Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations

Abstract

Obesity has become one of the most common medical problems in developed countries, and this disorder is associated with high incidences of hypertension, dyslipidaemia, cardiovascular disease, type 2 diabetes mellitus and specific cancers. Growth hormone (GH) stimulates the production of insulin-like growth factor 1 in most tissues, and together GH and insulin-like growth factor 1 exert powerful collective actions on fat, protein and glucose metabolism. Clinical trials assessing the effects of GH treatment in patients with obesity have shown consistent reductions in total adipose tissue mass, in particular abdominal and visceral adipose tissue depots. Moreover, studies in patients with abdominal obesity demonstrate a marked effect of GH therapy on body composition and on lipid and glucose homeostasis. Therefore, administration of recombinant human GH or activation of endogenous GH production has great potential to influence the onset and metabolic consequences of obesity. However, the clinical use of GH is not without controversy, given conflicting results regarding its effects on glucose metabolism. This Review provides an introduction to the role of GH in obesity and summarizes clinical and preclinical data that describe how GH can influence the obese state.

Key Points

  • Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) signalling plays a major part in fuel metabolism and in the regulation of body composition

  • Obesity, particularly abdominal obesity, exerts a strong negative effect on the spontaneous pulsatile secretion of GH, which has been associated with adverse metabolic complications

  • GH administration in individuals with abdominal obesity reduces visceral and total body adipose tissue mass, as well as levels of total and LDL cholesterol

  • Increasing the endogenous pulsatile GH secretion in individuals with obesity has metabolic effects similar to those obtained by the administration of exogenous GH but potentially with less adverse effects on glucose metabolism

  • Mouse models with altered GH signalling provide a useful means for a comparative analysis of GH action in obesity

  • The role of the GH/IGF-1 axis in modifying obesity must be assessed in light of newly emerging data that highlight the complexity of adipose tissue

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of the interaction between GH, IGF-1, FFAs and insulin on adipose tissue, liver and skeletal muscle.
Figure 2: Schematic representation of potential depot-specific differences between subcutaneous and visceral adipose tissue in mice with normal GH signalling, low GH signalling (such as Ghr−/− mice) or increased GH signalling (such as GH transgenic mice).

Similar content being viewed by others

References

  1. Møller, N. & Jørgensen, J. O. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr. Rev. 30, 152–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Rabinowitz, D., Klassen, G. A. & Zierler, K. L. Effects of human growth hormone on muscle and adipose tissue metabolism in the forearm of man. J. Clin. Invest. 44, 51–61 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bray, G. A. Calorigenic effect of human growth hormone in obesity. J. Clin. Endocrinol. Metab. 29, 119–122 (1969).

    Article  CAS  PubMed  Google Scholar 

  4. Bengtsson, B. A. et al. Treatment of adults with growth hormone (GH) deficiency with recombinant human GH. J. Clin. Endocrinol. Metab. 76, 309–317 (1993).

    CAS  PubMed  Google Scholar 

  5. Angelin, B. & Rudling, M. Growth hormone and hepatic lipoprotein metabolism. Curr. Opin. Lipidol. 5, 160–165 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Saccà, L., Cittadini, A. & Fazio, S. Growth hormone and the heart. Endocr. Rev. 15, 555–573 (1994).

    Article  PubMed  Google Scholar 

  7. Böger, R. H. et al. Nitric oxide may mediate the hemodynamic effects of recombinant growth hormone in patients with acquired growth hormone deficiency. J. Clin. Invest. 98, 2706–2713 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  8. [No authors listed] Consensus guidelines for the diagnosis and treatment of adults with growth hormone deficiency: summary statement of the Growth Hormone Research Society Workshop on Adult Growth Hormone Deficiency. J. Clin. Endocrinol. Metab. 83, 379–381 (1998).

  9. Johannsson, G. Management of adult growth hormone deficiency. Endocrinol. Metab. Clin. North Am. 36, 203–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Maison, P. et al. Impact of growth hormone (GH) treatment on cardiovascular risk factors in GH-deficient adults: a meta-analysis of blinded, randomized, placebo-controlled trials. J. Clin. Endocrinol. Metab. 89, 2192–2199 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Clasey, J. L. et al. Abdominal visceral fat and fasting insulin are important predictors of 24-hour GH release independent of age, gender, and other physiological factors. J. Clin. Endocrinol. Metab. 86, 3845–3852 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Vahl, N. et al. Abdominal adiposity rather than age and sex predicts mass and regularity of GH secretion in healthy adults. Am. J. Physiol. 272, E1108–E1116 (1997).

    CAS  PubMed  Google Scholar 

  13. Vahl, N., Møller, N., Lauritzen, T., Christiansen, J. S. & Jørgensen, J. O. Metabolic effects and pharmacokinetics of a growth hormone pulse in healthy adults: relation to age, sex, and body composition. J. Clin. Endocrinol. Metab. 82, 3612–3618 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Lu, C., Kumar, P. A., Fan, Y., Sperling, M. A. & Menon, R. K. A novel effect of growth hormone on macrophage modulates macrophage-dependent adipocyte differentiation. Endocrinology 151, 2189–2199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fleenor, D., Arumugam, R. & Freemark, M. Growth hormone and prolactin receptors in adipogenesis: STAT-5 activation, suppressors of cytokine signaling, and regulation of insulin-like growth factor I. Horm. Res. 66, 101–110 (2006).

    CAS  PubMed  Google Scholar 

  16. Lyuh, E. et al. Dose-specific or dose-dependent effect of growth hormone treatment on the proliferation and differentiation of cultured neuronal cells. Growth Horm. IGF Res. 17, 315–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Hattori, N. Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system. Growth Horm. IGF Res. 19, 187–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Fisker, S. et al. Gene expression of the GH receptor in subcutaneous and intraabdominal fat in healthy females: relationship to GH-binding protein. Eur. J. Endocrinol. 150, 773–777 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Fisker, S. et al. Gene expression of a truncated and the full-length growth hormone (GH) receptor in subcutaneous fat and skeletal muscle in GH-deficient adults: impact of GH treatment. J. Clin. Endocrinol. Metab. 86, 792–796 (2001).

    CAS  PubMed  Google Scholar 

  20. Richelsen, B. et al. Growth hormone treatment of obese women for 5 wk: effect on body composition and adipose tissue LPL activity. Am. J. Physiol. 266, E211–E216 (1994).

    CAS  PubMed  Google Scholar 

  21. Nam, S. Y. & Lobie, P. E. The mechanism of effect of growth hormone on preadipocyte and adipocyte function. Obes Rev. 1, 73–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Garten, A., Schuster, S. & Kiess, W. The insulin-like growth factors in adipogenesis and obesity. Endocrinol. Metab. Clin. North Am. 41, 283–295, v–vi (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Cartwright, M. J. et al. Aging, depot origin, and preadipocyte gene expression. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 242–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Tchkonia, T. et al. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am. J. Physiol. Endocrinol. Metab. 292, E298–E307 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Blüher, M. Clinical relevance of adipokines. Diabetes Metab. J. 36, 317–327 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Childs, G. V. et al. The somatotrope as a metabolic sensor: deletion of leptin receptors causes obesity. Endocrinology 152, 69–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Sharp, L. Z. et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 7, e49452 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin, L. et al. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues. Aging Cell 10, 996–1010 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Divoux, A. & Clément, K. Architecture and the extracellular matrix: the still unappreciated components of the adipose tissue. Obes. Rev. 12, e494–e503 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Vidal, H. Gene expression in visceral and subcutaneous adipose tissues. Ann. Med. 33, 547–555 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, M. J., Wu, Y. & Fried, S. K. Adipose tissue heterogeneity: Implication of depot differences in adipose tissue for obesity complications. Mol. Aspects Med. 34, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berryman, D. E. et al. Growth hormone and adipose tissue: beyond the adipocyte. Growth Horm. IGF Res. 21, 113–123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Erman, A., Veilleux, A., Tchernof, A. & Goodyer, C. G. Human growth hormone receptor (GHR) expression in obesity: I. GHR mRNA expression in omental and subcutaneous adipose tissues of obese women. Int. J. Obes. (Lond.) 35, 1511–1519 (2011).

    Article  CAS  Google Scholar 

  35. Giustina, A. & Veldhuis, J. D. Pathophysiology of the neororegulation of growth hormone secretion in experimental animals and the human. Endocr. Rev. 19, 717–797 (1998).

    CAS  PubMed  Google Scholar 

  36. Iranmanesh, A., Lizarralde, G. & Veldhuis, J. D. Age and relative adiposity are specific negative determinants of the frequency and amplitude of growth hormone (GH) secretory bursts and the half-life of endogenous GH in healthy men. J. Clin. Endocrinol. Metab. 73, 1081–1088 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Veldhuis, J. D. et al. Dual effects in pulsatile growth hormone secretion and clearance subserve the hyposomatotropism of obesity in man. J. Clin. Endocrinol. Metab. 72, 51–59 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Williams, T. et al. Impaired growth hormone responses to growth hormone-releasing factor in obesity. A pituitary defect reversed with weight reduction. N. Engl. J. Med. 311, 1403–1407 (1984).

    Article  CAS  PubMed  Google Scholar 

  39. Vahl, N., Jørgensen, J. O., Jurik, A. G. & Christiansen, J. S. Abdominal adiposity and physical fittness are major determinants of age associated decline in stimulated GH secretion in healthy adults. J. Clin. Endocrinol. Metab. 81, 2209–2215 (1996).

    CAS  PubMed  Google Scholar 

  40. Bredella, M. A. et al. Peak growth hormone-releasing hormone-arginine-stimulated growth hormone is inversely associated with intramyocellular and intrahepatic lipid content in premenopausal women with obesity. J. Clin. Endocrinol. Metab. 94, 3995–4002 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Franco, C. et al. Thigh intermuscular fat is inversely associated with spontaneous GH release in post-menopausal women with abdominal obesity. Eur. J. Endocrinol. 155, 261–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Vahl, N., Klausen, I., Christiansen, J. S. & Jorgensen, J. O. Growth hormone (GH) status is an independent determinant of serum levels of cholesterol and triglycerides in healthy adults. Clin. Endocrinol. (Oxf.) 51, 309–316 (1999).

    Article  CAS  Google Scholar 

  43. Weltman, A. et al. Impact of abdominal visceral fat, growth hormone, fitness, and insulin on lipids and lipoproteins in older adults. Metabolism 52, 73–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Miller, K. K. et al. Truncal adiposity, relative growth hormone deficiency, and cardiovascular risk. J. Clin. Endocrinol. Metab. 90, 768–774 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Utz, A. L., Yamamoto, A., Hemphill, L. & Miller, K. K. Growth hormone deficiency by growth hormone releasing hormone-arginine testing criteria predicts increased cardiovascular risk markers in normal young overweight and obese women. J. Clin. Endocrinol. Metab. 93, 2507–2514 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Makimura, H., Stanley, T., Mun, D., You, S. M. & Grinspoon, S. The effects of central adiposity on growth hormone (GH) response to GH-releasing hormone-arginine stimulation testing in men. J. Clin. Endocrinol. Metab. 93, 4254–4260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buijs, M. M. et al. Blunted lipolytic response to fasting in abdominally obese women: evidence for involvement of hyposomatotropism. Am. J. Clin. Nutr. 77, 544–550 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Goodyer, C. G. et al. Organization and evolution of the human growth hormone receptor gene 5′-flanking region. Endocrinology 142, 1923–1934 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Godowski, P. J. et al. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc . Natl Acad. Sci. USA 86, 8083–8087 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dos Santos, C. et al. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone. Nat. Genet. 36, 720–724 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Strawbridge, R. J. et al. GHR exon 3 polymorphism: association with type 2 diabetes mellitus and metabolic disorder. Growth Horm. IGF Res. 17, 392–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Gao, L. et al. The growth hormone receptor (GHR) exon 3 polymorphism and its correlation with metabolic profiles in obese Chinese children. Pediatr. Diabetes 12, 429–434 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Bray, G. A., Raben, M. S., Londono, J. & Gallagher, T. F. Jr. Effects of triiodothyronine, growth hormone and anabolic steroids on nitrogen excretion and oxygen consumption of obese patients. J. Clin. Endocrinol. Metab. 33, 293–300 (1971).

    Article  CAS  PubMed  Google Scholar 

  54. Clemmons, D. R., Snyder, D. K., Williams, R. & Underwood, L. E. Growth hormone administration conserves lean body mass during dietary restriction in obese subjects. J. Clin. Endocrinol. Metab. 64, 878–883 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Snyder, D. K., Clemmons, D. R. & Underwood, L. E. Treatment of obese, diet-restricted subjects with growth hormone for 11 weeks: effects on anabolism, lipolysis and body composition. J. Clin. Endocrinol. Metab. 67, 54–61 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Snyder, D. K., Underwood, L. E. & Clemmons, D. R. Anabolic effects of growth hormone in obese diet-restricted subjects are dose dependent. Am. J. Clin. Nutr. 52, 431–437 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Kim, K. R. et al. Low-dose growth hormone treatment with diet restriction accelerates body fat loss, exerts anabolic effect and improves growth hormone secretory dysfunction in obese adults. Horm. Res. 51, 78–84 (1999).

    CAS  PubMed  Google Scholar 

  58. Tagliaferri, M. et al. Metabolic effects of biosynthetic growth hormone treatment in severely energy-restricted obese women. Int. J. Obes. Relat. Metab. Disord. 22, 836–841 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Fowelin, J., Attvall, S., Lager, I. & Bengtsson, B. A. Effects of treatment with recombinant human growth hormone on insulin sensitivity and glucose metabolism in adults with growth hormone deficiency. Metabolism 42, 1443–1447 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Jørgensen, J. O. et al. Fuel metabolism, energy expenditure, and thyroid function in growth hormone-treated obese women: a double-blind placebo-controlled study. Metabolism 43, 872–877 (1994).

    Article  PubMed  Google Scholar 

  61. Karlsson, C. et al. Effects of growth hormone treatment on the leptin system: interactions with body composition and energy expenditure. Eur. J. Endocrinol. 138, 408–414 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Jørgensen, J. O. et al. Effects of growth hormone therapy on thyroid function of growth hormone-deficient adults with and without concomittant thyroxine-substituted central hypothyroidism. J. Clin. Endocrinol. Metab. 69, 1127–1132 (1989).

    Article  PubMed  Google Scholar 

  63. Lapidus, L. et al. Distribution of adipose tissue and risk of cardiovascular disease and death: a 12 year follow up of participants in the population study of women in Gothenburg, Sweden. Br. Med. J. (Clin. Res. Ed.) 289, 1257–1261 (1984).

    Article  CAS  Google Scholar 

  64. Larsson, B. et al. Abdominal tissue distribution, obesity and risk of cardiovascular disease and death: 13 year follow-up of participants in the study of men born in 1913. Br. Med. J. (Clin. Res. Ed.) 288, 1401–1404 (1984).

    Article  CAS  Google Scholar 

  65. Johannsson, G. et al. Growth hormone treatment of abdominally obese men reduces abdominal fat mass, improves glucose and lipoprotein metabolism, and reduces diastolic blood pressure. J. Clin. Endocrinol. Metab. 82, 727–734 (1997).

    CAS  PubMed  Google Scholar 

  66. Franco, C. et al. Growth hormone treatment reduces abdominal visceral fat in postmenopausal women with abdominal obesity: a 12-month placebo-controlled trial. J. Clin. Endocrinol. Metab. 90, 1466–1474 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Franco, C. et al. Growth hormone reduces inflammation in postmenopausal women with abdominal obesity: a 12-month, randomized, placebo-controlled trial. J. Clin. Endocrinol. Metab. 92, 2644–2647 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Lo, J. et al. Low-dose physiological growth hormone in patients with HIV and abdominal fat accumulation: a randomized controlled trial. JAMA 300, 509–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Clemmons, D. R. Roles of insulin-like growth factor-I and growth hormone in mediating insulin resistance in acromegaly. Pituitary 5, 181–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Jessen, N. et al. Evidence against a role for insulin-signaling proteins PI 3-kinase and Akt in insulin resistance in human skeletal muscle induced by short-term GH infusion. Am. J. Physiol. Endocrinol. Metab. 288, E194–E199 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Nielsen, C. et al. Growth hormone signaling in vivo in human muscle and adipose tissue: impact of insulin, substrate background, and growth hormone receptor bckade. J. Clin. Endocrinol. Metab. 93, 2842–2850 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Yakar, S. et al. Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice. J. Clin. Invest. 113, 96–105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barbour, L. A. et al. Increased P85α is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess. J. Biol. Chem. 280, 37489–37494 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. del Rincon, J. P. et al. Growth hormone regulation of p85α expression and phosphoinositide 3-kinase activity in adipose tissue: mechanism for growth hormone-mediated insulin resistance. Diabetes 56, 1638–1646 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Bramnert M. et al. Growth hormone replacement therapy induces insulin resistance by activating the glucose–fatty acid cycle. J. Clin. Endocrinol. Metab. 88, 1455–1463 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Nam, S. Y. et al. Low-dose growth hormone treatment combined with diet restriction decreases insulin resistance by reducing visceral fat and increasing muscle mass in obese type 2 diabetic patients. Int. J. Obes . Relat. Metab. Disord. 25, 1101–1107 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Ahn, C. W. et al. Effects of growth hormone on insulin resistance and atherosclerotic risk factors in obese type 2 diabetic patients with poor glycaemic control. Clin. Endocrinol. (Oxf.) 64, 444–449 (2006).

    CAS  Google Scholar 

  78. Deepak, D. et al. Growth hormone and changes in energy balance in growth hormone deficient adults. Eur. J. Clin. Invest. 38, 622–627 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Hernberg-Ståhl, E. et al. Healthcare consumption decreases in parallel with improvements in quality of life during GH replacement in hypopituitary adults with GH deficiency. J. Clin. Endocrinol. Metab. 86, 5277–5281 (2001).

    Article  PubMed  Google Scholar 

  80. Snel, Y. E., Brummer, R. J., Doerga, M. E., Zelissen, P. M. & Koppeschaar, H. P. Energy and macronutrient intake in growth hormone-deficient adults: the effect of growth hormone replacement. Eur. J. Clin. Nutr. 49, 492–500 (1995).

    CAS  PubMed  Google Scholar 

  81. Snyder, D. K., Underwood, L. E. & Clemmons, D. R. Persistent lipolytic effect of exogenous growth hormone during caloric restriction. Am. J. Med. 98, 129–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Albert, S. G. & Mooradian, A. D. Low-dose recombinant human growth hormone as adjuvant therapy to lifestyle modifications in the management of obesity. J. Clin. Endocrinol. Metab. 89, 695–701 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Richelsen, B. et al. Regulation of lipoprotein lipase and hormone-sensitive lipase activity and gene expression in adipose and muscle tissue by growth hormone treatment during weight loss in obese patients. Metabolism 49, 906–911 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Makimura, H. et al. Metabolic effects of a growth hormone-releasing factor in obese subjects with reduced growth hormone secretion: a randomized controlled trial. J. Clin. Endocrinol. Metab. 97, 4769–4779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Attallah, H., Friedlander, A. L., Nino-Murcia, M. & Hoffman, A. R. Effects of growth hormone and pioglitazone in viscerally obese adults with impaired glucose tolerance: a factorial clinical trial. PLoS Clin. Trials 2, e21 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Svensson, J. et al. Treatment of obese subjects with the oral growth hormone secretagogue MK-677 affects serum concentrations of several lipoproteins but not lipoprotein(a). J. Clin. Endocrinol. Metab. 84, 2028–2033 (1999).

    CAS  PubMed  Google Scholar 

  87. Bredella, M. A. et al. Effects of GH in women with abdominal adiposity: a 6-month randomized, double-blind, placebo-controlled trial. Eur. J. Endocrinol. 166, 601–611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mekala, K. C. & Tritos, N. A. Effects of recombinant human growth hormone therapy in obesity in adults: a meta analysis. J. Clin. Endocrinol. Metab. 94, 130–137 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Herrmann, B. L. et al. Effects of a combination of recombinant human growth hormone with metformin on glucose metabolism and body composition in patients with metabolic syndrome. Horm. Metab. Res. 36, 54–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Krusenstjerna-Hafstrøm, T. et al. Growth hormone (GH)-induced insulin resistance is rapidly reversible: an experimental study in GH-deficient adults. J. Clin. Endocrinol. Metab. 96, 2548–2557 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Svensson, J. et al. Two-month treatment of obese subjects with the oral growth hormone (GH) secretagogue MK-677 increases GH secretion, fat-free mass, and energy expenditure. J. Clin. Endocrinol. Metab. 83, 362–369 (1998).

    CAS  PubMed  Google Scholar 

  92. Falutz, J. et al. Metabolic effects of a growth hormone-releasing factor in patients with HIV. N. Engl. J. Med. 357, 2359–2370 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Palmer, A. J. et al. Age-related changes in body composition of bovine growth hormone transgenic mice. Endocrinology 150, 1353–1360 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Ding, J., Berryman, D. E. & Kopchick, J. J. Plasma proteomic profiles of bovine growth hormone transgenic mice as they age. Transgenic Res. 20, 1305–1320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mathews, L. S., Hammer, R. E., Brinster, R. L. & Palmiter, R. D. Expression of insulin-like growth factor I in transgenic mice with elevated levels of growth hormone is correlated with growth. Endocrinology 123, 433–437 (1988).

    Article  CAS  PubMed  Google Scholar 

  96. Berryman, D. E., Christiansen, J. S., Johannsson, G., Thorner, M. O. & Kopchick, J. J. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm. IGF Res. 18, 455–471 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Berryman, D. E. et al. Effect of growth hormone on susceptibility to diet-induced obesity. Endocrinology 147, 2801–2808 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Kopchick, J. J., Bellush, L. L. & Coschigano, K. T. Transgenic models of growth hormone action. Annu. Rev. Nutr. 19, 437–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Berryman, D. E. et al. Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Horm. IGF Res. 14, 309–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Bohlooly, Y. M. et al. Growth hormone overexpression in the central nervous system results in hyperphagia-induced obesity associated with insulin resistance and dyslipidemia. Diabetes 54, 51–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, Z., Masternak, M. M., Al-Regaiey, K. A. & Bartke, A. Adipocytokines and the regulation of lipid metabolism in growth hormone transgenic and calorie-restricted mice. Endocrinology 148, 2845–2853 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Olsson, B. et al. Bovine growth hormone transgenic mice are resistant to diet-induced obesity but develop hyperphagia, dyslipidemia, and diabetes on a high-fat diet. Endocrinology 146, 920–930 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Bartke, A. Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice. Neuroendocrinology 78, 210–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Gahete, M. D. et al. Elevated GH/IGF-I, due to somatotrope-specific loss of both IGF-I and insulin receptors, alters glucose homeostasis and insulin sensitivity in a diet-dependent manner. Endocrinology 152, 4825–4837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. List, E. O. et al. Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR−/−) mouse. Endocr. Rev. 32, 356–386 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Zhou, Y. et al. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc. Natl Acad. Sci. USA 94, 13215–13220 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bartke, A. Impact of reduced insulin-like growth factor-1/insulin signaling on aging in mammals: novel findings. Aging Cell 7, 285–290 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Coschigano, K. T. et al. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 144, 3799–3810 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Berryman, D. E. et al. Two-year body composition analyses of long-lived GHR null mice. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 31–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Egecioglu, E. et al. Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice. Am. J. Physiol. Endocrinol. Metab. 290, E317–E325 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Flint, D. J., Binart, N., Boumard, S., Kopchick, J. J. & Kelly, P. Developmental aspects of adipose tissue in GH receptor and prolactin receptor gene disrupted mice: site-specific effects upon proliferation, differentiation and hormone sensitivity. J. Endocrinol. 191, 101–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Bonkowski, M. S. et al. Long-lived growth hormone receptor knockout mice show a delay in age-related changes of body composition and bone characteristics. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 562–567 (2006).

    Article  PubMed  Google Scholar 

  113. Li, Y., Knapp, J. R. & Kopchick, J. J. Enlargement of interscapular brown adipose tissue in growth hormone antagonist transgenic and in growth hormone receptor gene-disrupted dwarf mice. Exp. Biol. Med. (Maywood) 228, 207–215 (2003).

    Article  CAS  Google Scholar 

  114. Liu, J. L. et al. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am. J. Physiol. Endocrinol. Metab. 287, E405–E413 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Masternak, M. M. et al. Metabolic effects of intra-abdominal fat in GHRKO mice. Aging Cell 11, 73–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Lubbers, E. R. et al. Adiponectin in mice with altered growth hormone action: links to insulin sensitivity and longevity? J. Endocrinol. 216, 363–374 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Masternak, M. M. et al. Caloric restriction results in decreased expression of peroxisome proliferator-activated receptor superfamily in muscle of normal and long-lived growth hormone receptor/binding protein knockout mice. J. Gerontol. A. Biol. Sci. Med. Sci. 60, 1238–1245 (2005).

    Article  PubMed  Google Scholar 

  118. Longo, K. A. et al. Daily energy balance in growth hormone receptor/binding protein (GHR −/−) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency. Growth Horm. IGF Res. 20, 73–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. List, E. O. et al. The role of GH in adipose tissue: lessons from adipose-specific GH receptor gene-disrupted mice. Mol. Endocrinol. 27, 524–535 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Surwit, R. S., Kuhn, C. M., Cochrane, C., McCubbin, J. A. & Feinglos, M. N. Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37, 1163–1167 (1988).

    Article  CAS  PubMed  Google Scholar 

  121. Surwit, R. S. et al. Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44, 645–651 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Huang, L. et al. The decline in pulsatile GH secretion throughout early adulthood in mice is exacerbated by dietary-induced weight gain. Endocrinology 153, 4380–4388 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. List, E. O. et al. Growth hormone improves body composition, fasting blood glucose, glucose tolerance and liver triacylglycerol in a mouse model of diet-induced obesity and type 2 diabetes. Diabetologia 52, 1647–1655 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Nishimura M. Breeding of mouse strains for diabetes mellitus. Exp. Anim. 18, 147–157 (1969).

    Article  Google Scholar 

  125. Hioki, C. et al. Effects of growth hormone (GH) on mRNA levels of uncoupling proteins 1, 2, and 3 in brown and white adipose tissues and skeletal muscle in obese mice. Horm. Metab. Res. 36, 607–613 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Sjögren, K. et al. Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc . Natl Acad. Sci. USA 96, 7088–7092 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Casanueva, F. F. et al. Free fatty acids block growth hormone (GH) releasing hormone-stimulated GH secretion in man directly at the pituitary. J. Clin. Endocrinol. Metab. 65, 634–642 (1987).

    Article  CAS  PubMed  Google Scholar 

  128. Vijayakumar, A., Yakar, S. & Leroith, D. The intricate role of growth hormone in metabolism. Front. Endocrinol. (Lausanne) 2, 32 (2011).

    Article  Google Scholar 

  129. Nielsen, S., Møller, N., Christiansen, J. S. & Jørgensen, J. O. Pharmacological antilipolysis restores insulin sensitivity during growth hormone exposure. Diabetes 50, 2301–2308 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Barclay, J. L. et al. GH-dependent STAT5 signaling plays an important role in hepatic lipid metabolism. Endocrinology 152, 181–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Nishizawa, H. et al. Nonalcoholic fatty liver disease in adult hypopituitary patients with GH deficiency and the impact of GH replacement therapy. Eur. J. Endocrinol. 167, 67–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Leung, K. C., Doyle, N., Ballesteros, M., Waters, M. J. & Ho, K. K. Insulin regulation of human hepatic growth hormone receptors: divergent effects on biosynthesis and surface translocation. J. Clin. Endocrinol. Metab. 85, 4712–4720 (2000).

    CAS  PubMed  Google Scholar 

  133. Schulz, T. J. et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl Acad. Sci. USA 108, 143–148 (2011).

    Article  PubMed  Google Scholar 

  134. Divoux, A. et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59, 2817–2825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kelder, B. et al. CIDE-A gene expression is decreased in white adipose tissue of growth hormone receptor/binding protein gene disrupted mice and with high-fat feeding of normal mice. Growth Horm. IGF Res. 17, 346–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Skaggs, S. R. & Crist, D. M. Exogenous human growth hormone reduces body fat in obese women. Horm. Res. 35, 19–24 (1991).

    Article  CAS  PubMed  Google Scholar 

  137. Drent, M. L., Wever, L. D., Ader, H. J. & van der Veen, E. A. Growth hormone administration in addition to a very low calorie diet and an exercise program in obese subjects. Eur. J. Endocrinol. 132, 565–572 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Luque, R. M. et al. Metabolic impact of adult-onset, isolated, growth hormone deficiency (AOiGHD) due to destruction of pituitary somatotropes. PL oS One 6, e15767 (2011).

    Article  CAS  Google Scholar 

  139. Chen, W. Y., Wight, D. C., Mehta, B. V., Wagner, T. E. & Kopchick, J. J. Glycine 119 of bovine growth hormone is critical for growth-promoting activity. Mol. Endocrinol. 5, 1845–1852 (1991).

    Article  CAS  PubMed  Google Scholar 

  140. Andersen, B. et al. The Ames dwarf gene is required for Pit-1 gene activation. Dev. Biol. 172, 495–503 (1995).

    Article  CAS  PubMed  Google Scholar 

  141. Wang, Z., Al-Regaiey, K. A., Masternak, M. M. & Bartke, A. Adipocytokines and lipid levels in Ames dwarf and calorie-restricted mice. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 323–331 (2006).

    Article  PubMed  Google Scholar 

  142. Heiman, M. L., Tinsley, F. C., Mattison, J. A., Hauck, S. & Bartke, A. Body composition of prolactin-, growth hormone, and thyrotropin-deficient Ames dwarf mice. Endocrine 20, 149–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Li, S. et al. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347, 528–533 (1990).

    Article  CAS  PubMed  Google Scholar 

  144. Flurkey, K., Papaconstantinou, J., Miller, R. A. & Harrison, D. E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736–6741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Donahue, L. R. & Beamer, W. G. Growth hormone deficiency in 'little' mice results in aberrant body composition, reduced insulin-like growth factor-I and insulin-like growth factor-binding protein-3 (IGFBP-3), but does not affect IGFBP-2, -1 or -4. J. Endocrinol. 136, 91–104 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Gudmundur Johannsson.

Ethics declarations

Competing interests

G. Johannsson declares that he has received speaking honoraria and grant support from the following companies: Novo Nordisk, Pfizer. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berryman, D., Glad, C., List, E. et al. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol 9, 346–356 (2013). https://doi.org/10.1038/nrendo.2013.64

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing