Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Induction and suppression of RNA silencing: insights from viral infections

Key Points

  • In plants and insects, virus-induced gene silencing (VIGS) is a mechanism whereby double-stranded features of viral genomes are recognized and processed by Dicer-like enzymes to generate antiviral small RNA molecules. The diversification and specialization of silencing components that are observed in both types of organisms might have arisen primarily as an adaptation to optimal recognition and processing of various double-stranded forms of pathogenic RNA molecules.

  • No single RNA-silencing component has been broadly implicated in antiviral defence in plants so far. This probably reflects the functional redundancy and/or combinatorial interactions between individual members of large protein families that account for the remarkable diversity and complexity of plant RNA-silencing pathways.

  • DNA viruses might be restricted by RNA silencing that acts at the transcriptional level. This occurs through small RNA pathways that direct chromatin modifications that are involved in epigenetic control of transposable elements and endogenous loci.

  • The miRNA pathway might also restrict accumulation of viruses that produce nuclear transcripts that are folded in a way that mimics the structure of endogenous miRNA precursors. These are normally processed in the nucleus by Dicer-like enzymes to ensure regulatory functions in the cell. This phenomenon has been documented in human cells that are infected by the Epstein–Barr virus, transcripts of which are processed into at least five distinct miRNA molecules.

  • In plants, nematodes and fungi, but not in Drosophila melanogaster or humans, primary VIGS reactions might be amplified through the activities of host-encoded RNA-dependent RNA polymerases (RdRPs). Amplification is also involved in the systemic spread of silencing, providing a form of genetic immune system that ensures clearance of viral and sub-viral pathogens.

  • Plant and insect viruses have developed a range of counter-defensive measures against RNA silencing, one of which is the production of highly diverse suppressor proteins that inhibit distinct steps of the silencing pathway. Strategies for silencing suppression are varied and include the direct inhibition of silencing-effector molecules, recruitment of endogenous pathways that negatively control RNA silencing and modification of the host transcriptome.

  • Viral suppression of RNA silencing often — although not always — has adverse effects on host biology, and forms the basis of some of the developmental and cytopathic symptoms that are associated with virus infections in plants, and probably other organisms. This is, at least partly, an incidental consequence of the primary suppression of VIGS at an intermediate step that is shared with the miRNA pathway.

  • Viruses can also evade RNA silencing through a range of means that include sub-cellular compartmentalization and loss of silencing-target sequences due to high mutation rates. They might also deliberately hijack their host silencing pathways to establish optimal infection conditions.

  • It remains unclear whether RNA silencing naturally limits viral infections in vertebrates as it does in plants and insects. Potent dsRNA-triggered defence pathways, such as the vertebrate interferon response, might mask or supplant the putative RNA-silencing response that is elicited by viruses in those organisms.

  • It is possible that cellular microRNA molecules, rather than virus-derived siRNA molecules, might contribute to antiviral defence in vertebrates. This might be indirect, for example, by controlling the accumulation of basic compatibility factors, or direct, owing to the sequence complementarity of miRNA molecules to parasitic nucleic acids.

Abstract

In eukaryotes, small RNA molecules engage in sequence-specific interactions to inhibit gene expression by RNA silencing. This process fulfils fundamental regulatory roles, as well as antiviral functions, through the activities of microRNAs and small interfering RNAs. As a counter-defence mechanism, viruses have evolved various anti-silencing strategies that are being progressively unravelled. These studies have not only highlighted our basic understanding of host–parasite interactions, but also provide key insights into the diversity, regulation and evolution of RNA-silencing pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antiviral RNA-silencing pathways in plants.
Figure 2: Viral strategies for suppression and evasion of RNA-silencing.
Figure 3: Viral symptoms and silencing suppression.

Similar content being viewed by others

References

  1. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Waterhouse, P. M. & Helliwell, C. A. Exploring plant genomes by RNA-induced gene silencing. Nature Rev. Genet. 4, 29–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Hannon, G. J. & Rossi, J. J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in post-transcriptional gene silencing in plants. Science 286, 950–952 (1999). This paper reports the discovery of siRNAs and shows their probable role in limiting virus infection in plants.

    Article  CAS  PubMed  Google Scholar 

  6. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cell extracts. Nature 404, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004). The authors demonstrate that AGO2 is the endonuclease that accounts for the catalytic activity of RISC during the RNAi reaction.

    Article  CAS  PubMed  Google Scholar 

  11. Kumagai, M. H. et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl Acad. Sci. USA 92, 1679–1683 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruiz, M. T., Voinnet, O. & Baulcombe, D. C. Initiation and maintenance of virus-induced gene silencing. Plant Cell 10, 937–946 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ratcliff, F., MacFarlane, S. & Baulcombe, D. C. Gene silencing without DNA: RNA-mediated cross protection between viruses. Plant Cell 11, 1207–1215 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Szittya, G., Molnar, A., Silhavy, D., Hornyik, C. & Burgyan, J. Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell 14, 359–372 (2002). One of the few analyses of antiviral RNA silencing that has been carried out in a genuine infection context, which demonstrates the pivotal role of silencing in the selection of defective interfering RNAs in tombusvirus-infected plants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones, L., Ratcliff, F. & Baulcombe, D. C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr. Biol. 11, 747–757 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Jones, L. et al. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11, 2291–2301 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamilton, A. J., Voinnet, O., Chappell, L. & Baulcombe, D. C. Two classes of short interfering RNA in RNA silencing. EMBO J. 21, 4671–4679 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Schramke, V. & Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301, 1069–1074 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Lacomme, C., Hrubikova, K. & Hein, I. Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J. 34, 543–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Papaefthimiou, I. et al. Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Res. 29, 2395–2400 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Itaya, A., Folimonov, A., Matsuda, Y., Nelson, R. S. & Ding, B. Potato spindle tuber viroid as inducer of RNA silencing in infected tomato. Mol. Plant Microbe Interact. 14, 1332–1334 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Denti, M. A., Boutla, A., Tsagris, M. & Tabler, M. Short interfering RNAs specific for potato spindle tuber viroid are found in the cytoplasm but not in the nucleus. Plant J. 37, 762–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Papp, I. et al. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol. 132, 1382–1390 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kurihara, Y. & Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl Acad. Sci. USA 101, 12753–12758 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, e104 (2004). A genetic dissection of RNA-silencing pathways in A. thaliana that clearly establishes the functional specialization and specific subcellular localization of Dicer-like enzymes in plants.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tahbaz, N. et al. Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO J. Rep. 5, 189–194 (2004).

    Article  CAS  Google Scholar 

  32. Uhlirova, M. et al. Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc. Natl Acad. Sci. USA 100, 15607–15612 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, H., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002). This provides the first demonstration that RNA silencing limits virus accumulation in insect cells.

    Article  CAS  PubMed  Google Scholar 

  36. Li, W. X. et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl Acad. Sci. USA 101, 1350–1355 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keene, K. M. et al. RNA interference acts as a natural antiviral response to O'nyong–nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc. Natl Acad. Sci. USA (2004).

  38. Chellappan, P., Vanitharani, R. & Fauquet, C. M. Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J. Virol. 78, 7465–7477 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muangsan, N., Beclin, C., Vaucheret, H. & Robertson, D. Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants. Plant J. 38, 1004–1014 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Bender, J. Chromatin-based silencing mechanisms. Curr. Opin. Plant Biol. 7, 521–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Harper, G., Hull, R., Lockhart, B. & Olszewski, N. Viral sequences integrated into plant genomes. Annu. Rev. Phytopathol. 40, 119–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Richert-Poggeler, K. R., Noreen, F., Schwarzacher, T., Harper, G. & Hohn, T. Induction of infectious petunia vein clearing (pararetro) virus from endogenous provirus in petunia. EMBO J. 22, 4836–4845 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mette, M. F. et al. Endogenous viral sequences and their potential contribution to heritable virus resistance in plants. EMBO J. 21, 461–469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004). The authors used a cloning and sequencing approach to identify several microRNAs that are encoded in the genome of the Epstein–Barr virus, which potentially target many cellular mRNAs in human cells.

    Article  CAS  PubMed  Google Scholar 

  45. Bennasser, Y., Le, S. Y., Yeung, M. L. & Jeang, K. T. HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology 1, 43 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dalmay, T., Hamilton, A. J., Rudd, S., Angell, S. & Baulcombe, D. C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543–553 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Makeyev, E. V. & Bamford, D. H. Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol. Cell 10, 1417–1427 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Vaistij, F. E., Jones, L. & Baulcombe, D. C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14, 857–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C. & Voinnet, O. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J. 22, 4523–4533 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Gazzani, S., Lawerson, T., Woodward, D., Headon, R. & Sablowski, R. A link between mRNA turnover and RNA interference in Arabidopsis. Science 306, 1046–1048 (2004). The authors provided the first experimental support for the 'aberrant RNA' model for co-suppression in plants by showing that over-accumulation of non-capped mRNAs induces their sequence-specific turnover through an RDR6-dependent RNA-silencing pathway.

    Article  CAS  PubMed  Google Scholar 

  53. Dalmay, T. D., Horsefield, R., Braunstein, T. H. & Baulcombe, D. C. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J. 20, 2069–2078 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boutet, S. et al. Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr. Biol. 13, 843–848 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu, D., Fan, B., MacFarlane, S. A. & Chen, Z. Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Mol. Plant Microbe Interact. 16, 206–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, S. J., Carter, S. A., Cole, A. B., Cheng, N. H. & Nelson, R. S. A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proc. Natl Acad. Sci. USA 101, 6297–6302 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M. & Dougherty, W. G. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5, 1749–1759 (1993). Although they largely pre-date the discovery of RNAi, the seminal experiments that are described in this classic paper have been used to formulate the first testable model for the mechanism and antiviral roles of RNA silencing in plants, with astonishing accuracy in retrospect.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Palauqui, J. -C., Elmayan, T., Pollien, J. -M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738–4745 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Voinnet, O. & Baulcombe, D. C. Systemic signalling in gene silencing. Nature 389, 553 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Voinnet, O., Lederer, C. & Baulcombe, D. C. A viral movement protein prevents systemic spread of the gene silencing signal in Nicotiana benthamiana. Cell 103, 157–167 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Havelda, Z., Hornyik, C., Crescenzi, A. & Burgyan, J. In situ characterization of Cymbidium Ringspot Tombusvirus infection-induced posttranscriptional gene silencing in Nicotiana benthamiana. J Virol. 77, 6082–6086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoo, B. C. et al. A systemic small RNA signaling system in plants. Plant Cell 16, 1979–2000 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pruss, G., Ge, X., Shi, X. M., Carrington, J. C. & Vance, V. B. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9, 859–868 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kasschau, K. D., Cronin, S. & Carrington, J. C. Genome amplification and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper component-proteinase. Virology 228, 251–262 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Anandalakshmi, R. et al. A viral suppressor of gene silencing in plants. Proc. Natl Acad. Sci. USA 95, 13079–13084 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kasschau, K. D. & Carrington, J. C. A counterdefensive strategy of plant viruses: suppression of post-transcriptional gene silencing. Cell 95, 461–470 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Brigneti, G. et al. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739–6746 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Voinnet, O., Pinto, Y. M. & Baulcombe, D. C. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses. Proc. Natl Acad. Sci. USA 96, 14147–14152 (1999). By showing that several viral pathogenicity determinants effectively inhibit RNA silencing, this work provides a rationale for the identification of many addtional RNA silencing suppressors that are encoded by plant and animal viruses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dunoyer, P., Lecellier, C. H., Parizotto, E. A., Himber, C. & Voinnet, O. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235–1250 (2004). Together with references 70 and 75, this comparative study addresses the interplay between viral silencing suppression, the siRNA and miRNA pathways and the expression of symptoms in plants. It also provides clues about the mode of action of several silencing suppressors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, J., Li, W. X., Xie, D., Peng, J. R. & Ding, S. W. Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microRNA in host gene expression. Plant Cell 16, 1302–1313 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Moissiard, G. & Voinnet, O. Viral suppression of RNA silencing. Mol. Plant Pathol. 1, 71–82 (2004).

    Article  Google Scholar 

  72. Roth, B. M., Pruss, G. J. & Vance, V. B. Plant viral suppressors of RNA silencing. Virus Res. 102, 97–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Silhavy, D. et al. A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J. 21, 3070–3080 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lakatos, L., Szittya, G., Silhavy, D. & Burgyan, J. Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J. 23, 876–884 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V. & Carrington, J. C. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 18, 1179–1186 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vargason, J. M., Szittya, G., Burgyan, J. & Tanaka Hall, T. M. Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115, 799–811 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Ye, K., Malinina, L. & Patel, D. J. Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426, 874–878 (2003). The structure of P19 homodimers that are directly bound to siRNAs is resolved in references 76 and 77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Anandalakshmi, R. et al. A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290, 142–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427, 645–649 (2004). This key paper clearly establishes the existence of negative regulatory pathways for RNAi in C. elegans , and probably in many other organisms. Such pathways might be recruited by some viral-encoded silencing suppressors, as suggested in reference 78.

    Article  CAS  PubMed  Google Scholar 

  80. Hartitz, M. D., Sunter, G. & Bisaro, D. M. The tomato golden mosaic virus transactivator (TrAP) is a single-stranded DNA and zinc-binding phosphoprotein with an acidic activation domain. Virology 263, 1–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. van Wezel, W. R. et al. Mutation of three cysteine residues in Tomato yellow leaf curl virus-China C2 protein causes dysfunction in pathogenesis and posttranscriptional gene-silencing suppression. Mol. Plant Microbe Interact. 15, 203–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Van Wezel, R., Liu, H., Wu, Z., Stanley, J. & Hong, Y. Contribution of the zinc finger to zinc and DNA binding by a suppressor of posttranscriptional gene silencing. J. Virol. 77, 696–700 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Trinks, D. et al. Suppression of silencing by geminivirus nuclear protein AC2 correlates with transactivation of host genes. J. Virol. 75, 2517–2527 (2004).

    Google Scholar 

  84. Ketting, R., Haverkamp, T., van Luenen, H. & Plasterk, R. mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Glazov, E. et al. A gene encoding an RNase D exonuclease-like protein is required for post-transcriptional silencing in Arabidopsis. Plant J. 35, 342–349 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Samuel, C. E. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lu, S. & Cullen, B. R. Adenovirus VA1 non-coding RNA can inhibit small interfering RNA and microRNA biogenesis. J. Virol. 78, 1957–1966 (2005).

    Google Scholar 

  88. Tuteja, J. H., Clough, S. J., Chan, W. C. & Vodkin, L. O. Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16, 819–835 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Senda, M. et al. Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell 16, 807–818 (2004). A straightforward example of how viral suppression of RNA silencing can directly influence an agronomic trait in plants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kasschau, K. D. et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev. Cell 4, 205–217 (2003). This important paper provides the first demonstration of a link between the expression of viral symptoms and inhibition of miRNA-guided functions.

    Article  CAS  PubMed  Google Scholar 

  91. Xie, Z., Kasschau, K. D. & Carrington, J. C. Negative feedback regulation of Dicer-like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol. 13, 784–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Tijsterman, M. & Plasterk, R. H. Dicers at RISC; the mechanism of RNAi. Cell 117, 1–3 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Schwartz, M. et al. A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol. Cell 9, 505–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Tabler, M. & Tsagris, M. Viroids: petite RNA pathogens with distinguished talents. Trends Plant Sci. 9, 339–348 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Ge, Q. et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl Acad. Sci. USA 100, 2718–2723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Boden, D., Pusch, O., Lee, F., Tucker, L. & Ramratnam, B. Human immunodeficiency virus type 1 escape from RNA interference. J. Virol. 77, 11531–11535 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Das, A. T. et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol. 78, 2601–2605 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dalmay, T., Szittya, G. & Burgyan, J. Generation of defective interfering RNA dimers of cymbidium ringspot tombusvirus. Virology 207, 510–517 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, M. B. et al. On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc. Natl Acad. Sci. USA 101, 3275–3280 (2004). The authors show how RNA silencing that is triggered by sub-viral parasites can result in symptom expression due to homology between the host and pathogen genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bitko, V. & Barik, S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol. 1, 34 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Angell, S. M. & Baulcombe, D. C. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J. 16, 3675–3684 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ratcliff, F., Harrison, B. D. & Baulcombe, D. C. A similarity between viral defense and gene silencing in plants. Science 276, 1558–1560 (1997). A classic paper that for the first time identifies RNA silencing as the causal agent of a naturally occuring antiviral response in plants.

    Article  CAS  PubMed  Google Scholar 

  103. Pfeffer, S. et al. P0 of beet Western yellows virus is a suppressor of posttranscriptional gene silencing. J. Virol. 13, 6815–6824 (2002).

    Article  CAS  Google Scholar 

  104. Saksela, K. Human viruses under attack by small inhibitory RNA. Trends Microbiol. 11, 345–347 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Ge, Q. et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl Acad. Sci. USA 101, 8676–8681 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tompkins, S. M., Lo, C. Y., Tumpey, T. M. & Epstein, S. L. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl Acad. Sci. USA 101, 8682–8686 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Delgadillo, M. O., Saenz, P., Salvador, B., Garcia, J. A. & Simon-Mateo, C. Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants. J. Gen. Virol. 85, 993–999 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Bucher, E., Hemmes, H., de Haan, P., Goldbach, R. & Prins, M. The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. J. Gen. Virol. 85, 983–991 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Lichner, Z., Silhavy, D. & Burgyan, J. Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J. Gen. Virol. 84, 975–980 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biol. 2, 70–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Billy, E., Brondani, V., Zhang, H. D., Muller, U. & Filipowicz, W. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl Acad. Sci. USA 98, 14428–14433 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Llave, C. MicroRNAs:more than a role in plant development? Mol. Plant Pathol. 5, 361–366 (2004). An insightful review, elaborating on the roles of endogenous small RNAs in plants, including the possibility that those molecules might confer antiviral immunity in some instances.

    Article  CAS  PubMed  Google Scholar 

  113. Seitz, H. et al. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nature Genet. 34, 261–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Lin, S. P. et al. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1Gtl2 imprinted cluster on mouse chromosome 12. Nature Genet. 35, 97–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Dangl, J. L. & Jones, J. D. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Durrant, W. E. & Dong, X. Systemic acquired resistance. Annu Rev. Phytopathol. 42, 185–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Li, H. -W. et al. Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO J. 18, 2683–2691 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Scholthof, H. B., Scholthof, K. B. G. & Jackson, A. O. Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato virus X vector. Plant Cell 7, 1157–1172 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ji, L. H. & Ding, S. W. The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol. Plant Microbe Interact. 14, 715–724 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Pruss, G. J. et al. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virology 320, 107–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Stokes, T. L., Kunkel, B. N. & Richards, E. J. Epigenetic variation in Arabidopsis disease resistance. Genes Dev. 16, 171–182 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Thomas, C. L., Leh, V., Lederer, C. & Maule, A. J. Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology 306, 33–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Reed, J. C. et al. Suppressor of RNA silencing encoded by Beet yellows virus. Virology 306, 203–209 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Lu, R. et al. Three distinct suppressors of RNA silencing encoded by a 20-kb viral genome. Proc. Natl Acad. Sci. USA 101, 15742–15747 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu, L., Grainger, J., Canizares, M. C., Angell, S. M. & Lomonossoff, G. P. Cowpea mosaic virus RNA-1 acts as an amplicon whose effects can be counteracted by a RNA-2-encoded suppressor of silencing. Virology 323, 37–48 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Yelina, N. E., Savenkov, E. I., Solovyev, A. G., Morozov, S. Y. & Valkonen, J. P. Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J. Virol. 76, 12981–12991 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dunoyer, P. et al. Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus. Plant J. 29, 555–567 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Kubota, K., Tsuda, S., Tamai, A. & Meshi, T. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J. Virol. 77, 11016–11026 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bucher, E., Sijen, T., De Haan, P., Goldbach, R. & Prins, M. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J. Virol. 77, 1329–1336 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank all my laboratory colleagues for fruitful discussions. I am particularly grateful to S. Wei Ding, B. Cullen, T. Hohn and M. Poogin for providing access to data before their publication. Many thanks also to J. Carrington, E. Chapman, M.-B. Wang, P. Waterhouse, T. Hall, J. Vargason, L. Chaerle and C. Masuta for providing many of the items used for illustrations. Work in my laboratory is supported by the Centre National de la Recherche Scientifique, the Federation of European Biochemical Societies and the European Molecular Biological Organisation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Swiss-Prot

DCR1

AGO1

AGO2

FURTHER INFORMATION

Nature web focus — RNA interference animation

Glossary

EPISOMES

Genetic elements that can replicate independently in eukaryotic nuclei.

VIROID

An autonomously replicating subviral pathogen of plants with a circular, rod-like RNA genome that contains no ORF. Viroids account for some of the most devastating diseases of plants.

SALICYLIC ACID

A compound that is involved in plant defence against insects and pathogens; it has intrinsic anti-microbial properties.

PATHOGENICITY DETERMINANT

A factor that is not strictly required for virus replication, but is nevertheless needed for its efficient accumulation at the cellular or systemic level.

ECOTYPE

A population within a species that has developed distinct morphological or physiological characteristics as an adaptation to a specific environment, and which persists when individuals are moved to a different environment.

PROTOPLAST

A plant cell from which the cell wall has been removed by mechanical or enzymatic means. Protoplasts can be prepared from primary tissues of most plant organs, as well as from cultured plant cells.

MERISTEM

A plant tissue that is usually made up of small cells that can divide indefinitely. Meristems give rise either to similar cells or to cells that differentiate into mature tissues, including reproductive tissues that produce seeds and pollen.

INTERFERONS

(IFNs). A group of glycoproteins, produced by various cell types, that prevent viral replication in newly infected cells and, in some cases, modulate specific cellular functions. They are produced in response to a range of stimuli, including exposure to dsRNA.

HUMORAL IMMUNE RESPONSE

A bodily defence reaction that is mediated by antibodies (produced by B cells) that specifically neutralize invading antigens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voinnet, O. Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6, 206–220 (2005). https://doi.org/10.1038/nrg1555

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing