Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of osteocalcin in human glucose metabolism: marker or mediator?

This article has been updated

Abstract

Increasing evidence supports an association between the skeleton and energy metabolism. These interactions are mediated by a variety of hormones, cytokines and nutrients. Here, the evidence for a role of osteocalcin in the regulation of glucose metabolism in humans is reviewed. Osteocalcin is a bone matrix protein that regulates hydroxyapatite size and shape through its vitamin-K-dependent, γ-carboxylated form. The concentration of osteocalcin in the circulation is a measure of bone formation. The undercarboxylated form of osteocalcin is active in glucose metabolism in mice. Total serum osteocalcin concentrations in humans are inversely associated with measures of glucose metabolism; however, human data are inconclusive with regard to the role of uncarboxylated osteocalcin in glucose metabolism because most studies do not account for the influence of vitamin K on the proportion of undercarboxylated osteocalcin or differentiate between the total and uncarboxylated forms of osteocalcin. Furthermore, most human studies do not concomitantly measure other bone turnover markers to isolate the role of osteocalcin as a measure of bone formation from its effect on glucose metabolism. Carefully designed studies are required to define the role of osteocalcin and its carboxylated or undercarboxylated forms in the regulation of glucose metabolism in humans.

Key Points

  • Osteocalcin is a calcium-binding bone matrix protein that contains the vitamin-K-dependent amino acid, γ-carboxyglutamic acid; circulating osteocalcin concentrations are a measure of bone formation

  • Studies in mice show that osteocalcin acts as a hormone to affect insulin sensitivity and energy expenditure; only the undercarboxylated form of osteocalcin is active

  • Human dietary intake of vitamin K is suboptimal, in contrast to that in mice—and, as a consequence, both bone and serum osteocalcin are undercarboxylated in humans

  • Most human studies examining the association between serum osteocalcin and measures of glucose metabolism do not differentiate between the total and undercarboxylated forms or take into account vitamin K intake

  • Most human studies also do not measure other bone turnover markers to distinguish circulating osteocalcin as a measure of bone turnover from its effect on glucose metabolism

  • In mice, the uncarboxylated form of osteocalcin is linked to glucose homeostasis, whereas in humans the data are inconclusive

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vitamin K is required for the formation of γ-carboxyglutamic acid.
Figure 2: Direct structural analysis of osteocalcin by NMR imaging and X-ray crystallography predicts a tight globular structure comprised of three α-helices, a C-terminal hydrophobic core and an unstructured N-terminus.
Figure 3: Response of all forms of osteocalcin to vitamin K supplementation in humans.
Figure 4: Correlations among osteocalcin measures.
Figure 5: Speculative model of the role of osteocalcin in glucose metabolism.

Similar content being viewed by others

Change history

  • 23 November 2012

    In the version of this article initially published online there was a mistake saying that binding of osteocalcin in vitro to a G-protein-coupled receptor (Gprc6a) in isolated mouse Leydig cells was associated with a reduction in the biosynthesis of testosterone. The sentence should have read "Furthermore, the researchers showed that binding of osteocalcin in vitro to a G-protein-coupled receptor (Gprc6a) in isolated mouse Leydig cells was associated with an increase in the biosynthesis of testosterone.79" The error has been corrected for the HTML and PDF versions of the article.

References

  1. Stenflo, J., Fernlund, P., Egan, W. & Roepstorff, P. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc. Natl Acad. Sci. USA 71, 2730–2733 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Suttie, J. W. The biochemical basis of warfarin therapy. Adv. Exp. Med. Biol. 214, 3–16 (1987).

    CAS  PubMed  Google Scholar 

  3. Hauschka, P. V., Lian, J. B. & Gallop, P. M. Direct identification of the calcium-binding amino acid, γ-carboxyglutamate, in mineralized tissue. Proc. Natl Acad. Sci. USA 72, 3925–3929 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Price, P. A., Otsuka, A. A., Poser, J. W., Kristaponis, J. & Raman, N. Characterization of a γ-carboxyglutamic acid-containing protein from bone. Proc. Natl Acad. Sci. USA 73, 1447–1451 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferron, M., Hinoi, E., Karsenty, G. & Ducy, P. Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl Acad. Sci. USA 105, 5266–5270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferron, M. et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296–308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fulzele, K. et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142, 309–319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosen, C. J. & Motyl, K. J. No bones about it: insulin modulates skeletal remodeling. Cell 142, 198–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Kumar, R. & Vella, A. Carbohydrate metabolism and the skeleton: picking a bone with the β-cell. J. Clin. Endocrinol. Metab. 96, 1269–1271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Motyl, K. J., McCabe, L. R. & Schwartz, A. V. Bone and glucose metabolism: a two-way street. Arch. Biochem. Biophys. 503, 2–10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sullivan, T. R., Duque, G., Keech, A. C. & Herrmann, M. An old friend in a new light: the role of osteocalcin in energy metabolism. Cardiovasc. Ther. http://dx.doi.org/10.1111/j.1755-5922.2011.00300.x.

  13. Reid, I. R. Relationships between fat and bone. Osteoporos. Int. 19, 595–606 (2007).

    Article  PubMed  Google Scholar 

  14. Kawai, M., Devlin, M. J. & Rosen, C. J. Fat targets for skeletal health. Nat. Rev. Rheumatol. 5, 365–372 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Karsenty, G. & Ferron, M. The contribution of bone to whole-organism physiology. Nature 481, 314–320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosen, C. J. & Klibanski, A. Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am. J. Med. 122, 409–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Shearer, M. J., Fu, X. & Booth, S. L. Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv. Nutr. 3, 182–195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rishavy, M. A. & Berkner, K. L. Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase. Adv. Nutr. 3, 135–148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berkner, K. L. The vitamin K-dependent carboxylase. Annu. Rev. Nutr. 25, 127–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Viegas, C. S. et al. Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates. J. Biol. Chem. 283, 36655–36664 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Proudfoot, D. & Shanahan, C. M. Molecular mechanisms mediating vascular calcification: role of matrix Gla protein. Nephrology (Carlton) 11, 455–461 (2006).

    Article  CAS  Google Scholar 

  22. Dowd, T. L., Rosen, J. F., Li, L. & Gundberg, C. M. The three-dimensional structure of bovine calcium ion-bound osteocalcin using 1H NMR spectroscopy. Biochemistry 42, 7769–7779 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Hauschka, P. V. & Carr, S. A. Calcium-dependent α-helical structure in osteocalcin. Biochemistry 21, 2538–2547 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. Hoang, Q. Q., Sicheri, F., Howard, A. J. & Yang, D. S. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425, 977–980 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Desbois, C., Hogue, D. A. & Karsenty, G. The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J. Biol. Chem. 269, 1183–1190 (1994).

    CAS  PubMed  Google Scholar 

  26. Kerner, S. A., Scott, R. A. & Pike, J. W. Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3 . Proc. Natl Acad. Sci. USA 86, 4455–4459 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lian, J. et al. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc. Natl Acad. Sci. USA 86, 1143–1147 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boivin, G et al. Localization of endogenous osteocalcin in neonatal rat bone and its absence in articular cartilage: effect of warfarin treatment. Virchows Arch. A. Pathol. Anat. Histopathol. 417, 505–512 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Price, P. A., Lothringer, J. W., Baukol, S. A. & Reddi, A. H. Developmental appearance of the vitamin K-dependent protein of bone during calcification. Analysis of mineralizing tissues in human, calf, and rat. J. Biol. Chem. 256, 3781–3784 (1981).

    CAS  PubMed  Google Scholar 

  30. Hauschka, P. V. & Reid, M. L. Timed appearance of a calcium-binding protein containing γ-carboxyglutamic acid in developing chick bone. Dev. Biol. 65, 426–434 (1978).

    Article  CAS  PubMed  Google Scholar 

  31. Owen, T. A., et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell Physiol. 143, 420–430 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Boskey, A. L. et al. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23, 187–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Poundarik, A., Gundberg, C. & Vashishth, D. Non-collageneous proteins influence bone mineral size, shape and orientation: a SAXS study. J. Bone Miner. Res. 26 (Suppl.), S36 (2011).

    Google Scholar 

  35. Fratzl, P., Paris, O., Klaushofer, K. & Landis, W. J. Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle X-ray scattering. J. Clin. Invest. 97, 396–402 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown, J. P., Delmas, P. D., Arlot, M. & Meunier, P. J. Active bone turnover of the cortico-endosteal envelope in postmenopausal osteoporosis. J. Clin. Endocrinol. Metab. 64, 954–959 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Brown, J. P. et al. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet 1, 1091–1093 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Eastell, R. et al. Bone formation rate in older normal women: concurrent assessment with bone histomorphometry, calcium kinetics, and biochemical markers. J. Clin. Endocrinol. Metab. 67, 741–748 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Price, P. A., Williamson, M. K. & Lothringer, J. W. Origin of the vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. J. Biol. Chem. 256, 12760–12766 (1981).

    CAS  PubMed  Google Scholar 

  40. Garnero, P. et al. Measurement of serum osteocalcin with a human-specific two-site immunoradiometric assay. J. Bone Miner. Res. 7, 1389–1398 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Ivaska, K. K. et al. Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J. Biol. Chem. 279, 18361–18369 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Gundberg, C. M. & Weinstein, R. S. Multiple immunoreactive forms of osteocalcin in uremic serum. J. Clin. Invest. 77, 1762–1767 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Taylor, A. K. et al. Multiple osteocalcin fragments in human urine and serum as detected by a midmolecule osteocalcin radioimmunoassay. J. Clin. Endocrinol. Metab. 70, 467–472 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Ivaska, K. K. et al. Urinary osteocalcin as a marker of bone metabolism. Clin. Chem. 51, 618–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Eastell, R. & Hannon, R. A. Biomarkers of bone health and osteoporosis risk. Proc. Nutr. Soc. 67, 157–162 (2008).

    Article  PubMed  Google Scholar 

  46. Looker, A. C. et al. Clinical use of biochemical markers of bone remodeling: current status and future directions. Osteoporos. Int. 11, 467–480 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Price, P. A. & Williamson, M. K. Effects of warfarin on bone. Studies on the vitamin K-dependent protein of rat bone. J. Biol. Chem. 256, 12754–12759 (1981).

    CAS  PubMed  Google Scholar 

  48. Benton, M. E., Price, P. A. & Suttie, J. W. Multi-site-specificity of the vitamin K-dependent carboxylase: in vitro carboxylation of des-γ-carboxylated bone Gla protein and des-γ-carboxylated pro bone Gla protein. Biochemistry 34, 9541–9551 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Cairns, J. R. & Price, P. A. Direct demonstration that the vitamin K-dependent bone Gla protein is incompletely γ-carboxylated in humans. J. Bone Miner. Res. 9, 1989–1997 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Booth, S. L. & Al Rajabi, A. Determinants of vitamin K status in humans. Vitam. Horm. 78, 1–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Food and Nutrition Board & Institute of Medicine. Dietary Reference Intakes for Vitamin A, vitamin K, Arsenic Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. (National Academy Press, Washington DC, 2001).

  52. Suttie, J. W. The importance of menaquinones in human nutrition. Annu. Rev. Nutr. 15, 399–417 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Booth, S. L. et al. Dietary phylloquinone depletion and repletion in older women. J. Nutr. 133, 2565–2569 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Truong, J. T. et al. Age group and sex do not influence responses of vitamin K biomarkers to changes in dietary vitamin K. J. Nutr. 142, 936–941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Booth, S. L. et al. Effect of vitamin K supplementation on bone loss in elderly men and women. J. Clin. Endocrinol. Metab. 93, 1217–1223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Binkley, N. et al. Vitamin K treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American women. J. Bone Miner. Res. 24, 983–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Cheung, A. M. et al. Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial. PLoS Med. 5, e196 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Binkley, N. C., Krueger, D. C., Engelke, J. A., Foley, A. L. & Suttie, J. W. Vitamin K supplementation reduces serum concentrations of under-γ-carboxylated osteocalcin in healthy young and elderly adults. Am. J. Clin. Nutr. 72, 1523–1528 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Bolton-Smith, C. et al. Two-year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J. Bone Miner. Res. 22, 509–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. van Summeren, M. J. et al. The effect of menaquinone-7 (vitamin K2) supplementation on osteocalcin carboxylation in healthy prepubertal children. Br. J. Nutr. 102, 1171–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Gundberg, C. M., Lian, J. B. & Booth, S. L. Vitamin K-dependent carboxylation of osteocalcin: friend or foe? Adv. Nutr. 3, 149–157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gundberg, C. M., Nieman, S. D., Abrams, S. & Rosen, H. Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J. Clin. Endocrinol. Metab. 83, 3258–3266 (1998).

    CAS  PubMed  Google Scholar 

  63. Adami, S. Bone health in diabetes: considerations for clinical management. Curr. Med. Res. Opin. 25, 1057–1072 (2009).

    Article  PubMed  Google Scholar 

  64. Schwartz, A. V. et al. Older women with diabetes have an increased risk of fracture: a prospective study. J. Clin. Endocrinol. Metab. 86, 32–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Vestergaard, P., Rejnmark, L. & Mosekilde, L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48, 1292–1299 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Bonds, D. E. et al. Risk of fracture in women with type 2 diabetes: the Women's Health Initiative Observational Study. J. Clin. Endocrinol. Metab. 91, 3404–3410 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Vestergaard, P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos. Int. 18, 427–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Schwartz, A. V. et al. Intensive glycemic control is not associated with fractures or falls in the ACCORD randomized trial. Diabetes Care 35, 1525–1531 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Takada, I. et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation. Nat. Cell Biol. 9, 1273–1285 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Gimble, J. M. & Nuttall, M. E. The relationship between adipose tissue and bone metabolism. Clin. Biochem. 45, 874–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Griffith, J. F. et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236, 945–951 (2005).

    Article  PubMed  Google Scholar 

  72. Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Elefteriou, F. Regulation of bone remodeling by the central and peripheral nervous system. Arch. Biochem. Biophys. 473, 231–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hinoi, E. et al. The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. J. Cell Biol. 183, 1235–1242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yip, S. C., Saha, S. & Chernoff, J. PTP1B: a double agent in metabolism and oncogenesis. Trends Biochem. Sci. 35, 442–449 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zee, T., Settembre, C., Levine, R. L. & Karsenty, G. T-cell protein tyrosine phosphatase regulates bone resorption and whole-body insulin sensitivity through its expression in osteoblasts. Mol. Cell Biol. 32, 1080–1088 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Poser, J. W. & Price, P. A. A method for decarboxylation of γ-carboxyglutamic acid in proteins. Properties of the decarboxylated γ-carboxyglutamic acid protein from calf bone. J. Biol. Chem. 254, 431–436 (1979).

    CAS  PubMed  Google Scholar 

  78. Kumm, J., Ivaska, K. K., Rohtla, K., Vaananen, K. & Tamm, A. Urinary osteocalcin and other markers of bone metabolism: the effect of risedronate therapy. Scand. J. Clin. Lab. Invest. 68, 459–463 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Oury, F. et al. Endocrine regulation of male fertility by the skeleton. Cell 144, 796–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wellendorph, P. et al. Deorphanization of GPRC6A: a promiscuous L-α-amino acid receptor with preference for basic amino acids. Mol. Pharmacol. 67, 589–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Wellendorph, P. & Bräuner-Osborne, H. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene 335, 37–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Pi, M., Garner, S. C., Flannery, P., Spurney, R. F. & Quarles, L. D. Sensing of extracellular cations in CasR-deficient osteoblasts. Evidence for a novel cation-sensing mechanism. J. Biol. Chem. 275, 3256–3263 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Wellendorph, P. et al. No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions. J. Mol. Endocrinol. 42, 215–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Pi, M. et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS ONE 3, e3858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Krakauer, J.C. et al. Bone loss and bone turnover in diabetes. Diabetes 44, 775–782 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Pater, A., Sypniewska, G. & Pilecki, O. Biochemical markers of bone cell activity in children with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 23, 81–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Gerdhem, P., Isaksson, A., Akesson, K. & Obrant, K. J. Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos. Int. 16, 1506–1512 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Rosato, M. T., Schneider, S. H. & Shapses, S. A. Bone turnover and insulin-like growth factor I levels increase after improved glycemic control in noninsulin-dependent diabetes mellitus. Calcif. Tissue Int. 63, 107–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Bao, Y. Q. et al. Relationship between serum osteocalcin and glycaemic variability in type 2 diabetes. Clin. Exp. Pharmacol. Physiol. 38, 50–54 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Kanazawa, I. et al. Adiponectin is associated with changes in bone markers during glycemic control in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 94, 3031–3037 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Saleem, U., Mosley, T. H., Jr. & Kullo, I. J. Serum osteocalcin is associated with measures of insulin resistance, adipokine levels, and the presence of metabolic syndrome. Arterioscler. Thromb. Vasc Biol. 30, 1474–1478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pittas, A. G., Harris, S. S., Eliades, M., Stark, P. & Dawson-Hughes, B. Association between serum osteocalcin and markers of metabolic phenotype. J. Clin. Endocrinol. Metab. 94, 827–832 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Shea, M. K. et al. γ-Carboxylation of osteocalcin and insulin resistance in older men and women. Am. J. Clin. Nutr. 90, 1230–1235 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hwang, Y. C., Jeong, I. K., Ahn, K. J. & Chung, H. Y. The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced β-cell function in middle-aged male subjects. Diabetes Metab. Res. Rev. 25, 768–772 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Foresta, C. et al. Evidence for osteocalcin production by adipose tissue and its role in human metabolism. J. Clin. Endocrinol. Metab. 95, 3502–3506 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Shea, M. K. et al. Adulthood obesity is positively associated with adipose tissue concentrations of vitamin K and inversely associated with circulating indicators of vitamin K status in men and women. J. Nutr. 140, 1029–1034 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pitroda, A. P., Harris, S. S. & Dawson-Hughes, B. The association of adiposity with parathyroid hormone in healthy older adults. Endocrine 36, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iki, M. et al. Serum undercarboxylated osteocalcin levels are inversely associated with glycemic status and insulin resistance in an elderly Japanese male population: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporos Int. 23, 761–770 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Gravenstein, K. S. et al. Cross-sectional evidence of a signaling pathway from bone homeostasis to glucose metabolism. J. Clin. Endocrinol. Metab. 96, E884–E890 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Boucher-Berry, C. et al. Vitamin D, osteocalcin and risk for adiposity as comorbidities in middle school children. J. Bone Miner. Res. 27, 283–293 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Misra, M. et al. Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J. Clin. Endocrinol. Metab. 92, 2046–2052 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Pollock, N. K. et al. Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with β-cell function. J. Clin. Endocrinol. Metab. 96, E1092–E1099 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Iglesias, P. et al. Serum concentrations of osteocalcin, procollagen type 1 N-terminal propeptide and β-CrossLaps in obese subjects with varying degrees of glucose tolerance. Clin. Endocrinol. 75, 184–188 (2011).

    Article  CAS  Google Scholar 

  105. Fernández-Real, J. M. et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J. Clin. Endocrinol. Metab. 94, 237–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Bulló, M., Moreno-Navarrete, J. M., Fernández-Real, J. M. & Salas-Salvadó, J. Total and undercarboxylated osteocalcin predict changes in insulin sensitivity and β cell function in elderly men at high cardiovascular risk. Am. J. Clin. Nutr. 95, 249–255 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Schwartz, A. V. et al. Undercarboxylated osteocalcin does not predict development of diabetes in older adults in the Health, Aging and Body Composition Study. J. Bone Miner. Res. 26 (Suppl.) 69 (2011).

    Google Scholar 

  108. Lihn, A. S., Pedersen, S. B. & Richelsen, B. Adiponectin: action, regulation and association to insulin sensitivity. Obes. Rev. 6, 13–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Shi, Y. et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc. Natl Acad. Sci. USA 105, 20529–20533 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee, Y. J. et al. Serum osteocalcin is inversely associated with adipocyte-specific fatty acid-binding protein in the Korean metabolic syndrome research initiatives. Diabetes Care 33, e90 (2010).

    Article  PubMed  Google Scholar 

  111. Hamann, C. et al. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function. Am. J. Physiol. Endocrinol. Metab. 301, E1220–E1228 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Maugeri, D. et al. Alendronate reduces the daily consumption of insulin (DCI) in patients with senile type I diabetes and osteoporosis. Arch. Gerontol. Geriatr. 34, 117–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Vestergaard, P. Risk of newly diagnosed type 2 diabetes is reduced in users of alendronate. Calcif. Tissue Int. 89, 265–270 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Keegan, T. H. et al. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care 27, 1547–1553 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Luckman, S. P. et al. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J. Bone Miner. Res. 13, 581–589 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Gluck, O. & Maricic, M. Skeletal and nonskeletal effects of raloxifene. Curr. Osteoporos. Rep. 1, 123–128 (2003).

    Article  PubMed  Google Scholar 

  117. Schafer, A. L. et al. Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone1–84 or alendronate therapy in postmenopausal women with osteoporosis (the PaTH study). J. Clin. Endocrinol. Metab. 96, E1982–1989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sokoll, L. J. et al. Changes in serum osteocalcin, plasma phylloquinone, and urinary γ-carboxyglutamic acid in response to altered intakes of dietary phylloquinone in human subjects. Am. J. Clin. Nutr. 65, 779–784 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Yoshida, M., Booth, S. L., Meigs, J. B., Saltzman, E. & Jacques, P. F. Phylloquinone intake, insulin sensitivity, and glycemic status in men and women. Am. J. Clin. Nutr. 88, 210–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Yoshida, M. et al. Effect of vitamin K supplementation on insulin resistance in older men and women. Diabetes Care 31, 2092–2096 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Beulens, J. W. et al. Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care 33, 1699–1705 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Erkkila, A. T. & Booth, S. L. Vitamin K intake and atherosclerosis. Curr. Opin. Lipidol. 19, 39–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Carter, P., Gray, L. J., Troughton, J., Khunti, K. & Davies, M. J. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ 341, c4229 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sakamoto, N., Nishiike, T., Iguchi, H. & Sakamoto, K. Possible effects of one week vitamin K (menaquinone-4) tablets intake on glucose tolerance in healthy young male volunteers with different descarboxy prothrombin levels. Clin. Nutr. 19, 259–263 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Choi, H. J. et al. Vitamin K2 supplementation improves insulin sensitivity via osteocalcin metabolism: a placebo-controlled trial. Diabetes Care 34, e147 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Knapen, M. H. et al. Association of vitamin K status with adiponectin and body composition in healthy subjects: uncarboxylated osteocalcin is not associated with fat mass and body weight. Br. J. Nutr. 108, 1017–1024 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Kumar, R., Binkley, N. & Vella, A. Effect of phylloquinone supplementation on glucose homeostasis in humans. Am. J. Clin. Nutr. 92, 1528–1532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Booth, S. L. & Mayer, J. Warfarin use and fracture risk. Nutr. Rev. 58, 20–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Cropp, J. S. & Bussey, H. I. A review of enzyme induction of warfarin metabolism with recommendations for patient management. Pharmacotherapy 17, 917–928 (1997).

    CAS  PubMed  Google Scholar 

  130. Mega, J. L. A new era for anticoagulation in atrial fibrillation. N. Engl. J. Med. 365, 1052–1054 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Ferron, M., Wei, J., Yoshizawa, T., Ducy, P. & Karsenty, G. An ELISA-based method to quantify osteocalcin carboxylation in mice. Biochem. Biophys. Res. Commun. 397, 691–696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hetzel, P. G., Glanzmann, R., Hasler, P. W., Ladewick, A. & Bührer, C. Coumarin embryopathy in an extremely low birth weight infant associated with neonatal hepatitis and ocular malformations. Eur. J. Pediatr. 165, 358–360 (2006).

    Article  PubMed  Google Scholar 

  133. Scheen, A. J. Drug interactions of clinical importance with antihyperglycaemic agents: an update. Drug Saf. 28, 601–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Soon, D. et al. Effect of exenatide on the pharmacokinetics and pharmacodynamics of warfarin in healthy Asian men. J. Clin. Pharmacol. 46, 1179–1187 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Thyfault, J. P. & Booth, F. W. Lack of regular physical exercise or too much inactivity. Curr. Opin. Clin. Nutr. Metab. Care 14, 374–378 (2011).

    Article  PubMed  Google Scholar 

  136. Levinger, I. et al. The effect of acute exercise on undercarboxylated osteocalcin in obese men. Osteoporos. Int. 22, 1621–1626 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Fujimura, R. et al. Effect of resistance exercise training on bone formation and resorption in young male subjects assessed by biomarkers of bone metabolism. J. Bone Miner. Res. 12, 656–662 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Yarasheski, K. E., Campbell, J. A. & Kohrt, W. M. Effect of resistance exercise and growth hormone on bone density in older men. Clin. Endocrinol. (Oxf.) 47, 223–229 (1997).

    Article  CAS  Google Scholar 

  139. Schroeder, E. T., Hawkins, S. A. & Jaque, S. V. Musculoskeletal adaptations to 16 weeks of eccentric progressive resistance training in young women. J. Strength Cond. Res. 18, 227–235 (2004).

    Article  PubMed  Google Scholar 

  140. Judge, J. O. et al. Home-based resistance training improves femoral bone mineral density in women on hormone therapy. Osteoporos. Int. 16, 1096–1108 (2005).

    Article  PubMed  Google Scholar 

  141. Adami, S. et al. Physical activity and bone turnover markers: a cross-sectional and a longitudinal study. Calcif. Tissue Int. 83, 388–392 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Booth, S. L. et al. Relationships between dietary intakes and fasting plasma concentrations of fat-soluble vitamins in humans. J. Nutr. 127, 587–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Rochefort, G. Y. et al. Osteocalcin—insulin relationship in obese children: a role for the skeleton in energy metabolism. Clin. Endocrinol. (Oxf.) 75, 265–270 (2011).

    Article  CAS  Google Scholar 

  144. Ashcroft, F. M. & Rorsman, P. Diabetes mellitus and the β cell: the last ten years. Cell 148, 1160–1171 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yoshikawa, Y. et al. Genetic evidence points to an osteocalcin-independent influence of osteoblasts on energy metabolism. J. Bone Miner. Res. 26, 2012–2025 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Wei, W. et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc. Natl Acad. Sci. USA 109, 3143–3148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Clowes, J. A., Khosla, S. & Eastell, R. Potential role of pancreatic and enteric hormones in regulating bone turnover. J. Bone Miner. Res. 20, 1497–1506 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. US Department of Agriculture. USDA National Nutrient Database for Standard Reference, Release 24 [online], (2012).

Download references

Acknowledgements

The authors' research is supported by the US Department of Agriculture (USDA), Agricultural Research Service, under Cooperative Agreement No. 58-1950-7-707, and NIH grants DK69341, AG14759, AR38460 and P30 DK04735. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the USDA.

Author information

Authors and Affiliations

Authors

Contributions

S. L. Booth, A. Centi and C. Gundberg researched data for the article, provided a substantial contribution to discussions of its content, wrote the article and reviewed and/or edited the manuscript before submission. S. R. Smith provided a substantial contribution to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sarah L. Booth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Cross-sectional Associations between Bone Turnover Markers and Glucose Metabolism and Adiposity in Non-Diabetic Children and Adults (DOC 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booth, S., Centi, A., Smith, S. et al. The role of osteocalcin in human glucose metabolism: marker or mediator?. Nat Rev Endocrinol 9, 43–55 (2013). https://doi.org/10.1038/nrendo.2012.201

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.201

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research