Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of KCNJ5 in familial and sporadic primary aldosteronism

This article has been updated

Abstract

Primary aldosteronism is characterised by the dysregulation of aldosterone production and comprises both sporadic forms, caused by an aldosterone-producing adenoma or bilateral adrenal hyperplasia, and familial forms (familial hyperaldosteronism types I, II and III). The two principal physiological regulators of aldosterone synthesis are angiotensin II and serum K+, which reverse the high resting K+ conductance and hyperpolarized membrane potential of adrenal glomerulosa cells. The resulting membrane depolarization causes the opening of voltage-gated Ca2+ channels and an increase in intracellular Ca2+ that stimulates aldosterone biosynthesis. Point mutations in the KCNJ5 gene, which encodes the G-protein-activated inward rectifier K+ channel 4 (GIRK4), have been implicated in the pathogenesis of both sporadic and familial forms of primary aldosteronism. These mutations interfere with the selectivity filter of GIRK4 causing Na+ entry, cell depolarization and Ca2+ channel opening, resulting in constitutive aldosterone production. Seven families with familial hyperaldosteronism caused by KCNJ5 germline mutations have so far been described, and multicentre studies have reported KCNJ5 mutations in approximately 40% of sporadic aldosterone-producing adenomas. Herein, we review the role of GIRK4 in adrenal pathophysiology and provide an overview of the clinical and biochemical phenotypes resulting from KCNJ5 mutations in patients with sporadic and familial primary aldosteronism.

Key Points

  • Primary aldosteronism is the most frequent cause of secondary hypertension

  • Mutations in KCNJ5, which encodes the G-protein-activated inward rectifier K+ channel 4 GIRK4, cause familial hyperaldosteronism type III and around 40% of sporadic aldosterone-producing adenomas

  • KCNJ5 mutations alter the channel selectivity filter of the encoded K+ channel, which results in a calcium-mediated increase in aldosterone secretion

  • Most families with familial hyperaldosteronism type III display severe hyperaldosteronism with marked hypokalaemia from childhood and often require bilateral adrenalectomy

  • Patients with aldosterone-producing adenomas carrying KCNJ5 somatic mutations are more frequently female than those with wild-type KCNJ5

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of KCNJ5 mutations on adrenal glomerulosa cells.

Similar content being viewed by others

Change history

  • 18 December 2012

    In the version of this article initially published online there was a mistake in Figure 1: Na+ was incorrectly labelled as Na2+. The error has been corrected for the HTML and PDF versions of the article.

References

  1. Funder, J. W. et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 93, 3266–3281 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Mulatero, P. et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J. Clin. Endocrinol. Metab. 89, 1045–1050 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Milliez, P. et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J. Am. Coll. Cardiol. 45, 1243–1248 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Catena, C. et al. Cardiovascular outcomes in patients with primary aldosteronism after treatment. Arch. Intern. Med. 168, 80–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Fallo, F. et al. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J. Clin. Endocrinol. Metab. 91, 454–459 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Kempers, M. J. et al. Systematic review: diagnostic procedures to differentiate unilateral from bilateral adrenal abnormality in primary aldosteronism. Ann. Intern. Med. 151, 329–337 (2009).

    Article  PubMed  Google Scholar 

  7. Sutherland, D. J., Ruse, J. L. & Laidlaw, J. C. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can. Med. Assoc. J. 95, 1109–1119 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mulatero, P. et al. Prevalence and characteristics of familial hyperaldosteronism: the PATOGEN study (Primary Aldosteronism in TOrino—GENetic forms). Hypertension 58, 797–803 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Stowasser, M., Pimenta, E. & Gordon, R. D. Familial or genetic primary aldosteronism and Gordon syndrome. Endocrinol. Metab. Clin. North Am. 40, 343–368 viii (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Lifton, R. P. et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355, 262–265 (1992).

    Article  CAS  Google Scholar 

  11. Mulatero, P., Williams, T. A., Monticone, S. & Veglio, F. Is familial hyperaldosteronism underdiagnosed in hypertensive children? Hypertension 57, 1053–1055 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Pascoe, L. et al. Glucocorticoid-suppressible hyperaldosteronism and adrenal tumors occurring in a single French pedigree. J. Clin. Invest. 96, 2236–2246 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pascoe, L. et al. Glucocorticoid-suppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP11B1 and CYP11B2. Proc. Natl Acad. Sci. USA 89, 8327–8331 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Litchfield, W. R. et al. Impaired potassium-stimulated aldosterone production: a possible explanation for normokalemic glucocorticoid-remediable aldosteronism. J. Clin. Endocrinol. Metab. 82, 1507–1510 (1997).

    CAS  PubMed  Google Scholar 

  15. Dluhy, R. G., Anderson, B., Harlin, B., Ingelfinger, J. & Lifton, R. Glucocorticoid-remediable aldosteronism is associated with severe hypertension in early childhood. J. Pediatr. 138, 715–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Litchfield, W. R., Anderson, B. F., Weiss, R. J., Lifton, R. P. & Dluhy, R. G. Intracranial aneurysm and hemorrhagic stroke in glucocorticoid-remediable aldosteronism. Hypertension 31, 445–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Stowasser, M., Bachmann, A. W., Huggard, P. R., Rossetti, T. R. & Gordon, R. D. Severity of hypertension in familial hyperaldosteronism type I: relationship to gender and degree of biochemical disturbance. J. Clin. Endocrinol. Metab. 85, 2160–2166 (2000).

    CAS  PubMed  Google Scholar 

  18. Mulatero, P. et al. Glucocorticoid remediable aldosteronism: low morbidity and mortality in a four-generation Italian pedigree. J. Clin. Endocrinol. Metab. 87, 3187–3191 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Fallo, F. et al. Coexistence of different phenotypes in a family with glucocorticoid-remediable aldosteronism. J. Hum. Hypertens. 18, 47–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Mulatero, P. et al. Recombinant CYP11B genes encode enzymes that can catalyze conversion of 11-deoxycortisol to cortisol, 18-hydroxycortisol, and 18-oxocortisol. J. Clin. Endocrinol. Metab. 83, 3996–4001 (1998).

    CAS  PubMed  Google Scholar 

  21. Aglony, M. et al. Frequency of familial hyperaldosteronism type 1 in a hypertensive pediatric population: clinical and biochemical presentation. Hypertension 57, 1117–1121 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. So, A. et al. Familial hyperaldosteronism type II is linked to the chromosome 7p22 region but also shows predicted heterogeneity. J. Hypertens. 23, 1477–1484 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Lafferty, A. R. et al. A novel genetic locus for low renin hypertension: familial hyperaldosteronism type II maps to chromosome 7 (7p22). J. Med. Genet. 37, 831–835 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sukor, N. et al. Further evidence for linkage of familial hyperaldosteronism type II at chromosome 7p22 in Italian as well as Australian and South American families. J. Hypertens. 26, 1577–1582 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Newton-Cheh, C. et al. Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample. Hypertension 49, 846–856 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Geller, D. S. et al. A novel form of human mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J. Clin. Endocrinol. Metab. 93, 3117–3123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi, M. et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331, 768–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marionneau, C. et al. Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J. Physiol. 562, 223–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Mintert, E. et al. Generation of a constitutive Na+-dependent inward-rectifier current in rat adult atrial myocytes by overexpression of Kir3.4. J. Physiol. 585, 3–13 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shankar, H. et al. Role of G protein-gated inwardly rectifying potassium channels in P2Y12 receptor-mediated platelet functional responses. Blood 104, 1335–1343 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Corey, S. & Clapham, D. E. Identification of native atrial G-protein-regulated inwardly rectifying K+ (GIRK4) channel homomultimers. J. Biol. Chem. 273, 27499–27504 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Wickman, K., Nemec, J., Gendler, S. J. & Clapham, D. E. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20, 103–114 (1998).

    Article  CAS  Google Scholar 

  33. Kovoor, P. et al. Evaluation of the role of I(KACh) in atrial fibrillation using a mouse knockout model. J. Am. Coll. Cardiol. 37, 2136–2143 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Perry, C. A. et al. Predisposition to late-onset obesity in GIRK4 knockout mice. Proc. Natl Acad. Sci. USA 105, 8148–8153 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, Y. et al. Identification of a Kir3.4 mutation in congenital long QT syndrome. Am. J. Hum. Genet. 86, 872–880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Monticone, S. et al. Effect of KCNJ5 mutations on gene expression in aldosterone-producing adenomas and adrenocortical cells. J. Clin. Endocrinol. Metab. 97, E1567–E1572 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Azizan, E. A. et al. Microarray, qPCR, and KCNJ5 sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa- and zona fasciculata-like tumors. J. Clin. Endocrinol. Metab. 97, E819–E829 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Spät, A. Glomerulosa cell—a unique sensor of extracellular K+ concentration. Mol. Cell. Endocrinol. 217, 23–26 (2004).

    Article  PubMed  Google Scholar 

  39. Bandulik, S., Penton, D., Barhanin, J. & Warth, R. TASK1 and TASK3 potassium channels: determinants of aldosterone secretion and adrenocortical zonation. Horm. Metab. Res. 42, 450–457 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Condon, J. C., Pezzi, V., Drummond, B. M., Yin, S. & Rainey, W. E. Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase. Endocrinology 143, 3651–3657 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Oki, K., Plonczynski, M. W., Lam, M. L., Gomez-Sanchez, E. P. & Gomez-Sanchez, C. E. The potassium channel, Kir3.4 participates in angiotensin II-stimulated aldosterone production by a human adrenocortical cell line. Endocrinology 153, 4328–4335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McEwan, P. E., Vinson, G. P. & Kenyon, C. J. Control of adrenal cell proliferation by AT1 receptors in response to angiotensin II and low-sodium diet. Am. J. Physiol. 276, E303–E309 (1999).

    CAS  PubMed  Google Scholar 

  43. Mulatero, P. A new form of hereditary primary aldosteronism: familial hyperaldosteronism type III. J. Clin. Endocrinol. Metab. 93, 2972–2974 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Mulatero, P. et al. KCNJ5 mutations in European families with nonglucocorticoid remediable familial hyperaldosteronism. Hypertension 59, 235–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Scholl, U. I. et al. Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc. Natl Acad. Sci. USA 109, 2533–2538 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Charmandari, E. et al. A novel point mutation in the KCNJ5 gene causing primary hyperaldosteronism and early-onset autosomal dominant hypertension. J. Clin. Endocrinol. Metab. 97, E1532–1539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boulkroun, S. et al. Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism. Hypertension 59, 592–598 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Xekouki, P. et al. KCNJ5 mutations in the National Institutes of Health cohort of patients with primary hyperaldosteronism: an infrequent genetic cause of Conn's syndrome. Endocr. Relat. Cancer 19, 255–260 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Azizan, E. A. et al. Somatic mutations affecting the selectivity filter of KCNJ5 are frequent in 2 large unselected collections of adrenal aldosteronomas. Hypertension 59, 587–591 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Taguchi, R. et al. Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J. Clin. Endocrinol. Metab. 97, 1311–1319 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Akerström, T. et al. Comprehensive re-sequencing of adrenal aldosterone producing lesions reveal three somatic mutations near the KCNJ5 potassium channel selectivity filter. PLoS ONE 7, e41926 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Murthy, M., Azizan, E. A., Brown, M. J. & O'Shaughnessy, K. M. Characterization of a novel somatic KCNJ5 mutation delI157 in an aldosterone-producing adenoma. J. Hypertens. 30, 1827–1833 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Heitzmann, D. et al. Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. EMBO J. 27, 179–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Davies, L. A. et al. TASK channel deletion in mice causes primary hyperaldosteronism. Proc. Natl Acad. Sci. USA 105, 2203–2208 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Niehrs, C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25, 7469–7481 (2006).

    Article  CAS  Google Scholar 

  56. El Wakil, A. et al. Dkk3 is a component of the genetic circuitry regulating aldosterone biosynthesis in the adrenal cortex. Hum. Mol. Genet. 21, 4922–4929 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Nogueira, E. F. et al. The role of TASK1 in aldosterone production and its expression in normal adrenal and aldosterone-producing adenomas. Clin. Endocrinol. (Oxf). 73, 22–29 (2010).

    CAS  PubMed  Google Scholar 

  58. Williams, T. A. et al. Teratocarcinoma-derived growth factor-1 is upregulated in aldosterone-producing adenomas and increases aldosterone secretion and inhibits apoptosis in vitro. Hypertension 55, 1468–1475 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Zennaro, M. C., Jeunemaitre, X. & Boulkroun, S. Integrating genetics and genomics in primary aldosteronism. Hypertension 60, 580–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Gomez-Sanchez, C. E. & Gomez-Sanchez, E. P. Mutations of the potassium channel KCNJ5 causing aldosterone-producing adenomas: one or two hits? Hypertension 59, 196–197 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Williams, T. A. et al. Visinin-like 1 is upregulated in aldosterone-producing adenomas with KCNJ5 mutations and protects from calcium-induced apoptosis. Hypertension 59, 833–839 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Braunewell, K. H. & Klein-Szanto, A. J. Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+-sensor proteins. Cell Tissue Res. 335, 301–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Mulatero, P. et al. 18-hydroxycorticosterone, 18-hydroxycortisol, and 18-oxocortisol in the diagnosis of primary aldosteronism and its subtypes. J. Clin. Endocrinol. Metab. 97, 881–889 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Bassett, M. H. et al. The orphan nuclear receptor NGFIB regulates transcription of 3beta-hydroxysteroid dehydrogenase. implications for the control of adrenal functional zonation. J. Biol. Chem. 279, 37622–37630 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Nogueira, E. F. & Rainey, W. E. Regulation of aldosterone synthase by activator transcription factor/cAMP response element-binding protein family members. Endocrinology 151, 1060–1070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ye, P., Nakamura, Y., Lalli, E. & Rainey, W. E. Differential effects of high and low steroidogenic factor-1 expression on CYP11B2 expression and aldosterone production in adrenocortical cells. Endocrinology 150, 1303–1309 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Oki, K., Plonczynski, M. W., Luis Lam, M., Gomez-Sanchez, E. P. & Gomez-Sanchez, C. E. Potassium channel mutant KCNJ5 T158A expression in HAC-15 cells increases aldosterone synthesis. Endocrinology 153, 1774–1782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hattangady, N. G., Olala, L. O., Bollag, W. B. & Rainey, W. E. Acute and chronic regulation of aldosterone production. Mol. Cell. Endocrinol. 350, 151–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Lu, L. et al. Nur-related factor 1 and nerve growth factor-induced clone B in human adrenal cortex and its disorders. J. Clin. Endocrinol. Metab. 89, 4113–4118 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P. Mulatero and S. Monticone contributed equally to writing the article as joint first authors, and also researched data for the article and provided a substantial contribution to discussion of the content. W. Rainey and F. Veglio provided a substantial contribution to discussion of the content and reviewed and/or edited the manuscript before submission. T. A. Williams researched data for the article, provided a substantial contribution to discussion of the content and contributed to writing the article.

Corresponding author

Correspondence to William E. Rainey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulatero, P., Monticone, S., Rainey, W. et al. Role of KCNJ5 in familial and sporadic primary aldosteronism. Nat Rev Endocrinol 9, 104–112 (2013). https://doi.org/10.1038/nrendo.2012.230

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing