Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Scope and limitations of iodothyronine deiodinases in hypothyroidism

Key Points

  • Levothyroxine monotherapy at doses that normalize serum levels of TSH does not universally restore parameters of thyroid hormone levels for patients with hypothyroidism

  • The iodothyronine deiodinases provide a cell-specific, prereceptor mechanism that controls thyroid-hormone signalling

  • Localized thyroid-hormone signalling has a critical role in different areas of the brain, as mediated by thyroid hormone transporters and the iodothyronine deiodinases

  • DIO2 ubiquitination induced by tetraiodothyronine (T4) normally decreases tri-iodothyronine (T3) production, but not in the hypothalamus

  • The levothyroxine dose that normalizes serum levels of TSH in an animal model is lower than the dose that normalizes serum levels of T3, which explains the increased serum T4 to T3 ratio observed in patients treated with levothyroxine

  • If patients carrying the Thr92AlaD2 polymorphism derive benefit from combination therapy with levothyroxine and liothyronine, then genotyping for this single nucleotide polymorphism might become a component of the management of hypothyroidism

Abstract

The coordinated expression and activity of the iodothyronine deiodinases regulate thyroid hormone levels in hypothyroidism. Once heralded as the pathway underpinning adequate thyroid-hormone replacement therapy with levothyroxine, the role of these enzymes has come into question as they have been implicated in both an inability to normalize serum levels of tri-iodothyronine (T3) and the incomplete resolution of hypothyroid symptoms. These observations, some of which were validated in animal models of levothyroxine monotherapy, challenge the paradigm that tissue levels of T3 and thyroid-hormone signalling can be fully restored by administration of levothyroxine alone. The low serum levels of T3 observed among patients receiving levothyroxine monotherapy occur as a consequence of type 2 iodothyronine deiodinase (DIO2) in the hypothalamus being fairly insensitive to ubiquitination. In addition, residual symptoms of hypothyroidism have been linked to a prevalent polymorphism in the DIO2 gene that might be a risk factor for neurodegenerative disease. Here, we discuss how these novel findings underscore the clinical importance of iodothyronine deiodinases in hypothyroidism and how an improved understanding of these enzymes might translate to therapeutic advances in the care of millions of patients with this condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iodothyronine deiodinases modulate thyroid-hormone signalling in T3 target cells.
Figure 2: T4-induced DIO2 ubiquitination in thyroid hormone homeostasis.

Similar content being viewed by others

References

  1. Aoki, Y. et al. Serum TSH and total T4 in the United States population and their association with participant characteristics: National Health and Nutrition Examination Survey (NHANES 1999–2002). Thyroid 17, 1211–1223 (2007).

    Article  PubMed  Google Scholar 

  2. Vanderpump, M. P. The epidemiology of thyroid disease. Br. Med. Bull. 99, 39–51 (2011).

    Article  PubMed  Google Scholar 

  3. Lindholm, J. & Laurberg, P. Hypothyroidism and thyroid substitution: historical aspects. J. Thyroid Res. 2011, 809341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Braverman, L. E., Ingbar, S. H. & Sterling, K. Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic subjects. J. Clin. Invest. 49, 855–864 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Larsen, P. R. & Ingbar, S. in Textbook of Endocrinology (eds Wilson, J. D. et al.) 357–487 (W. B. Saunders, Co., 1992).

    Google Scholar 

  6. Garber, J. R. et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr. Pract. 18, 988–1028 (2012).

    Article  PubMed  Google Scholar 

  7. Taylor, S., Kapur, M. & Adie, R. Combined thyroxine and triiodothyronine for thyroid replacement therapy. Br. Med. J. 2, 270–271 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roberts, N. D. Psychological problems in thyroid disease. British Thyroid Foundation Newsletter 18, 3 (1996).

    Google Scholar 

  9. Saravanan, P. et al. Psychological well-being in patients on 'adequate' doses of l-thyroxine: results of a large, controlled community-based questionnaire study. Clin. Endocrinol. 57, 577–585 (2002).

    Article  CAS  Google Scholar 

  10. Gorman, C. A., Jiang, N. S., Ellefson, R. D. & Elveback, L. R. Comparative effectiveness of dextrothyroxine and levothyroxine in correcting hypothyroidism and lowering blood lipid levels in hypothyroid patients. J. Clin. Endocrinol. Metab. 49, 1–7 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Franklyn, J. A. et al. Thyroxine replacement therapy and circulating lipid concentrations. Clin. Endocrinol. 38, 453–459 (1993).

    Article  CAS  Google Scholar 

  12. Gullo, D. et al. Levothyroxine monotherapy cannot guarantee euthyroidism in all athyreotic patients. PLoS ONE 6, e22552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Panicker, V. et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J. Clin. Endocrinol. Metab. 94, 1623–1629 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Bunevicius, R., Kazanavicius, G., Zalinkevicius, R. & Prange, A. J. Jr. Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothyroidism. N. Engl. J. Med. 340, 424–429 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Escobar-Morreale, H. F. et al. Thyroid hormone replacement therapy in primary hypothyroidism: a randomized trial comparing L-thyroxine plus liothyronine with L-thyroxine alone. Ann. Intern. Med. 142, 412–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Jonklaas, J. et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association task force on thyroid hormone replacement. Thyroid 24, 1670–1751 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Werneck de Castro, J. P. et al. Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine. J. Clin. Invest. 125, 769–781 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Escobar-Morreale, H. F., Obregon, M. J., Escobar del Rey, F. & Morreale de Escobar, G. Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats. J. Clin. Invest. 96, 2828–2838 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Escobar-Morreale, H. F., Rey, F., Obregon, M. J. & Escobar, G. M. Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomized rat. Endocrinology 137, 2490–2502 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Escobar-Morreale, H. F., Obregon, M. J., Hernandez, A., Escobar del Rey, F. & Morreale de Escobar, G. Regulation of iodothyronine deiodinase activity as studied in thyroidectomized rats infused with thyroxine or triiodothyronine. Endocrinology 138, 2559–2568 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Bianco, A. C. et al. American Thyroid Association guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 24, 88–168 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gereben, B., Salvatore, D., Harney, J. W., Tu, H. M. & Larsen, P. R. The human, but not rat, Dio2 gene is stimulated by thyroid transcription factor-1 (TTF-1). Mol. Endocrinol. 15, 112–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Salvatore, D., Tu, H., Harney, J. W. & Larsen, P. R. Type 2 iodothyronine deiodinase is highly expressed in human thyroid. J. Clin. Invest. 98, 962–968 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Campos-Barros, A. et al. Phenolic and tyrosyl ring iodothyronine deiodination and thyroid hormone concentrations in the human central nervous system. J. Clin. Endocrinol. Metab. 81, 2179–2185 (1996).

    CAS  PubMed  Google Scholar 

  25. Visser, T. J., Leonard, J. L., Kaplan, M. M. & Larsen, P. R. Kinetic evidence suggesting two mechanisms for iodothyronine 5′-deiodination in rat cerebral cortex. Proc. Natl Acad. Sci. USA 79, 5080–5084 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Christoffolete, M. A. et al. Mice with impaired extrathyroidal thyroxine to 3,5,3′-triiodothyronine conversion maintain normal serum 3,5,3′-triiodothyronine concentrations. Endocrinology 148, 954–960 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Fonseca, T. L. et al. Tissue-specific inactivation of type 2 deiodinase reveals multilevel control of fatty acid oxidation by thyroid hormone in the mouse. Diabetes 63, 1594–1604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fonseca, T. L. et al. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J. Clin. Invest. 123, 1492–1500 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brent, G. A. Mechanisms of thyroid hormone action. J. Clin. Invest. 122, 3035–3043 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heuer, H. & Visser, T. J. The pathophysiological consequences of thyroid hormone transporter deficiencies: Insights from mouse models. Biochim. Biophys. Acta 1830, 3974–3978 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Callebaut, I. et al. The iodothyronine selenodeiodinases are thioredoxin-fold family proteins containing a glycoside hydrolase clan GH-A-like structure. J. Biol. Chem. 278, 36887–36896 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Schweizer, U., Schlicker, C., Braun, D., Kohrle, J. & Steegborn, C. Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism. Proc. Natl Acad. Sci. USA 111, 10526–10531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zeold, A. et al. Metabolic instability of type 2 deiodinase is transferable to stable proteins independently of subcellular localization. J. Biol. Chem. 281, 31538–31543 (2006).

    Article  PubMed  Google Scholar 

  34. Baqui, M. M., Gereben, B., Harney, J. W., Larsen, P. R. & Bianco, A. C. Distinct subcellular localization of transiently expressed types 1 and 2 iodothyronine deiodinases as determined by immunofluorescence confocal microscopy. Endocrinology 141, 4309–4312 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. McAninch, E. A. et al. Prevalent polymorphism in thyroid hormone-activating enzyme leaves a genetic fingerprint that underlies associated clinical syndromes. J. Clin. Endocrinol. Metab. 100, 920–933 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schneider, M. J. et al. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 147, 580–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Baqui, M. et al. Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes. J. Biol. Chem. 278, 1206–1211 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Kallo, I. et al. A novel pathway regulates thyroid hormone availability in rat and human hypothalamic neurosecretory neurons. PLoS ONE 7, e37860 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jo, S. et al. Neuronal hypoxia induces hsp40-mediated nuclear import of type 3 deiodinase as an adaptive mechanism to reduce cellular metabolism. J. Neurosci. 32, 8491–8500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gereben, B. et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 29, 898–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bianco, A. C. & McAninch, E. A. The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes Endocrinol. 1, 250–258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peeters, R. P. et al. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J. Clin. Endocrinol. Metab. 88, 3202–3211 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Simonides, W. S. et al. Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J. Clin. Invest. 118, 975–983 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Olivares, E. L. et al. Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148, 4786–4792 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Bianco, A. C. & Casula, S. Thyroid hormone replacement therapy: three 'simple' questions, complex answers. Eur. Thyroid J. 1, 88–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dumitrescu, A. M. et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat. Genet. 37, 1247–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Ord, W. M. Report of the committee of the Clinical Society of London nominated December 14, 1883, to investigate the subject of myxoedema. Trans. Clin. Soc. Lond. 21 (Suppl.), 1–215 (1888).

    Google Scholar 

  48. Oppenheimer, J. H. & Schwartz, H. L. Molecular basis of thyroid hormone-dependent brain development. Endocr. Rev. 18, 462–475 (1997).

    CAS  PubMed  Google Scholar 

  49. Obregon, M. J., Escobar del Rey, F. & Morreale de Escobar, G. The effects of iodine deficiency on thyroid hormone deiodination. Thyroid 15, 917–929 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Desouza, L. A. et al. Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol. Cell. Neurosci. 29, 414–426 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Bernal, J. Thyroid hormone receptors in brain development and function. Nat. Clin. Pract. Endocrinol. Metab. 3, 249–259 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Morte, B. & Bernal, J. Thyroid hormone action: astrocyte-neuron communication. Front. Endocrinol. 5, 82 (2014).

    Article  Google Scholar 

  53. Greenberg, J. H. et al. Imaging triiodothyronine binding kinetics in rat brain: a model for studies in human subjects. Synapse 60, 212–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Visser, T. J. Thyroid hormone transporters. Horm. Res. 68 (Suppl. 5), 28–30 (2007).

    PubMed  Google Scholar 

  55. Ceballos, A. et al. Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3,5,3′-triiodo-L-thyronine. Endocrinology 150, 2491–2496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liao, X. H. et al. Distinct roles of deiodinases on the phenotype of Mct8 defect: a comparison of eight different mouse genotypes. Endocrinology 152, 1180–1191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wittmann, G. et al. Parallel regulation of thyroid hormone transporters OATP1c1 and MCT8 during and after endotoxemia at the blood-brain barrier of male rodents. Endocrinology 156, 1552–1564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Friesema, E. C. et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364, 1435–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Dumitrescu, A. M., Liao, X. H., Best, T. B., Brockmann, K. & Refetoff, S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am. J. Hum. Genet. 74, 168–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Crantz, F. R., Silva, J. E. & Larsen, P. R. Analysis of the sources and quantity of 3,5,3′-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology 110, 367–375 (1982).

    Article  CAS  PubMed  Google Scholar 

  61. Galton, V. A. et al. Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology 148, 3080–3088 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Silva, J. E. & Matthews, P. S. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum: responses to hypothyroidism. J. Clin. Invest. 74, 1035–1049 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Peeters, R. et al. Regional physiological adaptation of the central nervous system deiodinases to iodine deficiency. Am. J. Physiol. Endocrinol. Metab. 281, E54–E61 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Guadano-Ferraz, A., Obregon, M. J., St Germain, D. L. & Bernal, J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc. Natl Acad. Sci. USA 94, 10391–10396 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tu, H. M. et al. Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology 138, 3359–3368 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Mohacsik, P., Zeold, A., Bianco, A. C. & Gereben, B. Thyroid hormone and the neuroglia: both source and target. J. Thyroid Res. 2011, 215718 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bernal, J., Guadano-Ferraz, A. & Morte, B. Perspectives in the study of thyroid hormone action on brain development and function. Thyroid 13, 1005–1012 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Visser, W. E., Friesema, E. C., Jansen, J. & Visser, T. J. Thyroid hormone transport by monocarboxylate transporters. Best Pract. Res. Clin. Endocrinol. Metab. 21, 223–236 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Freitas, B. C. et al. Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. J. Clin. Invest. 120, 2206–2217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dentice, M. et al. The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat. Cell Biol. 7, 698–705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dentice, M. et al. Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc. Natl Acad. Sci. USA 104, 14466–14471 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fliers, E., Alkemade, A., Wiersinga, W. M. & Swaab, D. F. Hypothalamic thyroid hormone feedback in health and disease. Prog. Brain Res. 153, 189–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Yoshimura, T. et al. Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426, 178–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Campos-Barros, A. et al. Type 2 iodothyronine deiodinase expression in the cochlea before the onset of hearing. Proc. Natl Acad. Sci. USA 97, 1287–1292 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fekete, C. & Lechan, R. M. Central regulation of hypothalamic–pituitary–thyroid axis under physiological and pathophysiological conditions. Endocr. Rev. 35, 159–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Friesema, E. C. et al. Thyroid hormone transporters and deiodinases in the developing human hypothalamus. Eur. J. Endocrinol. 167, 379–386 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Ng, L. et al. Type 3 deiodinase, a thyroid-hormone-inactivating enzyme, controls survival and maturation of cone photoreceptors. J. Neurosci. 30, 3347–3357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kester, M. H. et al. Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J. Clin. Endocrinol. Metab. 89, 3117–3128 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Vose, L. R. et al. Treatment with thyroxine restores myelination and clinical recovery after intraventricular hemorrhage. J. Neurosci. 33, 17232–17246 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zavacki, A. M. et al. Type 1 iodothyronine deiodinase is a sensitive marker of peripheral thyroid status in the mouse. Endocrinology 146, 1568–1575 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J. & Larsen, P. R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23, 38–89 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Roti, E., Fang, S. L., Green, K., Emerson, C. H. & Braverman, L. E. Human placenta is an active site of thyroxine and 3,3′,5-triiodothyronine tyrosyl ring deiodination. J. Clin. Endocrinol. Metab. 53, 498–501 (1981).

    Article  CAS  PubMed  Google Scholar 

  84. Alexander, E. K. et al. Timing and magnitude of increases in levothyroxine requirements during pregnancy in women with hypothyroidism. N. Engl. J. Med. 351, 241–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Huang, S. A. et al. Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N. Engl. J. Med. 343, 185–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Abdalla, S. M. & Bianco, A. C. Defending plasma T3 is a biological priority. Clin. Endocrinol. 81, 633–641 (2014).

    Article  CAS  Google Scholar 

  87. Bianco, A. C. & Kim, B. W. Deiodinases: implications of the local control of thyroid hormone action. J. Clin. Invest. 116, 2571–2579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Steinsapir, J., Harney, J. & Larsen, P. R. Type 2 iodothyronine deiodinase in rat pituitary tumor cells is inactivated in proteasomes. J. Clin. Invest. 102, 1895–1899 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gereben, B., Goncalves, C., Harney, J. W., Larsen, P. R. & Bianco, A. C. Selective proteolysis of human type 2 deiodinase: a novel ubiquitin-proteasomal mediated mechanism for regulation of hormone activation. Mol. Endocrinol. 14, 1697–1708 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Sagar, G. D. et al. Ubiquitination-induced conformational change within the deiodinase dimer is a switch regulating enzyme activity. Mol. Cell. Biol. 27, 4774–4783 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Egri, P. & Gereben, B. Minimal requirements for ubiquitination-mediated regulation of thyroid hormone activation. J. Mol. Endocrinol. 53, 217–226 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Curcio-Morelli, C. et al. In vivo dimerization of types 1, 2, and 3 iodothyronine selenodeiodinases. Endocrinology 144, 937–946 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Arrojo, E. D. R., Egri, P., Jo, S., Gereben, B. & Bianco, A. C. The type II deiodinase is retrotranslocated to the cytoplasm and proteasomes via p97/Atx3 complex. Mol. Endocrinol. 27, 2105–2115 (2013).

    Article  CAS  Google Scholar 

  94. Curcio-Morelli, C. et al. Deubiquitination of type 2 iodothyronine deiodinase by von Hippel-Lindau protein-interacting deubiquitinating enzymes regulates thyroid hormone activation. J. Clin. Invest. 112, 189–196 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Christoffolete, M. A. et al. Atypical expression of type 2 iodothyronine deiodinase in thyrotrophs explains the thyroxine-mediated pituitary thyrotropin feedback mechanism. Endocrinology 147, 1735–1743 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Schneider, M. J. et al. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4 . Mol. Endocrinol. 15, 2137–2148 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Fekete, C. & Lechan, R. M. Negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) synthesizing neurons: role of neuronal afferents and type 2 deiodinase. Front. Neuroendocrinol. 28, 97–114 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Boelen, A. et al. Simultaneous changes in central and peripheral components of the hypothalamus–pituitary–thyroid axis in lipopolysaccharide-induced acute illness in mice. J. Endocrinol. 182, 315–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Fekete, C. et al. Lipopolysaccharide induces type 2 iodothyronine deiodinase in the mediobasal hypothalamus: implications for the nonthyroidal illness syndrome. Endocrinology 145, 1649–1655 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Sawin, C. T., Surks, M. I., London, M., Ranganathan, C. & Larsen, P. R. Oral thyroxine: variation in biologic action and tablet content. Ann. Intern. Med. 100, 641–645 (1984).

    Article  CAS  PubMed  Google Scholar 

  101. Ito, M. et al. TSH-suppressive doses of levothyroxine are required to achieve preoperative native serum triiodothyronine levels in patients who have undergone total thyroidectomy. Eur. J. Endocrinol. 167, 373–378 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Wiersinga, W. M., Duntas, L., Fadeyev, V., Nygaard, B. & Vanderpump, M. P. 2012 ETA Guidelines: The use of L-T4 + L-T3 in the treatment of hypothyroidism. Eur. Thyroid J. 1, 55–71 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Williams, G. R. Neurodevelopmental and neurophysiological actions of thyroid hormone. J. Neuroendocrinol. 20, 784–794 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Ritchie, M. & Yeap, B. B. Thyroid hormone: influences on mood and cognition in adults. Maturitas 81, 266–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Parsaik, A. K. et al. Hypothyroidism and risk of mild cognitive impairment in elderly persons: a population-based study. JAMA Neurol. 71, 201–207 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wekking, E. M. et al. Cognitive functioning and well-being in euthyroid patients on thyroxine replacement therapy for primary hypothyroidism. Eur. J. Endocrinol. 153, 747–753 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Nasr, A., Lauterio, T. J. & Davis, M. W. Unapproved drugs in the United States and the Food and Drug Administration. Adv. Ther. 28, 842–856 (2011).

    Article  PubMed  Google Scholar 

  108. Markova, N. et al. Hippocampal gene expression of deiodinases 2 and 3 and effects of 3,5-diiodo-L-thyronine T2 in mouse depression paradigms. Biomed. Res. Int. 2013, 565218 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. de Jong, F. J. et al. Thyroid function, the risk of dementia and neuropathologic changes: the Honolulu-Asia aging study. Neurobiol. Aging 30, 600–606 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Bauer, M., Heinz, A. & Whybrow, P. C. Thyroid hormones, serotonin and mood: of synergy and significance in the adult brain. Mol. Psychiatry 7, 140–156 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Morrissette, D. A. & Stahl, S. M. Modulating the serotonin system in the treatment of major depressive disorder. CNS Spectr. 19 (Suppl. 1), 57–67 (2014).

    PubMed  Google Scholar 

  112. Zhang, Q. et al. Monitoring glutamate levels in the posterior cingulate cortex of thyroid dysfunction patients with TE-averaged PRESS at 3 T. Magn. Reson. Imaging 33, 774–778 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Schreckenberger, M. F. et al. Positron emission tomography reveals correlations between brain metabolism and mood changes in hyperthyroidism. J. Clin. Endocrinol. Metab. 91, 4786–4791 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Hernandez, A., Morte, B., Belinchon, M. M., Ceballos, A. & Bernal, J. Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T3 in the mouse cerebral cortex. Endocrinology 153, 2919–2928 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Eravci, M., Pinna, G., Meinhold, H. & Baumgartner, A. Effects of pharmacological and nonpharmacological treatments on thyroid hormone metabolism and concentrations in rat brain. Endocrinology 141, 1027–1040 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Campos-Barros, A. et al. The influence of desipramine on thyroid hormone metabolism in rat brain. J Pharmacol. Exp. Ther. 268, 1143–1152 (1994).

    CAS  PubMed  Google Scholar 

  117. Baumgartner, A., Dubeyko, M., Campos-Barros, A., Eravci, M. & Meinhold, H. Subchronic administration of fluoxetine to rats affects triiodothyronine production and deiodination in regions of the cortex and in the limbic forebrain. Brain Res. 635, 68–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Barez-Lopez, S. et al. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase. PLoS ONE 9, e103857 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Hernandez, A., Martinez, M. E., Fiering, S., Galton, V. A. & St Germain, D. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J. Clin. Invest. 116, 476–484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sittig, L. J., Shukla, P. K., Herzing, L. B. & Redei, E. E. Strain-specific vulnerability to alcohol exposure in utero via hippocampal parent-of-origin expression of deiodinase-III. FASEB J. 25, 2313–2324 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wilcoxon, J. S., Kuo, A. G., Disterhoft, J. F. & Redei, E. E. Behavioral deficits associated with fetal alcohol exposure are reversed by prenatal thyroid hormone treatment: a role for maternal thyroid hormone deficiency in FAE. Mol. Psychiatry 10, 961–971 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Wilcoxon, J. S. & Redei, E. E. Prenatal programming of adult thyroid function by alcohol and thyroid hormones. Am. J. Physiol. Endocrinol. Metab. 287, E318–E326 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Philibert, R. A. et al. The relationship of deiodinase 1 genotype and thyroid function to lifetime history of major depression in three independent populations. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B, 593–599 (2011).

    Article  PubMed  CAS  Google Scholar 

  124. Cooper-Kazaz, R. et al. Preliminary evidence that a functional polymorphism in type 1 deiodinase is associated with enhanced potentiation of the antidepressant effect of sertraline by triiodothyronine. J. Affect. Disord. 116, 113–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Mentuccia, D. et al. Association between a novel variant of the human type 2 deiodinase gene Thr92Ala and insulin resistance: evidence of interaction with the Trp64Arg variant of the β-3-adrenergic receptor. Diabetes 51, 880–883 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Estivalet, A. A. et al. D2 Thr92Ala and PPARγ2 Pro12Ala polymorphisms interact in the modulation of insulin resistance in type 2 diabetic patients. Obesity (Silver Spring) 19, 825–832 (2010).

    Article  CAS  Google Scholar 

  127. Dora, J. M., Machado, W. E., Rheinheimer, J., Crispim, D. & Maia, A. L. Association of the type 2 deiodinase Thr92Ala polymorphism with type 2 diabetes: case-control study and meta-analysis. Eur. J. Endocrinol. 163, 427–434 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Guo, T. W. et al. Positive association of the DIO2 (deiodinase type 2) gene with mental retardation in the iodine-deficient areas of China. J. Med. Genet. 41, 585–590 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. He, B. et al. Association of genetic polymorphisms in the type II deiodinase gene with bipolar disorder in a subset of Chinese population. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 986–990 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Taylor, P. et al. Effect of low thyroid hormone bioavailability on childhood cognitive development: data from the Avon Longitudinal Study of Parents and Children birth cohort. Lancet 383, S100 (2014).

    Article  Google Scholar 

  131. Galecka, E. et al. Association of the DIO2 gene single nucleotide polymorphisms with recurrent depressive disorder. Acta Biochim. Pol. 62, 297–302 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Canani, L. H. et al. The type 2 deiodinase A/G (Thr92Ala) polymorphism is associated with decreased enzyme velocity and increased insulin resistance in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 90, 3472–3478 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Peeters, R. P. et al. Polymorphisms in thyroid hormone pathway genes are associated with plasma TSH and iodothyronine levels in healthy subjects. J. Clin. Endocrinol. Metab. 88, 2880–2888 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Torlontano, M. et al. Type 2 deiodinase polymorphism (threonine 92 alanine) predicts L-thyroxine dose to achieve target thyrotropin levels in thyroidectomized patients. J. Clin. Endocrinol. Metab. 93, 910–913 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Butler, P. W. et al. The Thr92Ala 5′ type 2 deiodinase gene polymorphism is associated with a delayed triiodothyronine secretion in response to the thyrotropin-releasing hormone-stimulation test: a pharmacogenomic study. Thyroid 20, 1407–1412 (2011).

    Article  CAS  Google Scholar 

  136. Zhang, C., Kim, S., Harney, J. W. & Larsen, P. R. Further characterization of thyroid hormone response elements in the human type 1 iodothyronine deiodinase gene. Endocrinology 139, 1156–1163 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.G. is supported by the Hungarian Brain Research Program and Hungarian Scientific Research Fund (OTKA 109415). M.O.R. is supported by CAPES and FAPESP. A.C.B. is supported by the NIDDK.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the data for the article and the writing the article. B.G., E.A.M. and A.C.B. provided a substantial contribution to discussions of the content and reviewed and/or edited the manuscript before submission. B.G. and E.A.M. contributed equally to this Review.

Corresponding author

Correspondence to Antonio C. Bianco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gereben, B., McAninch, E., Ribeiro, M. et al. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol 11, 642–652 (2015). https://doi.org/10.1038/nrendo.2015.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing