Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis

Key Points

  • The levels of copeptin in the circulation correlate with those of arginine vasopressin (AVP)

  • Currently available techniques for the measurement of copeptin have advantages over those for AVP in terms of ex vivo stability of the marker, and the ease and speed of measurement

  • In the differential diagnosis of polyuria–polydipsia syndrome, measurement of copeptin has great potential, enabling direct identification of patients with nephrogenic diabetes insipidus, without prior thirsting

  • Osmotically stimulated copeptin levels can differentiate between patients with primary polydipsia and those with partial central diabetes insipidus

  • In the differential diagnosis of hyponatraemia, low copeptin levels identify primary polydipsia, and the ratio of copeptin to urinary sodium could distinguish between AVP-dependent forms of hyponatraemia

Abstract

Copeptin and arginine vasopressin (AVP) are derived from a common precursor molecule and have equimolar secretion and response to osmotic, haemodynamic and stress-related stimuli. Plasma concentrations of copeptin and AVP in relation to serum osmolality are highly correlated. The physiological functions of AVP with respect to homeostasis of fluid balance, vascular tonus and regulation of the endocrine stress response are well known, but the exact function of copeptin is undetermined. Quantification of AVP can be difficult, but copeptin is stable in plasma and can be easily measured with a sandwich immunoassay. For this reason, copeptin has emerged as a promising marker for the diagnosis of AVP-dependent fluid disorders. Copeptin measurements can enable differentiation between various conditions within the polyuria–polydipsia syndrome. In the absence of prior fluid deprivation, baseline copeptin levels >20 pmol/l identify patients with nephrogenic diabetes insipidus. Conversely, copeptin levels measured upon osmotic stimulation differentiate primary polydipsia from partial central diabetes insipidus. In patients with hyponatraemia, low levels of copeptin together with low urine osmolality identify patients with primary polydipsia, and the ratio of copeptin to urinary sodium can distinguish the syndrome of inappropriate antidiuretic hormone secretion from other AVP-dependent forms of hyponatraemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of arginine vasopressin (AVP) and copeptin.
Figure 2: AVP and its protein products.
Figure 3: A diagnostic workflow for the differential diagnosis of polyuria–polydipsia syndrome (PPS)72.

Similar content being viewed by others

References

  1. Kluge, M., Riedl, S., Erhart-Hofmann, B., Hartmann, J. & Waldhauser, F. Improved extraction procedure and RIA for determination of arginine8-vasopressin in plasma: role of premeasurement sample treatment and reference values in children. Clin. Chem. 45, 98–103 (1999).

    CAS  PubMed  Google Scholar 

  2. Balanescu, S. et al. Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and hyperosmolar states. J. Clin. Endocrinol. Metab. 96, 1046–1052 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Morgenthaler, N. G., Struck, J., Alonso, C. & Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 52, 112–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Land, H., Schütz, G., Schmale, H. & Richter, D. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin–neurophysin II precursor. Nature 295, 299–303 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Levy, B., Chauvet, M. T., Chauvet, J. & Acher, R. Ontogeny of bovine neurohypophysial hormone precursors. II. Foetal copeptin, the third domain of the vasopressin precursor. Int. J. Pept. Protein Res. 27, 320–324 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Land, H. et al. Deduced amino acid sequence from the bovine oxytocin–neurophysin I precursor cDNA. Nature 302, 342–344 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Acher, R., Chauvet, J. & Rouille, Y. Dynamic processing of neuropeptides: sequential conformation shaping of neurohypophysial preprohormones during intraneuronal secretory transport. J. Mol. Neurosci. 18, 223–228 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. de Bree, F. M. & Burbach, J. P. Structure–function relationships of the vasopressin prohormone domains. Cell. Mol. Neurobiol. 18, 173–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Robertson, G. L. Physiology of ADH secretion. Kidney Int. Suppl. 21, S20–S26 (1987).

    CAS  PubMed  Google Scholar 

  10. Ciura, S. & Bourque, C. W. Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J. Neurosci. 26, 9069–9075 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Vandesande, F. & Dierickx, K. Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretroy system of the rat. Cell Tissue Res. 164, 153–162 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Gillies, G. E., Linton, E. A. & Lowry, P. J. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299, 355–357 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Rivier, C. & Vale, W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature 305, 325–327 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Son, S. J. et al. Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron 78, 1036–1049 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. Toney, G. M. & Stocker, S. D. Hyperosmotic activation of CNS sympathetic drive: implications for cardiovascular disease. J. Physiol. 588, 3375–3384 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Robertson, G. L. The regulation of vasopressin function in health and disease. Rec. Prog. Horm. Res. 33, 333–385 (1976).

    CAS  PubMed  Google Scholar 

  18. LaRochelle, F. T. Jr, North, W. G. & Stern, P. A new extraction of arginine vasopressin from blood: the use of octadecasilyl-silica. Pflugers Arch. 387, 79–81 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Morgenthaler, N. G. et al. Copeptin, a stable peptide of the arginine vasopressin precursor, is elevated in hemorrhagic and septic shock. Shock 28, 219–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Roussel, R. et al. Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. J. Clin. Endocrinol. Metab. 99, 4656–4663 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Nathanson, M. H. et al. Mechanisms of subcellular cytosolic Ca2+ signaling evoked by stimulation of the vasopressin V1a receptor. J. Biol. Chem. 267, 23282–23289 (1992).

    CAS  PubMed  Google Scholar 

  22. Jard, S., Elands, J., Schmidt, A. & Barberis, C. in Progress in Endocrinology (eds Imura, H. & Shizume, K.) 1183–1188 (Elsevier, 1988).

    Google Scholar 

  23. Baylis, P. H. Osmoregulation and control of vasopressin secretion in healthy humans. Am. J. Physiol. 253, R671–R678 (1987).

    CAS  PubMed  Google Scholar 

  24. Nagy, G., Mulchahey, J. J., Smyth, D. G. & Neill, J. D. The glycopeptide moiety of vasopressin-neurophysin precursor is neurohypophysial prolactin releasing factor. Biochem. Biophys. Res. Commun. 151, 524–529 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Hyde, J. F., North, W. G. & Ben-Jonathan, N. The vasopressin-associated glycopeptide is not a prolactin-releasing factor: studies with lactating Brattleboro rats. Endocrinology 125, 35–40 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Barat, C., Simpson, L. & Breslow, E. Properties of human vasopressin precursor constructs: inefficient monomer folding in the absence of copeptin as a potential contributor to diabetes insipidus. Biochemistry 43, 8191–8203 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Parodi, A. J. Protein glucosylation and its role in protein folding. Annu. Rev. Biochem. 69, 69–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Schrag, J. D., Procopio, D. O., Cygler, M., Thomas, D. Y. & Bergeron, J. J. Lectin control of protein folding and sorting in the secretory pathway. Trends Biochem. Sci. 28, 49–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Zittema, D. et al. Vasopressin, copeptin, and renal concentrating capacity in patients with autosomal dominant polycystic kidney disease without renal impairment. Clin. J. Am. Soc. Nephrol. 7, 906–913 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Zittema, D. et al. Kidney function and plasma copeptin levels in healthy kidney donors and autosomal dominant polycystic kidney disease patients. Clin. J. Am. Soc. Nephrol. 9, 1553–1562 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Timper, K. et al. Diagnostic accuracy of copeptin in the differential diagnosis of the polyuria-polydipsia syndrome: a prospective multicenter study. J. Clin. Endocrinol. Metab. 100, 2268–2274 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Fenske, W. et al. Copeptin in the differential diagnosis of the polydipsia-polyuria syndrome — revisiting the direct and indirect water deprivation tests. J. Clin. Endocrinol. Metab. 96, 1506–1515 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Husain, M. K., Fernando, N., Shapiro, M., Kagan, A. & Glick, S. M. Radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Endocrinol. Metab. 37, 616–625 (1973).

    Article  CAS  PubMed  Google Scholar 

  34. Robertson, G. L., Mahr, E. A., Athar, S. & Sinha, T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Invest. 52, 2340–2352 (1973).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gerbes, A. L., Witthaut, R., Samson, W. K., Schnizer, W. & Vollmar, A. M. A highly sensitive and rapid radioimmunoassay for the determination of arginine8-vasopressin. Eur. J. Clin. Chem. Clin. Biochem. 30, 229–233 (1992).

    CAS  PubMed  Google Scholar 

  36. Van de Heijning, B. J., Koekkoek-van den Herik, I., Iványi, T. & Van Wimersma Greidanus, T. B. Solid-phase extraction of plasma vasopressin: evaluation, validation and application. J. Chromatogr. 565, 159–171 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Wun, T. Vasopressin and platelets: a concise review. Platelets 8, 15–22 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Preibisz, J. J., Sealey, J. E., Laragh, J. H., Cody, R. J. & Weksler, B. B. Plasma and platelet vasopressin in essential hypertension and congestive heart failure. Hypertension 5, I129–I138 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Jane Ellis, M., Livesey, J. H. & Evans, M. J. Hormone stability in human whole blood. Clin. Biochem. 36, 109–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Baumann, G. & Dingman, J. F. Distribution, blood transport, and degradation of antidiuretic hormone in man. J. Clin. Invest. 57, 1109–1116 (1976).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bhandari, S. S. et al. Gender and renal function influence plasma levels of copeptin in healthy individuals. Clin. Sci. (Lond.) 116, 257–263 (2009).

    Article  CAS  Google Scholar 

  42. US National Library of Science. ClinicalTrials.gov[online], (2015).

  43. Walti, C., Siegenthaler, J. & Christ-Crain, M. Copeptin levels are independent of ingested nutrient type after standardised meal administration — the CoMEAL study. Biomarkers 19, 557–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Puder, J. J. et al. Menstrual cycle symptoms are associated with changes in low-grade inflammation. Eur. J. Clin. Invest. 36, 58–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Katan, M. et al. Copeptin: a novel, independent prognostic marker in patients with ischemic stroke. Ann. Neurol. 66, 799–808 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Reichlin, T. et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J. Am. Coll. Cardiol. 54, 60–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Katan, M. & Christ-Crain, M. The stress hormone copeptin: a new prognostic biomarker in acute illness. Swiss Med. Wkly 140, w13101 (2010).

    CAS  PubMed  Google Scholar 

  48. Siegenthaler, J., Walti, C., Urwyler, S. A., Schuetz, P. & Christ-Crain, M. Copeptin concentrations during psychological stress: the PsyCo study. Eur. J. Endocrinol. 171, 737–742 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Urwyler, S. A., Schuetz, P., Sailer, C. & Christ-Crain, M. Copeptin as a stress marker prior and after a written examination — the CoEXAM study. Stress 18, 134–137 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Fenske, W. & Allolio, B. Current state and future perspectives in the diagnosis of diabetes insipidus: a clinical review. J. Clin. Endocrinol. Metab. 97, 3426–3437 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Carter, A. C. & Robbins, J. The use of hypertonic saline infusions in the differential diagnosis of diabetes insipidus and psychogenic polydipsia. J. Clin. Endocrinol. Metab. 7, 753–766 (1947).

    Article  CAS  PubMed  Google Scholar 

  52. Barlow, E. D. & De Wardener, H. E. Compulsive water drinking. Q. J. Med. 28, 235–258 (1959).

    CAS  PubMed  Google Scholar 

  53. Dashe, A. M., Cramm, R. E., Crist, C. A., Habener, J. F. & Solomon, D. H. A water deprivation test for the differential diagnosis of polyuria. JAMA 185, 699–703 (1963).

    Article  CAS  PubMed  Google Scholar 

  54. Miller, M., Dalakos, T., Moses, A. M., Fellerman, H. & Streeten, D. H. Recognition of partial defects in antidiuretic hormone secretion. Ann. Intern. Med. 73, 721–729 (1970).

    Article  CAS  PubMed  Google Scholar 

  55. Dies, F., Rangel, S. & Rivera, A. Differential diagnosis between diabetes insipidus and compulsive polydipsia. Ann. Intern. Med. 54, 710–725 (1961).

    Article  CAS  PubMed  Google Scholar 

  56. Robertson, G. L. Diabetes insipidus. Endocrinol. Metab. Clin. North Am. 24, 549–572 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Robertson, G. L. in Diabetes Insipidus in Man. (eds Czernichow, P. & Robinson, A. G.) 176–189 (Karger, 1985).

    Google Scholar 

  58. Milles, J. J., Spruce, B. & Baylis, P. H. A comparison of diagnostic methods to differentiate diabetes insipidus from primary polyuria: a review of 21 patients. Acta Endocrinol. (Copenh.) 104, 410–416 (1983).

    Article  CAS  Google Scholar 

  59. Verbalis, J. G. Disorders of body water homeostasis. Best Pract. Res. Clin. Endocrinol. Metab. 17, 471–503 (2003).

    Article  CAS  Google Scholar 

  60. Cadnapaphornchai, M. A. et al. Effect of primary polydipsia on aquaporin and sodium transporter abundance. Am. J. Physiol. Renal Physiol. 285, F965–F971 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Berliner, R. W. & Davidson, D. G. Production of hypertonic urine in the absence of pituitary antidiuretic hormone. J. Clin. Invest. 36, 1416–1427 (1957).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Harrington, A. R. & Valtin, H. Impaired urinary concentration after vasopressin and its gradual correction in hypothalamic diabetes insipidus. J. Clin. Invest. 47, 502–510 (1968).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Block, L. H., Furrer, J., Locher, R. A., Siegenthaler, W. & Vetter, W. Changes in tissue sensitivity to vasopressin in hereditary hypothalamic diabetes insipidus. Klin. Wochenschr. 59, 831–836 (1981).

    Article  CAS  PubMed  Google Scholar 

  64. Gellai, M., Edwards, B. R. & Valtin, H. Urinary concentrating ability during dehydration in the absence of vasopressin. Am. J. Physiol. 237, F100–F104 (1979).

    CAS  PubMed  Google Scholar 

  65. Baylis, P. H. & Robertson, G. L. Plasma vasopressin response to hypertonic saline infusion to assess posterior pituitary function. J. R. Soc. Med. 73, 255–260 (1980).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Baylis, P. H., Gaskill, M. B. & Robertson, G. L. Vasopressin secretion in primary polydipsia and cranial diabetes insipidus. Q. J. Med. 50, 345–358 (1981).

    CAS  PubMed  Google Scholar 

  67. Zerbe, R. L. & Robertson, G. L. A comparison of plasma vasopressin measurements with a standard indirect test in the differential diagnosis of polyuria. N. Engl. J. Med. 305, 1539–1546 (1981).

    Article  CAS  PubMed  Google Scholar 

  68. Baylis, P. H. Diabetes insipidus. J. R. Coll. Physicians Lond. 32, 108–111 (1998).

    CAS  PubMed  Google Scholar 

  69. Czaczkes, J. W. & Kleeman, C. R. The effect of various states of hydration and the plasma concentration on the turnover of antidiuretic hormone in mammals. J. Clin. Invest. 43, 1649–1658 (1964).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Katan, M. et al. Anterior and posterior pituitary function testing with simultaneous insulin tolerance test and a novel copeptin assay. J. Clin. Endocrinol. Metab. 92, 2640–2643 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Winzeler, B. et al. Postoperative copeptin concentration predicts diabetes insipidus after pituitary surgery. J. Clin. Endocrinol. Metab. 100, 2275–2282 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Timper, K. et al. Diagnostic accuracy of copeptin in the differential diagnosis of the polyuria-polydipsia syndrome: a prospective multicenter study. J. Clin. Endocrinol. Metab. 100, 2268–2274 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Smith, D. et al. Baroregulation of vasopressin release in adipsic diabetes insipidus. J. Clin. Endocrinol. Metab. 87, 4564–4568 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  75. Kumar, S. & Berl, T. Sodium. Lancet 352, 220–228 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Upadhyay, A., Jaber, B. L. & Madias, N. E. Incidence and prevalence of hyponatremia. Am. J. Med. 119, S30–S35 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Fenske, W. et al. Value of fractional uric acid excretion in differential diagnosis of hyponatremic patients on diuretics. J. Clin. Endocrinol. Metab. 93, 2991–2997 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Fenske, W. et al. Copeptin in the differential diagnosis of hyponatremia. J. Clin. Endocrinol. Metab. 94, 123–129 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Tang, W. W., Kaptein, E. M., Feinstein, E. I. & Massry, S. G. Hyponatremia in hospitalized patients with the acquired immunodeficiency syndrome (AIDS) and the AIDS-related complex. Am. J. Med. 94, 169–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Verbalis, J. G., Goldsmith, S. R., Greenberg, A., Schrier, R. W. & Sterns, R. H. Hyponatremia treatment guidelines 2007: expert panel recommendations. Am. J. Med. 120, S1–S21 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Chung, H. M., Kluge, R., Schrier, R. W. & Anderson, R. J. Clinical assessment of extracellular fluid volume in hyponatremia. Am. J. Med. 83, 905–908 (1987).

    Article  CAS  PubMed  Google Scholar 

  82. Verbalis, J. G. et al. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am. J. Med. 126, S1–S42 (2013).

    Article  PubMed  Google Scholar 

  83. Schrier, R. W. et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N. Engl. J. Med. 355, 2099–2112 (2006).

    CAS  PubMed  Google Scholar 

  84. Renneboog, B., Musch, W., Vandemergel, X., Manto, M. U. & Decaux, G. Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am. J. Med. 119, 71.e1–71.e8 (2006).

    Article  CAS  Google Scholar 

  85. Verbalis, J. G. et al. Hyponatremia-induced osteoporosis. J. Bone Miner. Res. 25, 554–563 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Fenske, W., Maier, S. K., Blechschmidt, A., Allolio, B. & Störk, S. Utility and limitations of the traditional diagnostic approach to hyponatremia: a diagnostic study. Am. J. Med. 123, 652–657 (2010).

    Article  PubMed  Google Scholar 

  87. Boursier, G. et al. CT-pro-AVP as a tool for assessment of intravascular volume depletion in severe hyponatremia. Clin. Biochem. 48, 640–645 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Nigro, N. et al. Copeptin for the differential diagnosis and therapy management of hyponatremia in hospitalized patients — 'the Co-MED-Study'. Endocr. Abstr. 35, 173 (2014).

    Google Scholar 

  89. Zerbe, R., Stropes, L. & Robertson, G. Vasopressin function in the syndrome of inappropriate antidiuresis. Annu. Rev. Med. 31, 315–327 (1980).

    Article  CAS  PubMed  Google Scholar 

  90. Fenske, W. K. et al. A copeptin-based classification of the osmoregulatory defects in the syndrome of inappropriate antidiuresis. J. Am. Soc. Nephrol. 25, 2376–2383 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Soupart, A. et al. Successful long-term treatment of hyponatremia in syndrome of inappropriate antidiuretic hormone secretion with satavaptan (SR121463B), an orally active nonpeptide vasopressin V2-receptor antagonist. Clin. J. Am. Soc. Nephrol. 1, 1154–1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Robertson, G. L. Vaptans for the treatment of hyponatremia. Nat. Rev. Endocrinol. 7, 151–161 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data, discussing content and writing the article, and to review and editing of the manuscript before submission.

Corresponding author

Correspondence to Mirjam Christ-Crain.

Ethics declarations

Competing interests

M. C.-C. and W. F. have received speaking honoraria from Thermo Fisher AG, the manufacturer of the Copeptin Assay.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christ-Crain, M., Fenske, W. Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat Rev Endocrinol 12, 168–176 (2016). https://doi.org/10.1038/nrendo.2015.224

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing