imperfecta as a collagen-related disorder. The more prevalent autosomal dominant forms of osteogenesis imperfecta are caused by primary defects in type I collagen, whereas autosomal recessive forms are caused by deficiency of proteins which interact with type I procollagen for post-translational modification and/or folding. Factors that contribute to the mechanism of dominant osteogenesis imperfecta include intracellular stress, disruption of interactions between collagen and noncollagenous proteins, compromised matrix structure, abnormal cell–cell and cell–matrix interactions and tissue mineralization. Recessive osteogenesis imperfecta is caused by deficiency of any of the three components of the collagen prolyl 3-hydroxylation complex. Absence of 3-hydroxylation is associated with increased modification of the collagen helix, consistent with delayed collagen folding. Other causes of recessive osteogenesis imperfecta include deficiency of the collagen chaperones FKBP10 or Serpin H1. Murine models are crucial to uncovering the common pathways in dominant and recessive osteogenesis imperfecta bone dysplasia. Clinical management of osteogenesis imperfecta is multidisciplinary, encompassing substantial progress in physical rehabilitation and surgical procedures, management of hearing, dental and pulmonary abnormalities, as well as drugs, such as bisphosphonates and recombinant human growth hormone. Novel treatments using cell therapy or new drug regimens hold promise for the future.

Key Points

  • Osteogenesis imperfecta is a collagen-related disorder characterized by low bone mass, decreased bone strength and increased bone fragility

  • Dominant osteogenesis imperfecta is caused by defects in the quantity or structure of type I procollagen, which affects bone at multiple levels, for example, matrix structure and mineralization

  • Recessive osteogenesis imperfecta is caused by deficiency of proteins that interact with collagen and affect its post-translational modification or folding, such as CRTAP, P3H1 and PPIB and Serpin H1 and FKBP10

  • Common features of dominant and recessive osteogenesis imperfecta, for example, delayed collagen folding, effects on bone and cartilage or increased endoplasmic reticulum stress, may be the key to understanding its pathogenesis

  • Clinical management of osteogenesis imperfecta should involve a multidisciplinary team that provides physical rehabilitation, genetic, hearing, dental, neurological, endocrine and surgical management

  • Bisphosphonates are widely administered to individuals with osteogenesis imperfecta, with positive effects on bone mass and vertebral geometry, but cause a decline in bone material quality

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms contributing to autosomal dominant osteogenesis imperfecta bone dysplasia: from mutant type I collagen gene to bone defect.
Figure 2: Distribution of lethal and nonlethal glycine substitutions that cause osteogenesis imperfecta along the type I collagen monomer and fibril.
Figure 3: Electrophoretic analysis of type I collagen synthesized by dermal fibroblasts with mutations in genes coding for collagen 3-hydroxylation complex components.
Figure 4: Relationship between dominant and recessive forms of osteogenesis imperfecta.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Marini, J. C. in Nelson Textbook of Pediatrics (eds Behrman, R. E., Kliegman, R. M. & Jensen, R. M.) 2336–2338 (Saunders, Philadelphia, 2004).

    Google Scholar 

  2. Marini, J. C. et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum. Mutat. 28, 209–221 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Prockop, D. J. & Kivirikko, K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Myllyharju, J. & Kivirikko, K. I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20, 33–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Morello, R. et al. CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127, 291–304 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Barnes, A. M. et al. Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N. Engl. J. Med. 355, 2757–2764 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cabral, W. A. et al. Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat. Genet. 39, 359–365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barnes, A. M. et al. Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding. N. Engl. J. Med. 362, 521–528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Dijk, F. S. et al. PPIB mutations cause severe osteogenesis imperfecta. Am. J. Hum. Genet. 85, 521–527 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baldridge, D. et al. CRTAP and LEPRE1 mutations in recessive osteogenesis imperfecta. Hum. Mutat. 29, 1435–1442 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alanay, Y. et al. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am. J. Hum. Genet. 86, 551–559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Christiansen, H. E. et al. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am. J. Hum. Genet. 86, 389–398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sillence, D. O. & Rimoin, D. L. Classification of osteogenesis imperfecta. Lancet 1, 1041–1042 (1978).

    Article  CAS  PubMed  Google Scholar 

  14. Sillence, D. O., Senn, A. & Danks, D. M. Genetic heterogeneity in osteogenesis imperfecta. J. Med. Genet. 16, 101–116 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bishop, N. Characterising and treating osteogenesis imperfecta. Early Hum. Dev. 86, 743–746 (2010).

    Article  PubMed  Google Scholar 

  16. Van Dijk, F. S., Pals, G., Van Rijn, R. R., Nikkels, P. G. & Cobben, J. M. Classification of Osteogenesis Imperfecta revisited. Eur. J. Med. Genet. 53, 1–5 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Glorieux, F. H. Osteogenesis imperfecta. Best. Pract. Res. Clin. Rheumatol. 22, 85–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. McAllion, S. J. & Paterson, C. R. Causes of death in osteogenesis imperfecta. J. Clin. Pathol. 49, 627–630 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thibeault, D. W., Pettett, G., Mabry, S. M. & Rezaiekhaligh, M. M. Osteogenesis imperfecta Type IIA and pulmonary hypoplasia with normal alveolar development. Pediatr. Pulmonol. 20, 301–306 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Obafemi, A. A., Bulas, D. I., Troendle, J. & Marini, J. C. Popcorn calcification in osteogenesis imperfecta: incidence, progression, and molecular correlation. Am. J. Med. Genet. A. 146A, 2725–2732 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rauch, F. & Glorieux, F. H. Osteogenesis imperfecta. Lancet 363, 1377–1385 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Rauch, F., Travers, R., Parfitt, A. M. & Glorieux, F. H. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 26, 581–589 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Lund, A. M., Mølgaard, C., Müller, J. & Skovby, F. Bone mineral content and collagen defects in osteogenesis imperfecta. Acta Paediatr. 88, 1083–1088 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Rauch, F., Lalic, L., Roughley, P. & Glorieux, F. H. Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta. J. Bone Miner. Res. 25, 1367–1374 (2010).

    CAS  PubMed  Google Scholar 

  25. Chavassieux, P., Seeman, E. & Delmas, P. D. Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr. Rev. 28, 151–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Uveges, T. E. et al. Cellular mechanism of decreased bone in Brtl mouse model of OI: imbalance of decreased osteoblast function and increased osteoclasts and their precursors. J. Bone Miner. Res. 23, 1983–1994 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, H. et al. Immature osteoblast lineage cells increase osteoclastogenesis in osteogenesis imperfecta murine. Am. J. Pathol. 176, 2405–2413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Forlino, A. et al. Differential expression of both extracellular and intracellular proteins is involved in the lethal or nonlethal phenotypic variation of BrtlIV, a murine model for osteogenesis imperfecta. Proteomics 7, 1877–1891 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Daley, E. et al. Variable bone fragility associated with an Amish COL1A2 variant and a knock-in mouse model. J. Bone Miner. Res. 25, 247–261 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Carleton, S. M. et al. Role of genetic background in determining phenotypic severity throughout postnatal development and at peak bone mass in Col1a2 deficient mice (oim). Bone 42, 681–694 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Forlino, A., Kuznetsova, N. V., Marini, J. C. & Leikin, S. Selective retention and degradation of molecules with a single mutant alpha1(I) chain in the Brtl IV mouse model of OI. Matrix Biol. 26, 604–614 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Lisse, T. S. et al. ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet. 4, e7 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mehrotra, M., Rosol, M., Ogawa, M. & Larue, A. C. Amelioration of a mouse model of osteogenesis imperfecta with hematopoietic stem cell transplantation: microcomputed tomography studies. Exp. Hematol. 38, 593–602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Panaroni, C. et al. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood 114, 459–468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, X., Li, F. & Niyibizi, C. Progenitors systemically transplanted into neonatal mice localize to areas of active bone formation in vivo: implications of cell therapy for skeletal diseases. Stem Cells 24, 1869–1878 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Canty, E. G. & Kadler, K. E. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Schnieke, A., Harbers, K. & Jaenisch, R. Embryonic lethal mutation in mice induced by retrovirus insertion into the alpha 1(I) collagen gene. Nature 304, 315–320 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. Malfait, F. et al. Total absence of the alpha2(I) chain of collagen type I causes a rare form of Ehlers-Danlos syndrome with hypermobility and propensity to cardiac valvular problems. J. Med. Genet. 43, e36 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nicholls, A. C. et al. The clinical features of homozygous alpha 2(I) collagen deficient osteogenesis imperfecta. J. Med. Genet. 21, 257–262 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raghunath, M., Bruckner, P. & Steinmann, B. Delayed triple helix formation of mutant collagen from patients with osteogenesis imperfecta. J. Mol. Biol. 236, 940–949 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Bodian, D. L. et al. Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype-phenotype relationships. Hum. Mol. Genet. 18, 463–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Di Lullo, G. A., Sweeney, S. M., Korkko, J., Ala-Kokko, L. & San Antonio, J. D. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277, 4223–4231 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Sweeney, S. M. et al. Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J. Biol. Chem. 283, 21187–21197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cabral, W. A. et al. Mutations near amino end of alpha(I) collagen cause combined osteogenesis imperfecta/Ehlers-Danlos syndrome by interference with N-propeptide processing. J. Biol. Chem. 280, 19259–19269 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Makareeva, E., Cabral, W. A., Marini, J. C. & Leikin, S. Molecular mechanism of alpha 1(I)-osteogenesis imperfecta/Ehlers-Danlos syndrome: unfolding of an N-anchor domain at the N-terminal end of the type I collagen triple helix. J. Biol. Chem. 281, 6463–6470 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Dombrowski, K. E., Vogel, B. E. & Prockop, D. J. Mutations that alter the primary structure of type I procollagen have long-range effects on its cleavage by procollagen N-proteinase. Biochemistry 28, 7107–7112 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Sippola, M., Kaffe, S. & Prockop, D. J. A heterozygous defect for structurally altered pro-alpha 2 chain of type I procollagen in a mild variant of osteogenesis imperfecta. The altered structure decreases the thermal stability of procollagen and makes it resistant to procollagen N-proteinase. J. Biol. Chem. 259, 14094–14100 (1984).

    Article  CAS  PubMed  Google Scholar 

  48. Feshchenko, S. et al. Identification of a new heterozygous point mutation in the COL1A2 gene leading to skipping of exon 9 in a patient with joint laxity, hyperextensibility of skin and blue sclerae. Mutations in brief no. 166. Online. Hum. Mutat. 12, 138 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Nicholls, A. C., Oliver, J., Renouf, D. V., Heath, D. A. & Pope, F. M. The molecular defect in a family with mild atypical osteogenesis imperfecta and extreme joint hypermobility: exon skipping caused by an 11-bp deletion from an intron in one COL1A2 allele. Hum. Genet. 88, 627–633 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Raff, M. L., Craigen, W. J., Smith, L. T., Keene, D. R. & Byers, P. H. Partial COL1A2 gene duplication produces features of osteogenesis imperfecta and Ehlers-Danlos syndrome type VII. Hum. Genet. 106, 19–28 (2000).

    CAS  PubMed  Google Scholar 

  51. Lindahl, K. et al. COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum. Mutat. doi:10.1002/humu.2 1475.

  52. Cole, W. G., Campbell, P. E., Rogers, J. G. & Bateman, J. F. The clinical features of osteogenesis imperfecta resulting from a non-functional carboxy terminal pro alpha 1(I) propeptide of type I procollagen and a severe deficiency of normal type I collagen in tissues. J. Med. Genet. 27, 545–551 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chessler, S. D., Wallis, G. A. & Byers, P. H. Mutations in the carboxyl-terminal propeptide of the pro alpha 1(I) chain of type I collagen result in defective chain association and produce lethal osteogenesis imperfecta. J. Biol. Chem. 268, 18218–18225 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Pace, J. M. et al. Defective C-propeptides of the proalpha2(I) chain of type I procollagen impede molecular assembly and result in osteogenesis imperfecta. J. Biol. Chem. 283, 16061–16067 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Willing, M. C., Cohn, D. H. & Byers, P. H. Frameshift mutation near the 3′ end of the COL1A1 gene of type I collagen predicts an elongated Pro alpha 1(I) chain and results in osteogenesis imperfecta type I. J. Clin. Invest. 85, 282–290 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pace, J. M., Atkinson, M., Willing, M. C., Wallis, G. & Byers, P. H. Deletions and duplications of Gly-Xaa-Yaa triplet repeats in the triple helical domains of type I collagen chains disrupt helix formation and result in several types of osteogenesis imperfecta. Hum. Mutat. 18, 319–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Cabral, W. A. et al. Type I collagen triplet duplication mutation in lethal osteogenesis imperfecta shifts register of alpha chains throughout the helix and disrupts incorporation of mutant helices into fibrils and extracellular matrix. J. Biol. Chem. 278, 10006–10012 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Cabral, W. A. et al. Y-position cysteine substitution in type I collagen (alpha1(I) R888C/p.R1066C) is associated with osteogenesis imperfecta/Ehlers–Danlos syndrome phenotype. Hum. Mutat. 28, 396–405 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Malfait, F. et al. Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers–Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum. Mutat. 28, 387–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Gensure, R. C. et al. A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders. J. Clin. Invest. 115, 1250–1257 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Suphapeetiporn, K., Tongkobpetch, S., Mahayosnond, A. & Shotelersuk, V. Expanding the phenotypic spectrum of Caffey disease. Clin. Genet. 71, 280–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Cho, T. J. et al. The c.3040C > T mutation in COL1A1 is recurrent in Korean patients with infantile cortical hyperostosis (Caffey disease). J. Hum. Genet. 53, 947–949 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Boot-Handford, R. P. & Briggs, M. D. The unfolded protein response and its relevance to connective tissue diseases. Cell Tissue Res. 339, 197–211 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ishida, Y. et al. Autophagic elimination of misfolded procollagen aggregates in the endoplasmic reticulum as a means of cell protection. Mol. Biol. Cell 20, 2744–2754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lamandé, S. R. et al. Endoplasmic reticulum-mediated quality control of type I collagen production by cells from osteogenesis imperfecta patients with mutations in the pro alpha 1 (I) chain carboxyl-terminal propeptide which impair subunit assembly. J. Biol. Chem. 270, 8642–8649 (1995).

    Article  PubMed  Google Scholar 

  66. Fitzgerald, J., Lamandé, S. R. & Bateman, J. F. Proteasomal degradation of unassembled mutant type I collagen pro-alpha1(I) chains. J. Biol. Chem. 274, 27392–27398 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Forlino, A. et al. in 9th International Meeting on Osteogenesis Imperfecta (Annapolis, MD, USA, 2005).

    Google Scholar 

  68. Fedarko, N. S., Robey, P. G. & Vetter, U. K. Extracellular matrix stoichiometry in osteoblasts from patients with osteogenesis imperfecta. J. Bone Miner. Res. 10, 1122–1129 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Fedarko, N. S., Sponseller, P. D. & Shapiro, J. R. Long-term extracellular matrix metabolism by cultured human osteogenesis imperfecta osteoblasts. J. Bone Miner. Res. 11, 800–805 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Wallace, J. M., Orr, B. G., Marini, J. C. & Holl, M. M. Nanoscale morphology of Type I collagen is altered in the Brtl mouse model of osteogenesis imperfecta. J. Struct. Biol. 173, 146–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Fratzl-Zelman, N. et al. CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII. Bone 46, 820–826 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Roschger, P. et al. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif. Tissue Int. 82, 263–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Vetter, U. et al. Osteogenesis imperfecta: changes in noncollagenous proteins in bone. J. Bone Miner. Res. 6, 501–505 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Ganss, B., Kim, R. H. & Sodek, J. Bone sialoprotein. Crit. Rev. Oral Biol. Med. 10, 79–98 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Camacho, N. P., Landis, W. J. & Boskey, A. L. Mineral changes in a mouse model of osteogenesis imperfecta detected by Fourier transform infrared microscopy. Connect. Tissue Res. 35, 259–265 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Renders, G. A., Mulder, L., Langenbach, G. E., van Ruijven, L. J. & van Eijden, T. M. Biomechanical effect of mineral heterogeneity in trabecular bone. J. Biomech. 41, 2793–2798 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Gourion-Arsiquaud, S. et al. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone 46, 666–672 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Nakahama, K. I. Cellular communications in bone homeostasis and repair. Cell. Mol. Life Sci. 67, 4001–4009 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Poole, K. E. et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 19, 1842–1844 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Sarathchandra, P., Pope, F. M., Kayser, M. V. & Ali, S. Y. A light and electron microscopic study of osteogenesis imperfecta bone samples, with reference to collagen chemistry and clinical phenotype. J. Pathol. 192, 385–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Fernandes, H. et al. The role of collagen crosslinking in differentiation of human mesenchymal stem cells and MC3T3-E1 cells. Tissue Eng. Part A 15, 3857–3867 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Bank, R. A. et al. Pyridinium cross-links in bone of patients with osteogenesis imperfecta: evidence of a normal intrafibrillar collagen packing. J. Bone Miner. Res. 15, 1330–1336 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Vranka, J. A., Sakai, L. Y. & Bächinger, H. P. Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J. Biol. Chem. 279, 23615–23621 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Weis, M. A. et al. Location of 3-hydroxyproline residues in collagen types, I, II, III, and V/XI implies a role in fibril supramolecular assembly. J. Biol. Chem. 285, 2580–2590 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ishikawa, Y., Wirz, J., Vranka, J. A., Nagata, K. & Bächinger, H. P. Biochemical characterization of the prolyl 3-hydroxylase 1.cartilage-associated protein.cyclophilin B complex. J. Biol. Chem. 284, 17641–17647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Castagnola, P. et al. Cartilage associated protein (CASP) is a novel developmentally regulated chick embryo protein. J. Cell Sci. 110 (Pt 12), 1351–1359 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Wassenhove-McCarthy, D. J. & McCarthy, K. J. Molecular characterization of a novel basement membrane-associated proteoglycan, leprecan. J. Biol. Chem. 274, 25004–25017 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Labuda, M. et al. Osteogenesis imperfecta type VII maps to the short arm of chromosome 3. Bone 31, 19–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Marini, J. C., Cabral, W. A., Barnes, A. M. & Chang, W. Components of the collagen prolyl 3-hydroxylation complex are crucial for normal bone development. Cell Cycle 6, 1675–1681 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Morello, R. et al. cDNA cloning, characterization and chromosome mapping of Crtap encoding the mouse cartilage associated protein. Matrix Biol. 18, 319–324 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Marini, J. C., Cabral, W. A. & Barnes, A. M. Null mutations in LEPRE1 and CRTAP cause severe recessive osteogenesis imperfecta. Cell Tissue Res. 339, 59–70 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Baldridge, D. et al. Generalized connective tissue disease in Crtap−/− mouse. PLoS ONE 5, e10560 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Willaert, A. et al. Recessive osteogenesis imperfecta caused by LEPRE1 mutations: clinical documentation and identification of the splice form responsible for prolyl 3-hydroxylation. J. Med. Genet. 46, 233–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Vranka, J., Stadler, H. S. & Bächinger, H. P. Expression of prolyl 3-hydroxylase genes in embryonic and adult mouse tissues. Cell Struct. Funct. 34, 97–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Cabral, W. A. et al. A founder mutation in LEPRE1 causes lethal recessive type VIII osteogenesis imperfecta and occurs in West Africans and African Americans. Presented at the European Society of Human Genetics Annual Conference (Gothenburg, Sweden, 2010).

    Article  Google Scholar 

  96. Vranka, J. A. et al. Prolyl 3-hydroxylase 1 null mice display abnormalities in fibrillar collagen-rich tissues such as tendons, skin, and bones. J. Biol. Chem. 285, 17253–17262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bächinger, H. P. The influence of peptidyl-prolyl cis-trans isomerase on the in vitro folding of type III collagen. J. Biol. Chem. 262, 17144–17148 (1987).

    Article  PubMed  Google Scholar 

  98. Steinmann, B., Bruckner, P. & Superti-Furga, A. Cyclosporin A slows collagen triple-helix formation in vivo: indirect evidence for a physiologic role of peptidyl-prolyl cis-trans-isomerase. J. Biol. Chem. 266, 1299–1303 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Pyott, S. M. et al. Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes. Hum. Mol. Genet. 20, 1595–1609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Van Dijk, F. S., Cobben, J. M. & Pals, G. Osteogenesis imperfecta, normal collagen folding, and lack of cyclophilin B. N. Engl. J. Med. 362, 1940–1941 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Choi, J. W. et al. Severe osteogenesis imperfecta in cyclophilin B-deficient mice. PLoS Genet. 5, e1000750 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Chang, W., Barnes, A. M., Cabral, W. A., Bodurtha, J. N. & Marini, J. C. Prolyl 3-hydroxylase 1 and CRTAP are mutually stabilizing in the endoplasmic reticulum collagen prolyl 3-hydroxylation complex. Hum. Mol. Genet. 19, 223–234 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Mizuno, K., Peyton, D. H., Hayashi, T., Engel, J. & Bächinger, H. P. Effect of the -Gly-3(S.)-hydroxyprolyl-4(R.)-hydroxyprolyl-tripeptide unit on the stability of collagen model peptides. FEBS J. 275, 5830–5840 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Glorieux, F. H. et al. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J. Bone Miner. Res. 17, 30–38 (2002).

    Article  PubMed  Google Scholar 

  105. Becker, J. et al. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am. J. Hum. Genet. 88, 362–371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Doll, J. A. et al. Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat. Med. 9, 774–780 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Smith, T., Ferreira, L. R., Hebert, C., Norris, K. & Sauk, J. J. Hsp47 and cyclophilin B traverse the endoplasmic reticulum with procollagen into pre-Golgi intermediate vesicles. A role for Hsp47 and cyclophilin B in the export of procollagen from the endoplasmic reticulum. J. Biol. Chem. 270, 18323–18328 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Nagai, N. et al. Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J. Cell Biol. 150, 1499–1506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ishida, Y. et al. Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol. Biol. Cell 17, 2346–2355 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ishida, Y. & Nagata, K. Autophagy eliminates a specific species of misfolded procollagen and plays a protective role in cell survival against ER stress. Autophagy 5, 1217–1219 (2009).

    Article  PubMed  Google Scholar 

  111. Drögemüller, C. et al. A missense mutation in the SERPINH1 gene in Dachshunds with osteogenesis imperfecta. PLoS Genet. 5, e1000579 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Ishikawa, Y., Vranka, J., Wirz, J., Nagata, K. & Bächinger, H. P. The rough endoplasmic reticulum-resident FK506-binding protein FKBP65 is a molecular chaperone that interacts with collagens. J. Biol. Chem. 283, 31584–31590 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Breslau-Siderius, E. J., Engelbert, R. H., Pals, G. & van der Sluijs, J. A. Bruck syndrome: a rare combination of bone fragility and multiple congenital joint contractures. J. Pediatr. Orthop. B. 7, 35–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Shaheen, R., Al-Owain, M., Sakati, N., Alzayed, Z. S. & Alkuraya, F. S. FKBP10 and bruck syndrome: Phenotypic heterogeneity or call for reclassification? Am. J. Hum. Genet. 87, 571 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  115. Kelley, B. P. et al. Mutations in FKBP10 cause recessive osteogenesis imperfecta and type 1 Bruck syndrome. J. Bone Miner. Res. 26, 666–672 (2010).

    Article  PubMed Central  CAS  Google Scholar 

  116. Bank, R. A. et al. Defective collagen crosslinking in bone, but not in ligament or cartilage, in Bruck syndrome: indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17. Proc. Natl Acad. Sci. USA 96, 1054–1058 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. van der Slot, A. J. et al. Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J. Biol. Chem. 278, 40967–40972 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Szpirer, C. et al. Localization of the gene encoding a novel isoform of lysyl hydroxylase. Mamm. Genome 8, 707–708 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Lapunzina, P. et al. Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am. J. Hum. Genet. 87, 110–114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Suske, G., Bruford, E. & Philipsen, S. Mammalian SP/KLF transcription factors: bring in the family. Genomics 85, 551–556 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Pedersen, U. Hearing loss in patients with osteogenesis imperfecta. A clinical and audiological study of 201 patients. Scand. Audiol. 13, 67–74 (1984).

    CAS  PubMed  Google Scholar 

  123. Kuurila, K., Grénman, R., Johansson, R. & Kaitila, I. Hearing loss in children with osteogenesis imperfecta. Eur. J. Pediatr. 159, 515–519 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Paterson, C. R., Monk, E. A. & McAllion, S. J. How common is hearing impairment in osteogenesis imperfecta? J. Laryngol. Otol. 115, 280–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Kuurila, K., Kaitila, I., Johansson, R. & Grénman, R. Hearing loss in Finnish adults with osteogenesis imperfecta: a nationwide survey. Ann. Otol. Rhinol. Laryngol. 111, 939–946 (2002).

    Article  PubMed  Google Scholar 

  126. Hartikka, H. et al. Lack of correlation between the type of COL1A1 or COL1A2 mutation and hearing loss in osteogenesis imperfecta patients. Hum. Mutat. 24, 147–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Kuurila, K. et al. Vestibular dysfunction in adult patients with osteogenesis imperfecta. Am. J. Med. Genet. A. 120A, 350–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Pedersen, U. & Elbrønd, O. Stapedectomy in osteogenesis imperfecta. ORL J. Otorhinolaryngol Relat. Spec. 45, 330–337 (1983).

    Article  CAS  PubMed  Google Scholar 

  129. Garretsen, A. J., Cremers, C. W. & Huygén, P. L. Hearing loss (in nonoperated ears) in relation to age in osteogenesis imperfecta type, I. Ann. Otol. Rhinol. Laryngol. 106, 575–582 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Shea, J. J. & Postma, D. S. Findings and long-term surgical results in the hearing loss of osteogenesis imperfecta. Arch. Otolaryngol. 108, 467–470 (1982).

    Article  CAS  PubMed  Google Scholar 

  131. van der Rijt, A. J. & Cremers, C. W. Stapes surgery in osteogenesis imperfecta: results of a new series. Otol. Neurootol. 24, 717–722 (2003).

    Article  Google Scholar 

  132. Kuurila, K., Pynnönen, S. & Grénman, R. Stapes surgery in osteogenesis imperfecta in Finland. Ann. Otol. Rhinol. Laryngol. 113, 187–193 (2004).

    Article  PubMed  Google Scholar 

  133. Rotteveel, L. J. et al. Cochlear implantation in 3 patients with osteogenesis imperfecta: imaging, surgery and programming issues. Audiol. Neurootol. 13, 73–85 (2008).

    Article  PubMed  Google Scholar 

  134. Levin, L. S., Salinas, C. F. & Jorgenson, R. J. Classification of osteogenesis imperfecta by dental characteristics. Lancet 1, 332–333 (1978).

    Article  CAS  PubMed  Google Scholar 

  135. O'Connell, A. C. & Marini, J. C. Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 87, 189–196 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Malmgren, B. & Norgren, S. Dental aberrations in children and adolescents with osteogenesis imperfecta. Acta Odontol. Scand. 60, 65–71 (2002).

    Article  PubMed  Google Scholar 

  137. Majorana, A. et al. Dentinogenesis imperfecta in children with osteogenesis imperfecta: a clinical and ultrastructural study. Int. J. Paediatr. Dent. 20, 112–118 (2010).

    Article  PubMed  Google Scholar 

  138. Waltimo, J., Ojanotko-Harri, A. & Lukinmaa, P. L. Mild forms of dentinogenesis imperfecta in association with osteogenesis imperfecta as characterized by light and transmission electron microscopy. J. Oral Pathol. Med. 25, 256–264 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Lund, A. M., Jensen, B. L., Nielsen, L. A. & Skovby, F. Dental manifestations of osteogenesis imperfecta and abnormalities of collagen I metabolism. J. Craniofac. Genet. Dev. Biol. 18, 30–37 (1998).

    CAS  PubMed  Google Scholar 

  140. Rauch, F., Lalic, L., Roughley, P. & Glorieux, F. H. Genotype-phenotype correlations in nonlethal osteogenesis imperfecta caused by mutations in the helical domain of collagen type I. Eur. J. Hum. Genet. 18, 642–647 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schwarz, M., Harbers, K. & Kratochwil, K. Transcription of a mutant collagen I gene is a cell type and stage-specific marker for odontoblast and osteoblast differentiation. Development 108, 717–726 (1990).

    Article  CAS  PubMed  Google Scholar 

  142. Waltimo, J. Hyperfibers and vesicles in dentin matrix in dentinogenesis imperfecta (DI) associated with osteogenesis imperfecta (OI). J. Oral Pathol. Med. 23, 389–393 (1994).

    Article  CAS  PubMed  Google Scholar 

  143. Lygidakis, N. A., Smith, R. & Oulis, C. J. Scanning electron microscopy of teeth in osteogenesis imperfecta type I. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 81, 567–572 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Hall, R. K., Manière, M. C., Palamara, J. & Hemmerle, J. Odontoblast dysfunction in osteogenesis imperfecta: an, LM, SEM, and ultrastructural study. Connect. Tissue Res. 43, 401–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Charnas, L. R. & Marini, J. C. Communicating hydrocephalus, basilar invagination, and other neurologic features in osteogenesis imperfecta. Neurology 43, 2603–2608 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Sawin, P. D. & Menezes, A. H. Basilar invagination in osteogenesis imperfecta and related osteochondrodysplasias: medical and surgical management. J. Neurosurg. 86, 950–960 (1997).

    Article  CAS  PubMed  Google Scholar 

  147. Menezes, A. H. Specific entities affecting the craniocervical region: osteogenesis imperfecta and related osteochondrodysplasias: medical and surgical management of basilar impression. Childs Nerv. Syst. 24, 1169–1172 (2008).

    Article  PubMed  Google Scholar 

  148. Marini, J. C., Bordenick, S., Heavner, G., Rose, S. & Chrousos, G. P. Evaluation of growth hormone axis and responsiveness to growth stimulation of short children with osteogenesis imperfecta. Am. J. Med. Genet. 45, 261–264 (1993).

    Article  CAS  PubMed  Google Scholar 

  149. Marini, J. C. et al. Positive linear growth and bone responses to growth hormone treatment in children with types III and IV osteogenesis imperfecta: high predictive value of the carboxyterminal propeptide of type I procollagen. J. Bone Miner. Res. 18, 237–243 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Singer, R. B., Ogston, S. A. & Paterson, C. R. Mortality in various types of osteogenesis imperfecta. J. Insur. Med. 33, 216–220 (2001).

    CAS  PubMed  Google Scholar 

  151. Widmann, R. F. et al. Spinal deformity, pulmonary compromise, and quality of life in osteogenesis imperfecta. Spine (Phila. Pa 1976) 24, 1673–1678 (1999).

    Article  CAS  Google Scholar 

  152. Shapiro, J. R. et al. Pulmonary hypoplasia and osteogenesis imperfecta type II with defective synthesis of alpha I(1) procollagen. Bone 10, 165–171 (1989).

    Article  CAS  PubMed  Google Scholar 

  153. Hortop, J., Tsipouras, P., Hanley, J. A., Maron, B. J. & Shapiro, J. R. Cardiovascular involvement in osteogenesis imperfecta. Circulation 73, 54–61 (1986).

    Article  CAS  PubMed  Google Scholar 

  154. Bonita, R. E., Cohen, I. S. & Berko, B. A. Valvular heart disease in osteogenesis imperfecta: presentation of a case and review of the literature. Echocardiography 27, 69–73 (2010).

    Article  PubMed  Google Scholar 

  155. Migliaccio, S. et al. Impairment of diastolic function in adult patients affected by osteogenesis imperfecta clinically asymptomatic for cardiac disease: casuality or causality? Int. J. Cardiol. 131, 200–203 (2009).

    Article  PubMed  Google Scholar 

  156. Huang, R. P., Ambrose, C. G., Sullivan, E. & Haynes, R. J. Functional significance of bone density measurements in children with osteogenesis imperfecta. J. Bone Joint Surg. Am. 88, 1324–1330 (2006).

    Article  PubMed  Google Scholar 

  157. Letocha, A. D. et al. Controlled trial of pamidronate in children with types III and IV osteogenesis imperfecta confirms vertebral gains but not short-term functional improvement. J. Bone Miner. Res. 20, 977–986 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Sakkers, R. et al. Skeletal effects and functional outcome with olpadronate in children with osteogenesis imperfecta: a 2-year randomised placebo-controlled study. Lancet 363, 1427–1431 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Engelbert, R. H. et al. Scoliosis in children with osteogenesis imperfecta: influence of severity of disease and age of reaching motor milestones. Eur. Spine J. 12, 130–134 (2003).

    Article  PubMed  Google Scholar 

  160. Cintas, H. L., Siegel, K. L., Furst, G. P. & Gerber, L. H. Brief assessment of motor function: reliability and concurrent validity of the Gross Motor Scale. Am. J. Phys. Med. Rehabil. 82, 33–41 (2003).

    Article  PubMed  Google Scholar 

  161. Ruck-Gibis, J., Plotkin, H., Hanley, J. & Wood-Dauphinee, S. Reliability of the gross motor function measure for children with osteogenesis imperfecta. Pediatr. Phys. Ther. 13, 10–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Bleck, E. E. Nonoperative treatment of osteogenesis imperfecta: orthotic and mobility management. Clin. Orthop. Relat. Res. 111–122 (1981).

  163. Engelbert, R. H. et al. Osteogenesis imperfecta in childhood: impairment and disability. A prospective study with 4-year follow-up. Arch. Phys. Med. Rehabil. 85, 772–778 (2004).

    Article  PubMed  Google Scholar 

  164. Takken, T. et al. Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I. J. Pediatr. 145, 813–818 (2004).

    Article  PubMed  Google Scholar 

  165. Van Brussel, M. et al. Physical training in children with osteogenesis imperfecta. J. Pediatr. 152, 111–116 (2008).

    Article  PubMed  Google Scholar 

  166. Semler, O., Fricke, O., Vezyroglou, K., Stark, C. & Schoenau, E. Preliminary results on the mobility after whole body vibration in immobilized children and adolescents. J. Musculoskelet. Neuronal Interact. 7, 77–81 (2007).

    CAS  PubMed  Google Scholar 

  167. Luhmann, S. J., Sheridan, J. J., Capelli, A. M. & Schoenecker, P. L. Management of lower-extremity deformities in osteogenesis imperfecta with extensible intramedullary rod technique: a 20-year experience. J. Pediatr. Orthop. 18, 88–94 (1998).

    CAS  PubMed  Google Scholar 

  168. Zionts, L. E., Ebramzadeh, E. & Stott, N. S. Complications in the use of the Bailey–Dubow extensible nail. Clin. Orthop. Relat. Res. 186–195 (1998).

  169. El-Adl, G., Khalil, M. A., Enan, A., Mostafa, M. F. & El-Lakkany, M. R. Telescoping versus non-telescoping rods in the treatment of osteogenesis imperfecta. Acta Orthop. Belg. 75, 200–208 (2009).

    PubMed  Google Scholar 

  170. Esposito, P. & Plotkin, H. Surgical treatment of osteogenesis imperfecta: current concepts. Curr. Opin. Pediatr. 20, 52–57 (2008).

    Article  PubMed  Google Scholar 

  171. Boutaud, B. & Laville, J. M. Elastic sliding central medullary nailing with osteogenesis imperfecta. Fourteen cases at eight years follow-up [French]. Rev. Chir. Orthop. Reparatrice Appar. Mot. 90, 304–311 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Munns, C. F., Rauch, F., Zeitlin, L., Fassier, F. & Glorieux, F. H. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J. Bone Miner. Res. 19, 1779–1786 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Hanscom, D. A. & Bloom, B. A. The spine in osteogenesis imperfecta. Orthop. Clin. North Am. 19, 449–458 (1988).

    Article  CAS  PubMed  Google Scholar 

  174. Topouchian, V., Finidori, G., Glorion, C., Padovani, J. P. & Pouliquen, J. C. Posterior spinal fusion for kypho-scoliosis associated with osteogenesis imperfecta: long-term results [French]. Rev. Chir. Orthop. Reparatrice Appar. Mot. 90, 525–532 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Janus, G. J., Finidori, G., Engelbert, R. H., Pouliquen, M. & Pruijs, J. E. Operative treatment of severe scoliosis in osteogenesis imperfecta: results of 20 patients after halo traction and posterior spondylodesis with instrumentation. Eur. Spine J. 9, 486–491 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rauch, F. & Glorieux, F. H. Treatment of children with osteogenesis imperfecta. Curr. Osteoporos. Rep. 4, 159–164 (2006).

    Article  PubMed  Google Scholar 

  177. Cheung, M. S. & Glorieux, F. H. Osteogenesis imperfecta: update on presentation and management. Rev. Endocr. Metab. Disord. 9, 153–160 (2008).

    Article  PubMed  Google Scholar 

  178. Bachrach, L. K. & Ward, L. M. Clinical review 1: Bisphosphonate use in childhood osteoporosis. J. Clin. Endocrinol. Metab. 94, 400–409 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Phillipi, C. A., Remmington, T. & Steiner, R. D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD005088. doi: 10.1002/14651858.CD005088.pub2 (2008).

  180. Rauch, F., Travers, R., Plotkin, H. & Glorieux, F. H. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J. Clin. Invest. 110, 1293–1299 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Marini, J. C. Should children with osteogenesis imperfecta be treated with bisphosphonates? Nat. Clin. Pract. Endocrinol. Metab. 2, 14–15 (2006).

    Article  PubMed  Google Scholar 

  182. Land, C., Rauch, F., Munns, C. F., Sahebjam, S. & Glorieux, F. H. Vertebral morphometry in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate treatment. Bone 39, 901–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Castillo, H. & Samson-Fang, L. Effects of bisphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review. Dev. Med. Child. Neurol. 51, 17–29 (2009).

    Article  PubMed  Google Scholar 

  184. Ward, L. M. et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J. Clin. Endocrinol. Metab. 96, 355–364 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. Marini, J. C. Bone: Use of bisphosphonates in children-proceed with caution. Nat. Rev. Endocrinol. 5, 241–243 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Uveges, T. E. et al. Alendronate treatment of the brtl osteogenesis imperfecta mouse improves femoral geometry and load response before fracture but decreases predicted material properties and has detrimental effects on osteoblasts and bone formation. J. Bone Miner. Res. 24, 849–859 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Malmgren, B., Aström, E. & Söderhäll, S. No osteonecrosis in jaws of young patients with osteogenesis imperfecta treated with bisphosphonates. J. Oral Pathol. Med. 37, 196–200 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Ward, K. A., Adams, J. E., Freemont, T. J. & Mughal, M. Z. Can. bisphosphonate treatment be stopped in a growing child with skeletal fragility? Osteoporos. Int. 18, 1137–1140 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Hussar, D. A. & Stevenson, T. New drugs: Denosumab, dienogest/estradiol valerate, and polidocanol. J. Am. Pharm. Assoc. 50, 658–662 (2003).

    Article  Google Scholar 

  190. Bargman, R., Huang, A., Boskey, A. L., Raggio, C. & Pleshko, N. RANKL inhibition improves bone properties in a mouse model of osteogenesis imperfecta. Connect. Tissue Res. 51, 123–131 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dunn, M. D., Park, C. H., Kostenuik, P. J., Kapila, S. & Giannobile, W. V. Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone 41, 446–455 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kamoun-Goldrat, A., Ginisty, D. & Le Merrer, M. Effects of bisphosphonates on tooth eruption in children with osteogenesis imperfecta. Eur. J. Oral Sci. 116, 195–198 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Paszty, C., Turner, C. H. & Robinson, M. K. Sclerostin: a gem from the genome leads to bone-building antibodies. J. Bone Miner. Res. 25, 1897–1904 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Antoniazzi, F. et al. Growth hormone treatment in osteogenesis imperfecta with quantitative defect of type I collagen synthesis. J. Pediatr. 129, 432–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  195. Antoniazzi, F. et al. GH in combination with bisphosphonate treatment in osteogenesis imperfecta. Eur. J. Endocrinol. 163, 479–487 (2010).

    Article  CAS  PubMed  Google Scholar 

  196. Cabral, W. A. & Marini, J. C. High proportion of mutant osteoblasts is compatible with normal skeletal function in mosaic carriers of osteogenesis imperfecta. Am. J. Hum. Genet. 74, 752–760 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Li, F., Wang, X. & Niyibizi, C. Distribution of single-cell expanded marrow derived progenitors in a developing mouse model of osteogenesis imperfecta following systemic transplantation. Stem Cells 25, 3183–3193 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Guillot, P. V. et al. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 111, 1717–1725 (2008).

    Article  CAS  PubMed  Google Scholar 

  199. Chamberlain, J. R. et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303, 1198–1201 (2004).

    Article  CAS  PubMed  Google Scholar 

  200. Chamberlain, J. R. et al. Gene targeting of mutant COL1A2 alleles in mesenchymal stem cells from individuals with osteogenesis imperfecta. Mol. Ther. 16, 187–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  201. Millington-Ward, S., McMahon, H. P. & Farrar, G. J. Emerging therapeutic approaches for osteogenesis imperfecta. Trends Mol. Med. 11, 299–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  202. Dawson, P. A. & Marini, J. C. Hammerhead ribozymes selectively suppress mutant type I collagen mRNA in osteogenesis imperfecta fibroblasts. Nucleic Acids Res. 28, 4013–4020 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Navon, A. & Ciechanover, A. The 26 S. proteasome: from basic mechanisms to drug targeting. J. Biol. Chem. 284, 33713–33718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sloan, L. A., Fillmore, M. C. & Churcher, I. Small-molecule modulation of cellular chaperones to treat protein misfolding disorders. Curr. Opin. Drug Discov. Devel. 12, 666–681 (2009).

    CAS  PubMed  Google Scholar 

  205. Rochet, J. C. Novel therapeutic strategies for the treatment of protein-misfolding diseases. Expert Rev. Mol. Med. 9, 1–34 (2007).

    Article  PubMed  Google Scholar 

  206. Bonadio, J. et al. A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragility. J. Clin. Invest. 92, 1697–1705 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Stacey, A. et al. Perinatal lethal osteogenesis imperfecta in transgenic mice bearing an engineered mutant pro-alpha 1(I) collagen gene. Nature 332, 131–136 (1988).

    Article  CAS  PubMed  Google Scholar 

  208. Khillan, J. S., Olsen, A. S., Kontusaari, S., Sokolov, B. & Prockop, D. J. Transgenic mice that express a mini-gene version of the human gene for type I procollagen (COL1A1) develop a phenotype resembling a lethal form of osteogenesis imperfecta. J. Biol. Chem. 266, 23373–23379 (1991).

    Article  CAS  PubMed  Google Scholar 

  209. Forlino, A., Porter, F. D., Lee, E. J., Westphal, H. & Marini, J. C. Use of the Cre/lox recombination system to develop a non-lethal knock-in murine model for osteogenesis imperfecta with an alpha1(I) G349C substitution. Variability in phenotype in BrtlIV mice. J. Biol. Chem. 274, 37923–37931 (1999).

    Article  CAS  PubMed  Google Scholar 

  210. Harbers, K., Kuehn, M., Delius, H. & Jaenisch, R. Insertion of retrovirus into the first intron of alpha 1(I) collagen gene to embryonic lethal mutation in mice. Proc. Natl Acad. Sci. USA 81, 1504–1508 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Chipman, S. D. et al. Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. Proc. Natl Acad. Sci. USA 90, 1701–1705 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Baek, W. Y. et al. Positive regulation of adult bone formation by osteoblast-specific transcription factor osterix. J. Bone Miner. Res. 24, 1055–1065 (2009).

    Article  CAS  PubMed  Google Scholar 

  213. Khoshnoodi, J., Cartailler, J. P., Alvares, K., Veis, A. & Hudson, B. G. Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J. Biol. Chem. 281, 38117–38121 (2006).

    Article  CAS  PubMed  Google Scholar 

  214. Nishikawa, Y. et al. A structure-activity relationship study elucidating the mechanism of sequence-specific collagen recognition by the chaperone HSP47. Bioorg. Med. Chem. 18, 3767–3775 (2010).

    Article  CAS  PubMed  Google Scholar 

  215. Chessler, S. D. & Byers, P. H. BiP binds type I procollagen pro alpha chains with mutations in the carboxyl-terminal propeptide synthesized by cells from patients with osteogenesis imperfecta. J. Biol. Chem. 268, 18226–18233 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Joan C. Marini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forlino, A., Cabral, W., Barnes, A. et al. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 7, 540–557 (2011). https://doi.org/10.1038/nrendo.2011.81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.81

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing