Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vitamin D: effects on childhood health and disease

Abstract

Vitamin D is a key nutrient for both healthy children and those with chronic illnesses. Understanding its roles in health and disease has become one of the most important issues in the nutritional management of children. Formal guidelines related to nutrient requirements for vitamin D in healthy children, recommending dietary intakes of 400 IU per day for infants and 600 IU per day for children over 1 year of age, were released by the Institute of Medicine in November 2010. However, application of these guidelines to children with acute and chronic illnesses is less clear. In this Review, we consider major illness categories and specific examples of conditions in children that might be affected by vitamin D. This information can be used in developing both model systems of investigation and clinical trials of vitamin D in children with acute and chronic illnesses.

Key Points

  • Healthy children >1 year of age require a dietary intake of 600 IU per day of vitamin D; specific requirements for obese, African American or Hispanic children have not been established

  • Low maternal levels of vitamin D and low calcium intake during pregnancy might lead to severe neonatal hypocalcaemia

  • Current data fails to show a clear association between maternal vitamin D levels during pregnancy and type 1 diabetes mellitus in their offspring

  • Half of all children admitted to intensive care units are vitamin D deficient (<50 nmol/l); more studies are needed to assess the benefit of vitamin D supplementation

  • Chronic conditions, including asthma, cystic fibrosis, inflammatory bowel disease and tuberculosis, are associated with vitamin D deficiency and supplemental vitamin D might be beneficial, although further studies are needed

  • Evidence from patients with hereditary 1,25-dihydroxyvitamin-D-resistant rickets reveals that calcium absorption is highly vitamin-D-dependent from infancy to the end of puberty, after which other vitamin-D-independent mechanisms regulate calcium absorption

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calcium absorption related to vitamin D activity.

Similar content being viewed by others

References

  1. IOM (Institute of Medicine) Dietary Reference Intakes for Calcium and Vitamin D. (The National Academies Press, Washington, DC, 2011).

  2. Holick, M. F. et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 1911–1930 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Christakos, S., Dhawan, P., Porta, A., Mady, L. J. & Seth, T. Vitamin D and intestinal calcium absorption. Mol. Cell. Endocrinol. 347, 25–29, (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Teaema, F. H. & Al Ansari, K. Nineteen cases of symptomatic neonatal hypocalcemia secondary to vitamin D deficiency: a 2-year study. J. Trop. Pediatr. 56, 108–110 (2010).

    Article  PubMed  Google Scholar 

  5. Wei, S. Q. et al. Longitudinal vitamin D status in pregnancy and the risk of pre-eclampsia. BJOG 119, 832–839 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Bodnar, L. M. et al. Maternal vitamin D deficiency increases the risk of preeclampsia. J. Clin. Endocrinol. Metab. 92, 3517–3522 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Wagner, C. L. et al. A randomized trial of vitamin D supplementation in 2 community health center networks in South Carolina. Am. J. Obstet. Gynecol. 208, 137.e1–137.e13 (2013).

    Article  CAS  Google Scholar 

  8. Hollis, B. W., Johnson, D., Hulsey, T. C., Ebeling, M. & Wagner, C. L. Vitamin D supplementation during pregnancy: double-blind, randomized clinical trial of safety and effectiveness. J. Bone Miner. Res. 26, 2341–2357 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Abrams, S. A. Vitamin D supplementation during pregnancy. J. Bone. Miner. Res. 26, 2338–2340 (2011).

    Article  PubMed  Google Scholar 

  10. WHO. WHO recommendations for prevention and treatment of pre-eclampsia and eclampsia (WHO, Geneva, 2011).

  11. Morales, E. et al. Circulating 25-hydroxyvitamin D3 in pregnancy and infant neuropsychological development. Pediatrics 130, e913–e920 (2012).

    Article  PubMed  Google Scholar 

  12. Hewison, M. An update on vitamin D and human immunity. Clin. Endocrinol. 76, 315–325 (2012).

    Article  CAS  Google Scholar 

  13. Griffin, M. D. et al. Dendritic cell modulation by 1α, 25-dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc. Natl Acad. Sci. USA 98, 6800–6805 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karvonen, M. et al. Comparison of the seasonal pattern in the clinical onset of IDDM in Finland and Sardinia. Diabetes Care 21, 1101–1109 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Miettinen, M. E. et al. Serum 25-hydroxyvitamin D level during early pregnancy and type 1 diabetes risk in the offspring. Diabetologia 55, 1291–1294 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Marjamäki, L. et al. Maternal intake of vitamin D during pregnancy and risk of advanced beta cell autoimmunity and type 1 diabetes in offspring. Diabetologia 53, 1599–1607 (2010).

    Article  PubMed  Google Scholar 

  17. Fronczak, C. M. et al. In utero dietary exposures and risk of islet autoimmunity in children. Diabetes Care 26, 3237–3242 (2003).

    Article  PubMed  Google Scholar 

  18. Brekke, H. K. & Ludvigsson, J. Vitamin D supplementation and diabetes-related autoimmunity in the ABIS study. Pediatr. Diabetes 8, 11–14 (2007).

    Article  PubMed  Google Scholar 

  19. [No authors listed] Vitamin D supplement in early childhood and risk for type I (insulin-dependent) diabetes mellitus. The EURODIAB Substudy 2 Study Group. Diabetologia 42, 51–54 (1999).

  20. Hyppönen, E., Läära, E., Reunanen, A., Järvelin, M. R. & Virtanen, S. M. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358, 1500–1503 (2001).

    Article  PubMed  Google Scholar 

  21. Simpson, M. et al. No association of vitamin D intake or 25-hydroxyvitamin D levels in childhood with risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young (DAISY). Diabetologia 54, 2779–2788 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gale, C. R. & Martyn, C. N. Migrant studies in multiple sclerosis. Prog. Neurobiol. 47, 425–448 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Munger, K. L., Levin, L. I., Hollis, B. W., Howard, N. S. & Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296, 2832–2838 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Mirzaei, F. et al. Gestational vitamin D and the risk of multiple sclerosis in offspring. Ann. Neurol. 70, 30–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gale, C. R., Martyn, C. N., Kellingray, S., Eastell, R. & Cooper, C. Intrauterine programming of adult body composition. J. Clin. Endocrinol. Metab. 86, 267–272 (2001).

    CAS  PubMed  Google Scholar 

  26. Hartikainen, H., Maleta, K., Kulmala, T. & Ashorn, P. Seasonality of gestational weight gain and foetal growth in rural Malawi. East Afr. Med. J. 82, 294–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. McGrath, J. J., Saha, S., Lieberman, D. E. & Buka, S. Season of birth is associated with anthropometric and neurocognitive outcomes during infancy and childhood in a general population birth cohort. Schizophr. Res. 81, 91–100 (2006).

    Article  PubMed  Google Scholar 

  28. Weber, G. W., Prossinger, H. & Seidler, H. Height depends on month of birth. Nature 391, 754–755 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Morley, R., Carlin, J. B., Pasco, J. A. & Wark, J. D. Maternal 25-hydroxyvitamin D and parathyroid hormone concentrations and offspring birth size. J. Clin. Endocrinol. Metab. 91, 906–912 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Young, B. E. et al. Maternal vitamin D status and calcium intake interact to affect fetal skeletal growth in utero in pregnant adolescents. Am. J. Clin. Nutr. 95, 1103–1112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sayers, A. & Tobias, J. H. Estimated maternal ultraviolet B exposure levels in pregnancy influence skeletal development of the child. J. Clin. Endocrinol. Metab. 94, 765–771 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Javaid, M. K. et al. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 367, 36–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Walker, V. P. et al. Cord blood vitamin D status impacts innate immune responses. J. Clin. Endocrinol. Metab. 96, 1835–1843 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tiosano, D., Weisman, Y. & Hochberg, Z. The role of the vitamin D receptor in regulating vitamin D metabolism: a study of vitamin D-dependent rickets, type II. J. Clin. Endocrinol. Metab. 86, 1908–1912 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Hochberg, Z., Tiosano, D. & Even, L. Calcium therapy for calcitriol-resistant rickets. J. Pediatr. 121, 803–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Tiosano, D. et al. Calcium absorption, kinetics, bone density, and bone structure in patients with hereditary vitamin D-resistant rickets. J. Clin. Endocrinol. Metab. 96, 3701–3709 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Hochberg, Z. et al. Does 1,25-dihydroxyvitamin D participate in the regulation of hormone release from endocrine glands? J. Clin. Endocrinol. Metab. 60, 57–61 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. Manolagas, S. C., Yu, X. P., Girasole, G. & Bellido, T. Vitamin D and the hematolymphopoietic tissue: a 1994 update. Semin. Nephrol. 14, 129–143 (1994).

    CAS  PubMed  Google Scholar 

  39. Etzioni, A. et al. Defective leukocyte fungicidal activity in end-organ resistance to 1,25-dihydroxyvitamin D. Pediatr. Res. 25, 276–279 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen, M. et al. Vitamin D-resistant rickets and type 1 diabetes in a child with compound heterozygous mutations of the vitamin D receptor (L263R and R391S): dissociated responses of the CYP-24 and rel-B promoters to 1,25-dihydroxyvitamin D3 . J. Bone Miner. Res. 21, 886–894 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Taylor, C. E. & Camargo, C. A. Jr. Impact of micronutrients on respiratory infections. Nutr. Rev. 69, 259–269 (2011).

    Article  PubMed  Google Scholar 

  42. Beard, J. A., Bearden, A. & Striker, R. Vitamin D and the anti-viral state. J. Clin. Virol. 50, 194–200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bruce, D., Ooi, J. H., Yu, S. & Cantorna, M. T. Vitamin D and host resistance to infection? Putting the cart in front of the horse. Exp. Biol. Med. (Maywood) 235, 921–927 (2010).

    Article  CAS  Google Scholar 

  44. Urashima, M. et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am. J. Clin. Nutr. 91, 1255–1260 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Camargo, C. A. Jr et al. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics 130, e561–e567 (2012).

    Article  PubMed  Google Scholar 

  46. Crowle, A. J., Ross, E. J. & May, M. H. Inhibition by 1,25(OH)2-vitamin D3 of the multiplication of virulent tubercle bacilli in cultured human macrophages. Infect. Immun. 55, 2945–2950 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sonawane, A. et al. Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cell. Microbiol. 13, 1601–1617 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Gibney, K. B. et al. Vitamin D deficiency is associated with tuberculosis and latent tuberculosis infection in immigrants from sub-Saharan Africa. Clin. Infect. Dis. 46, 443–446 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Nnoaham, K. E. & Clarke, A. Low serum vitamin D levels and tuberculosis: a systematic review and meta-analysis. Int. J. Epidemiol. 37, 113–119 (2008).

    Article  PubMed  Google Scholar 

  50. Sasidharan, P. K., Rajeev, E. & Vijayakumari, V. Tuberculosis and vitamin D deficiency. J. Assoc. Physicians India 50, 554–558 (2002).

    CAS  PubMed  Google Scholar 

  51. Ustianowski, A., Shaffer, R., Collin, S., Wilkinson, R. J. & Davidson, R. N. Prevalence and associations of vitamin D deficiency in foreign-born persons with tuberculosis in London. J. Infect. 50, 432–437 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Wejse, C. et al. Serum 25-hydroxyvitamin D in a West African population of tuberculosis patients and unmatched healthy controls. Am. J. Clin. Nutr. 86, 1376–1383 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Martineau, A. R. et al. Association between Gc genotype and susceptibility to TB is dependent on vitamin D status. Eur. Respir. J. 35, 1106–1112 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Williams, B., Williams, A. J. & Anderson, S. T. Vitamin D deficiency and insufficiency in children with tuberculosis. Pediatr. Infect. Dis. J. 27, 941–942 (2008).

    Article  PubMed  Google Scholar 

  55. Gray, K. et al. Vitamin D and tuberculosis status in refugee children. Pediatr. Infect. Dis. J. 31, 521–523 (2012).

    Article  PubMed  Google Scholar 

  56. Martineau, A. R. et al. A single dose of vitamin D enhances immunity to mycobacteria. Am. J. Respir. Crit. Care Med. 176, 208–213 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Sinclair, D., Abba, K., Grobler, L. & Sudarsanam, T. D. Nutritional supplements for people being treated for active tuberculosis. Cochrane Database of Systematic Reviews, Issue 11. Art. No.: CD006086. http://dx.doi.org/10.1002/14651858.CD006086.pub3.

  58. Ribeiro, R. C., Pui, C. H. & Schell, M. J. Vertebral compression fracture as a presenting feature of acute lymphoblastic leukemia in children. Cancer 61, 589–592 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Halton, J. et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian Steroid-Associated Osteoporosis in the Pediatric Population (STOPP) research program. J. Bone. Miner. Res. 24, 1326–1334 (2009).

    Article  PubMed  Google Scholar 

  60. Antony, R. et al. Vitamin D protects acute lymphoblastic leukemia cells from dexamethasone. Leukemia Res. 36, 591–593 (2012).

    Article  CAS  Google Scholar 

  61. Madden, K. et al. Vitamin D deficiency in critically ill children. Pediatrics 130, 421–428 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. McNally, J. D. et al. The association of vitamin D status with pediatric critical illness. Pediatrics 130, 429–36 (2012).

    Article  PubMed  Google Scholar 

  63. Rippel, C., South, M., Butt, W. W. & Shekerdemian, L. S. Vitamin D status in critically ill children. Intensive Care Med. 38, 2055–2062, (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Ali, F. N., Arguelles, L. M., Langman, C. B. & Price, H. E. Vitamin D deficiency in children with chronic kidney disease: uncovering an epidemic. Pediatrics 123, 791–796 (2009).

    Article  PubMed  Google Scholar 

  65. Kalkwarf, H. J. et al. Vitamin D deficiency is common in children and adolescents with chronic kidney disease. Kidney Int. 81, 690–697 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Lavi-Moshayoff, V., Wasserman, G., Meir, T., Silver, J. & Naveh-Many, T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Renal Physiol. 299, F882–F889 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Shroff, R. et al. Ergocalciferol supplementation in children with CKD delays the onset of secondary hyperparathyroidism: a randomized trial. Clin. J. Am. Soc. Nephrol. 7, 216–223 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Hari, P. et al. Vitamin D insufficiency and effect of cholecalciferol in children with chronic kidney disease. Pediatr. Nephrol. 25, 2483–2488 (2010).

    Article  PubMed  Google Scholar 

  69. Amrein, K. & Venkatesh, B. Vitamin D and the critically ill patient. Curr. Opin. Nutr. Metab. Care. 15, 188–193 (2012).

    Article  CAS  Google Scholar 

  70. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in children with chronic kidney disease. Am. J. Kidney Dis. 24 (Suppl. 3), 1–201 (2003).

  71. Douros, K., Loukou, I., Nicolaidou, P., Tzonou, A. & Doudounakis, S. Bone mass density and associated factors in cystic fibrosis patients of young age. J. Paediatr. Child Health. 44, 681–685 (2008).

    Article  PubMed  Google Scholar 

  72. Grey, V. et al. Prevalence of low bone mass and deficiencies of vitamins D and K in pediatric patients with cystic fibrosis from 3 Canadian centers. Pediatrics 122, 1014–1020 (2008).

    Article  PubMed  Google Scholar 

  73. Boas, S. R., Hageman, J. R., Ho, L. T. & Liveris, M. Very high-dose ergocalciferol is effective for correcting vitamin D deficiency in children and young adults with cystic fibrosis. J. Cyst. Fibros. 8, 270–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Tangpricha, V. et al. An update on the screening, diagnosis, management, and treatment of vitamin D deficiency in individuals with cystic fibrosis: evidence-based recommendations from the Cystic Fibrosis Foundation. J. Clin. Endocrinol. Metab. 97, 1082–1093 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Green, D. M. et al. Transient effectiveness of vitamin D2 therapy in pediatric cystic fibrosis patients. J. Cyst. Fibros. 9, 143–149 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Misra, M., Pacaud, D., Petryk, A., Collett-Solberg, P. F. & Kappy, M. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics 122, 398–417 (2008).

    Article  PubMed  Google Scholar 

  77. Froicu, M. & Cantorna, M. T. Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol. 8, 5 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Froicu, M. et al. A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol. Endocrinol. 17, 2386–2392 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Fava, F. & Danese, S. Intestinal microbiota in inflammatory bowel disease: friend of foe? World J. Gastroenterol. 17, 557–566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. El-Matary, W., Sikora, S. & Spady, D. Bone mineral density, vitamin D, and disease activity in children newly diagnosed with inflammatory bowel disease. Dig. Dis. Sci. 56, 825–829 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Benchimol, E. I. et al. Effect of calcium and vitamin D supplementation on bone mineral density in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 45, 538–545 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Koczka, C. P., Abramowitz, M. & Goodman, A. J. The study of bone demineralization and its risk factors in an Afro-Caribbean subset of patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 24, 759–761 (2012).

    Article  PubMed  Google Scholar 

  83. Sylvester, F. A. et al. Natural history of bone metabolism and bone mineral density in children with inflammatory bowel disease. Inflamm. Bowel Dis. 13, 42–50 (2007).

    Article  PubMed  Google Scholar 

  84. Walther, F., Fusch, C., Radke, M., Beckert, S. & Findeisen, A. Osteoporosis in pediatric patients suffering from chronic inflammatory bowel disease with and without steroid treatment. J. Pediatr. Gastroenterol. Nutr. 43, 42–51 (2006).

    Article  PubMed  Google Scholar 

  85. Levin, A. D. et al. Vitamin D deficiency in children with inflammatory bowel disease. Dig. Dis. Sci. 56, 830–836 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. O'Malley, T. & Heuberger, R. Vitamin D status and supplementation in pediatric gastrointestinal disease. J. Spec. Pediatr. Nurs. 16, 140–150 (2011).

    Article  PubMed  Google Scholar 

  87. Pappa, H. M. et al. Treatment of vitamin D insufficiency in children and adolescents with inflammatory bowel disease: a randomized clinical trial comparing three regimens. J. Clin. Endocrinol. Metab. 97, 2134–2142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gordon, C. M., DePeter, K. C., Feldman, H. A., Grace, E. & Emans, S. J. Prevalence of vitamin D deficiency among healthy adolescents. Arch. Pediatr. Adolesc. Med. 158, 531–537 (2004).

    Article  PubMed  Google Scholar 

  89. Brehm, J. M. et al. Serum vitamin D levels and severe asthma exacerbations in the Childhood Asthma Management Program study. J. Allergy Clin. Immunol. 126, 52.e5–58.e5 (2010).

    Article  CAS  Google Scholar 

  90. Chinellato, I. et al. Vitamin D serum levels and markers of asthma control in Italian children. J. Pediatr. 158, 437–441 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Lewis, E. et al. Relationship of 25-hydroxyvitamin D and asthma control in children. Ann. Allergy Asthma. Immunol. 108, 281–282 (2012).

    Article  PubMed  Google Scholar 

  92. Majak, P., Olszowiec-Chlebna, M., Smejda, K. & Stelmach, I. Vitamin D supplementation in children may prevent asthma exacerbation triggered by acute respiratory infection. J. Allergy Clin. Immunol. 127, 1294–1296 (2011).

    Article  PubMed  Google Scholar 

  93. Guyton, A. C. Textbook of Medical Physiology, 8th edn, 889 (WB Saunders, Philadelphia, 1991).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the US Department of Agriculture (USDA)/Agricultural Research Service (ARS) Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, TX, USA. Contents of this publication do not necessarily reflect the views or policies of the USDA, nor does mention of trade names, commercial products, or organizations imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Contributions

S. A. Abrams and D. Tiosano contributed to writing the article, researched data for the article, provided a substantial contribution to discussion of the content and reviewed and/or edited the manuscript before submission. J. Coss-Bu contributed to writing the article, researched data for the article and provided a substantial contribution to discussion of the content.

Corresponding author

Correspondence to Steven A. Abrams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Vitamin D: Effects on childhood health and disease. (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrams, S., Coss-Bu, J. & Tiosano, D. Vitamin D: effects on childhood health and disease. Nat Rev Endocrinol 9, 162–170 (2013). https://doi.org/10.1038/nrendo.2012.259

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing