Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Animal models of human disease: zebrafish swim into view

Key Points

  • Zebrafish have long contributed to biological and medical research, especially as a model for developmental and toxicological studies.

  • Particularly useful attributes of zebrafish include: ex vivo fertilization and embryogenesis; optical transparency of embryos and larvae; rapid embryological development; cheap housing costs; and genetic tractability.

  • Genetic techniques that have been developed for zebrafish make them an attractive vertebrate model for efficient, cost-effective, invertebrate-style forward genetics. Genetic resources include a genome-sequencing project that is nearing completion.

  • Large-scale chemical and insertional mutagenic screens have generated many zebrafish mutants with defects that are analogous to human genetic diseases, at the molecular and cellular-pathological levels.

  • Reverse-genetic techniques such as TILLING (targeting induced local lesions in genomes) allow the recovery of zebrafish with mutant disease-gene alleles, overcoming the lack of a technique for gene targeting by homologous recombination.

  • Transgenic zebrafish disease models with tissue-restricted disease-gene expression and fluorescently marked cell types enable disease mechanisms to be studied in vivo.

  • Zebrafish are proving to be good models of several acquired diseases including cancer, inflammation and infection.

  • Zebrafish are an emerging model for therapeutic drug discovery by 'chemical genetics', whereby chemical libraries are screened to find small molecules that suppress disease-related phenotypes.

Abstract

Despite the pre-eminence of the mouse in modelling human disease, several aspects of murine biology limit its routine use in large-scale genetic and therapeutic screening. Many researchers who are interested in an embryologically and genetically tractable disease model have now turned to zebrafish. Zebrafish biology allows ready access to all developmental stages, and the optical clarity of embryos and larvae allow real-time imaging of developing pathologies. Sophisticated mutagenesis and screening strategies on a large scale, and with an economy that is not possible in other vertebrate systems, have generated zebrafish models of a wide variety of human diseases. This Review surveys the achievements and potential of zebrafish for modelling human diseases and for drug discovery and development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generating zebrafish disease models.
Figure 2: The application of chemical genetics in zebrafish.

Similar content being viewed by others

References

  1. Nolan, P. M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Hrabe de Angelis, M.H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Michaud, E. J. et al. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice. BMC Genomics 6, 164 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carpinelli, M. R. et al. Suppressor screen in Mpl−/− mice: c-Myb mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. Proc. Natl Acad. Sci. USA 101, 6553–6558 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coghill, E. L. et al. A gene-driven approach to the identification of ENU mutants in the mouse. Nature Genet. 30, 255–256 (2002).

    Article  PubMed  Google Scholar 

  6. Quwailid, M. M. et al. A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm. Genome 15, 585–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Roosen-Runge, E. Observations of the early development of the zebrafish. Brachydanio rerio. Anat. Rec. 70, S103 (1937).

    Google Scholar 

  8. Laale, H. W. The biology and use of zebrafish, Brachydanio rerio in fisheries research. A literature review. J. Fish. Biol. 10, 121–174 (1977).

    Article  Google Scholar 

  9. Streisinger, G., Walker, C., Dower, N., Knauber, D. & Singer, F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293–296 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. Chakrabarti, S., Streisinger, G., Singer, F. & Walker, C. Frequency of γ-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, Brachydanio rerio. Genetics 103, 109–123 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Walker, C. & Streisinger, G. Induction of mutations by γ-rays in pregonial germ cells of zebrafish embryos. Genetics 103, 125–136 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Grunwald, D. J. & Streisinger, G. Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet. Res. 59, 103–116 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Solnica-Krezel, L., Schier, A. F. & Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401–1420 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stuart, G. W., McMurray, J. V. & Westerfield, M. Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103, 403–412 (1988).

    CAS  PubMed  Google Scholar 

  15. Streisinger, G., Singer, F., Walker, C., Knauber, D. & Dower, N. Segregation analyses and gene-centromere distances in zebrafish. Genetics 112, 311–319 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    CAS  PubMed  Google Scholar 

  17. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996). References 16 and 17 are back-to-back publications of the first two large ENU mutagenesis forward-genetic screens in zebrafish, resulting in over a thousand mutants with specific developmental phenotypes.

    CAS  PubMed  Google Scholar 

  18. Amsterdam, A. et al. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 13, 2713–2724 (1999). Describes the first large-scale insertional mutagenesis screen in zebrafish.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amsterdam, A. & Hopkins, N. Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet. 22, 473–478 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Udvadia, A. J. & Linney, E. Windows into development: historic, current, and future perspectives on transgenic zebrafish. Dev. Biol. 256, 1–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Wienholds, E., Schulte-Merker, S., Walderich, B. & Plasterk, R. H. Target-selected inactivation of the zebrafish rag1 gene. Science 297, 99–102 (2002). The first report of TILLING for a zebrafish mutant allele.

    Article  CAS  PubMed  Google Scholar 

  22. Russell, W. L. et al. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Natl Acad. Sci. USA 76, 5818–5819 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amsterdam, A. et al. Identification of 315 genes essential for early zebrafish development. Proc. Natl Acad. Sci. USA 101, 12792–12797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bassett, D. I. et al. Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development 130, 5851–5860 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, H., Long, Q., Marty, S. D., Sassa, S. & Lin, S. A zebrafish model for hepatoerythropoietic porphyria. Nature Genet. 20, 239–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Childs, S. et al. Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria. Curr. Biol. 10, 1001–1004 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Piotrowski, T. et al. The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans. Development 130, 5043–5052 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Paw, B. H. et al. Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nature Genet. 34, 59–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Sun, Z. et al. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131, 4085–4093 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Bahadori, R. et al. The zebrafish fade out mutant: a novel genetic model for Hermansky–Pudlak syndrome. Invest. Ophthalmol. Vis. Sci. 47, 4523–4531 (2006).

    Article  PubMed  Google Scholar 

  31. Siu, B. L. et al. Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation 99, 1022–1026 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Xu, X. et al. Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nature Genet. 30, 205–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Gerull, B. et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nature Genet. 30, 201–204 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Haramis, A. P. et al. Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia. EMBO Rep. 7, 444–449 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kato, S. et al. A computer image processing system for quantification of zebrafish behavior. J. Neurosci. Methods 134, 1–7 (2004).

    Article  PubMed  Google Scholar 

  36. Levin, E. D., Bencan, Z. & Cerutti, D. T. Anxiolytic effects of nicotine in zebrafish. Physiol. Behav. 54–58 (2006).

  37. Levin, E. D. & Chen, E. Nicotinic involvement in memory function in zebrafish. Neurotoxicol. Teratol. 26, 731–735 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Levin, E. D., Chrysanthis, E., Yacisin, K. & Linney, E. Chlorpyrifos exposure of developing zebrafish: effects on survival and long-term effects on response latency and spatial discrimination. Neurotoxicol. Teratol. 25, 51–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Darland, T. & Dowling, J. E. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc. Natl Acad. Sci. USA 98, 11691–11696 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu, L., Tucci, V., Kishi, S. & Zhdanova, I. V. Cognitive aging in zebrafish. PLoS ONE 1, e14 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lockwood, B., Bjerke, S., Kobayashi, K. & Guo, S. Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharmacol. Biochem. Behav. 77, 647–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. McCallum, C. M., Comai, L., Greene, E. A. & Henikoff, S. Targeted screening for induced mutations. Nature Biotechnol. 18, 455–457 (2000).

    Article  CAS  Google Scholar 

  43. Wienholds, E. et al. Efficient target-selected mutagenesis in zebrafish. Genome Res. 13, 2700–2707 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sood, R. et al. Methods for reverse genetic screening in zebrafish by resequencing and TILLING. Methods 39, 220–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Berghmans, S. et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc. Natl Acad. Sci. USA 102, 407–412 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hurlstone, A. F. et al. The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature 425, 633–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Hammerschmidt, M., Blader, P. & Strahle, U. Strategies to perturb zebrafish development. Methods Cell Biol. 59, 87–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000). This paper demonstrated the utility of morpholino antisense oligonucleotides for transient knockdown of gene expression in zebrafish.

    Article  CAS  PubMed  Google Scholar 

  49. Ando, H., Furuta, T., Tsien, R. Y. & Okamoto, H. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nature Genet. 28, 317–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Winkler, C. et al. Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes Dev. 19, 2320–2330 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brownlie, A. et al. Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nature Genet. 20, 244–250 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Fan, L. & Collodi, P. Zebrafish embryonic stem cells. Methods Enzymol. 418, 64–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Langenau, D. M. et al. Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 102, 6068–6073 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kawakami, K. Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. Methods Cell Biol. 77, 201–222 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Balciunas, D. et al. Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet. 2, e169 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beckwith, L. G., Moore, J. L., Tsao-Wu, G. S., Harshbarger, J. C. & Cheng, K. C. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio). Lab. Invest. 80, 379–385 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Spitsbergen, J. M. et al. Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N'-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol. Pathol. 28, 716–725 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Mizgireuv, I. V. & Revskoy, S. Y. Transplantable tumor lines generated in clonal zebrafish. Cancer Res. 66, 3120–3125 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Moore, J. L., Rush, L. M., Breneman, C., Mohideen, M. A. & Cheng, K. C. Zebrafish genomic instability mutants and cancer susceptibility. Genetics 174, 585–600 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shepard, J. L. et al. A mutation in separase causes genome instability and increased susceptibility to epithelial cancer. Genes Dev. 21, 55–59 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shepard, J. L. et al. A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc. Natl Acad. Sci. USA 102, 13194–13199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Spitsbergen, J. M. & Kent, M. L. The state of the art of the zebrafish model for toxicology and toxicologic pathology research — advantages and current limitations. Toxicol. Pathol. 31, S62–S87 (2003).

    Google Scholar 

  63. Langenau, D. M. et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 299, 887–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Langenau, D. M. et al. Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. Blood 105, 3278–3285 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Sabaawy, H. E. et al. TEL–AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 103, 15166–15171 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, J. et al. NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia 21, 462–471 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Patton, E. E. et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr. Biol. 15, 249–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Topczewska, J. M. et al. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nature Med. 12, 925–932 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Haldi, M., Ton, C., Seng, W. L. & McGrath, P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9, 139–151 (2006).

    Article  PubMed  Google Scholar 

  70. Lamason, R. L. et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782–1786 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Tsai, T., Vu, C. & Henson, D. E. Cutaneous, ocular and visceral melanoma in African Americans and Caucasians. Melanoma Res. 15, 213–217 (2005).

    Article  PubMed  Google Scholar 

  72. Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Huang, C. C., Lawson, N. D., Weinstein, B. M. & Johnson, S. L. reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins. Dev. Biol. 264, 263–274 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuchler, A. M. et al. Development of the zebrafish lymphatic system requires VEGFC signaling. Curr. Biol. 16, 1244–1248 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Yaniv, K. et al. Live imaging of lymphatic development in the zebrafish. Nature Med. 12, 711–716 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Stern, H. M. & Zon, L. I. Cancer genetics and drug discovery in the zebrafish. Nature Rev. Cancer 3, 533–539 (2003).

    Article  CAS  Google Scholar 

  77. Stern, H. M. et al. Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nature Chem. Biol. 1, 366–370 (2005).

    Article  CAS  Google Scholar 

  78. Nelms, K. A. & Goodnow, C. C. Genome-wide ENU mutagenesis to reveal immune regulators. Immunity 15, 409–418 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Kasahara, M., Suzuki, T. & Pasquier, L. D. On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates. Trends Immunol. 25, 105–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. van der Sar, A. M., Appelmelk, B. J., Vandenbroucke-Grauls, C. M. & Bitter, W. A star with stripes: zebrafish as an infection model. Trends Microbiol. 12, 451–457 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Meijer, A. H. et al. Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Mol. Immunol. 42, 1185–1203 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Herbomel, P., Thisse, B. & Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126, 3735–3745 (1999).

    CAS  PubMed  Google Scholar 

  83. Lieschke, G. J., Oates, A. C., Crowhurst, M. O., Ward, A. C. & Layton, J. E. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 98, 3087–3096 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Bennett, C. M. et al. Myelopoiesis in the zebrafish, Danio rerio. Blood 98, 643–651 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Altmann, S. M., Mellon, M. T., Distel, D. L. & Kim, C. H. Molecular and functional analysis of an interferon gene from the zebrafish, Danio rerio. J. Virol. 77, 1992–2002 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oates, A. C. et al. Zebrafish stat3 is expressed in restricted tissues during embryogenesis and stat1 rescues cytokine signaling in a STAT1-deficient human cell line. Dev. Dyn. 215, 352–370 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Schorpp, M. et al. Conserved functions of Ikaros in vertebrate lymphocyte development: genetic evidence for distinct larval and adult phases of T cell development and two lineages of B cells in zebrafish. J. Immunol. 177, 2463–2476 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Traver, D. et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nature Immunol. 4, 1238–1246 (2003).

    Article  CAS  Google Scholar 

  89. Ward, A. C. et al. The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood 102, 3238–3240 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Redd, M. J., Kelly, G., Dunn, G., Way, M. & Martin, P. Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil. Cytoskeleton 63, 415–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Renshaw, S. A. et al. A transgenic zebrafish model of neutrophilic inflammation. Blood 108, 3976–3978 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Mathias, J. R. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 80, 1281–1288 (2006). References 90–92 demonstrate the use of transgenic zebrafish with fluorescent leukocytes to study cellular processes in acute inflammation in vivo.

    Article  CAS  PubMed  Google Scholar 

  93. Davis, J. M. et al. Real-time visualization of mycobacterium–macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17, 693–702 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. van der Sar, A. M. et al. Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol. 5, 601–611 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Watral, V. & Kent, M. L. Pathogenesis of Mycobacterium spp. in zebrafish (Danio rerio) from research facilities. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 145, 55–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Swaim, L. E. et al. Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect. Immun. 74, 6108–6117 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Peterson, R. T., Link, B. A., Dowling, J. E. & Schreiber, S. L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl Acad. Sci. USA 97, 12965–12969 (2000). The first demonstration of the feasibility of using zebrafish embryos for chemical library bioactivity screening.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Burns, C. G. et al. High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nature Chem. Biol. 1, 263–264 (2005). The first description of a whole-animal based high-throughput screening tool for a dynamic physiological function using fluorescent zebrafish.

    Article  CAS  Google Scholar 

  99. Margolis, J. & Plowman, G. D. Overcoming the gridlock in discovery research. Nature Biotechnol. 22, 522–524 (2004).

    Article  CAS  Google Scholar 

  100. Peterson, R. T. et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nature Biotechnol. 22, 595–599 (2004).

    Article  CAS  Google Scholar 

  101. Hong, C. C., Peterson, Q. P., Hong, J. Y. & Peterson, R. T. Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Curr. Biol. 16, 1366–1372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Weinstein, B. M., Stemple, D. L., Driever, W. & Fishman, M. C. gridlock, a localized heritable vascular patterning defect in the zebrafish. Nature Med. 1, 1143–1147 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Zhong, T. P., Rosenberg, M., Mohideen, M. A., Weinstein, B. & Fishman, M. C. gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287, 1820–1824 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Zhong, T. P., Childs, S., Leu, J. P. & Fishman, M. C. Gridlock signalling pathway fashions the first embryonic artery. Nature 414, 216–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Murphey, R. D., Stern, H. M., Straub, C. T. & Zon, L. I. A chemical genetic screen for cell cycle inhibitors in zebrafish embryos. Chem. Biol. Drug Des. 68, 213–219 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Imamura, S. & Kishi, S. Molecular cloning and functional characterization of zebrafish ATM. Int. J. Biochem. Cell Biol. 37, 1105–1116 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Amsterdam, A. et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol. 2, e139 (2004). A new hypothesis about a mechanism of carcinogenesis arising out of the broad unbiased genomic overview of a large-scale insertional mutagenesis screen.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bayliss, P. E. et al. Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nature Chem. Biol. 2, 265–273 (2006).

    Article  CAS  Google Scholar 

  109. Rawls, J. F. & Johnson, S. L. Zebrafish kit mutation reveals primary and secondary regulation of melanocyte development during fin stripe regeneration. Development 127, 3715–3724 (2000).

    CAS  PubMed  Google Scholar 

  110. Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Traver, D. et al. Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood 104, 1298–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Langenau, D. M. et al. In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc. Natl Acad. Sci. USA 101, 7369–7374 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Donovan, A. et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Fleming, R. E. & Sly, W. S. Ferroportin mutation in autosomal dominant hemochromatosis: loss of function, gain in understanding. J. Clin. Invest. 108, 521–522 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. van der Ven, L. T., van den Brandhof, E. J., Vos, J. H., Power, D. M. & Wester, P. W. Effects of the antithyroid agent propylthiouracil in a partial life cycle assay with zebrafish. Environ. Sci. Technol. 40, 74–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Elsalini, O. A. & Rohr, K. B. Phenylthiourea disrupts thyroid function in developing zebrafish. Dev. Genes Evol. 212, 593–598 (2003).

    CAS  PubMed  Google Scholar 

  118. Lam, S. H., Sin, Y. M., Gong, Z. & Lam, T. J. Effects of thyroid hormone on the development of immune system in zebrafish. Gen. Comp. Endocrinol. 142, 325–335 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Biga, P. R. & Goetz, F. W. Zebrafish and giant danio as models for muscle growth: determinate vs. indeterminate growth as determined by morphometric analysis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1327–R1337 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Goldsmith, M. I., Iovine, M. K., O' Reilly-Pol, T. & Johnson, S. L. A developmental transition in growth control during zebrafish caudal fin development. Dev. Biol. 296, 450–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Jagadeeswaran, P. & Sheehan, J. P. Analysis of blood coagulation in the zebrafish. Blood Cells Mol. Dis. 25, 239–249 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Spence, R., Jordan, W. C. & Smith, C. Genetic analysis of male reproductive success in relation to density in the zebrafish, Danio rerio. Front. Zool. 3, 5 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Amanuma, K., Takeda, H., Amanuma, H. & Aoki, Y. Transgenic zebrafish for detecting mutations caused by compounds in aquatic environments. Nature Biotechnol. 18, 62–65 (2000).

    Article  CAS  Google Scholar 

  124. Yabu, T. et al. Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. Blood 106, 125–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Liu, F. J., Wang, J. S. & Theodorakis, C. W. Thyrotoxicity of sodium arsenate, sodium perchlorate, and their mixture in zebrafish Danio rerio. Environ. Sci. Technol. 40, 3429–3436 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Alexander, J. Horsfield, J. Heath, J. Postlethwait and R. Currie for their helpful comments on aspects of the manuscript. G.J.L. gratefully acknowledges the support of the Department of Clinical Haematology and Medical Oncology and the Bone Marrow Research Laboratories at the Royal Melbourne Hospital, Australia. G.J.L.'s work using zebrafish to model haematological disease is supported by the National Health and Medical Research Council (NHMRC, Australia) and the National Institutes of Health (NIH, USA). P.D.C's work on using zebrafish to model muscular dystrophy is supported by the Muscular Dystrophy Association (USA), the Human Frontier Science Program and NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Graham J. Lieschke or Peter D. Currie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Duchenne muscular dystrophy

FURTHER INFORMATION

Graham Lieschke's homepage

Peter Currie's homepage

Sanger Centre

The Danio rerio Sequencing Project

The Zebrafish Model Organism Database (ZFIN)

Trans-NIH Zebrafish Initiative

Zebrafish International Resource Center

ZF-MODELS: Zebrafish Models for Human Development and Disease

Znomics

Glossary

Shotgun and minimum tiling path sequencing

Two approaches to whole-genome sequencing. Shotgun sequencing refers to the random acquisition of sequence. Minimum tiling path sequencing refers to the collection of sequence in an ordered, directed manner, such as the systematic sequencing of an entire BAC clone from one end to the other.

Candidate gene approach

Characterizing mutants by focusing attention on individual genes that, based on some prior information, might plausibly underlie the mutant phenotype, as compared to a systematic positional cloning strategy.

Hepatoerythropoietic porphyria

A congenital syndrome that is characterized clinically by light-sensitive dermatitis and biochemically by high urinary uroporphyrin excretion, due to defects in the gene encoding uroporphyrinogen decarboxylase.

Erythropoietic protoporphyria

A congenital syndrome that results from overproduction of protopophyrin due to a defect in the haem-synthesis enzyme ferrochelatase. It is characterized by light-sensitive dermatitis, mild anaemia and occasionally liver dysfunction and neuropathy.

DiGeorge syndrome

A syndrome that combines craniofacial, aortic, cardiac, thymic and auditory developmental defects, many of which are attributable to haploinsufficiency of the TBX1 gene.

Congenital dyserythropoietic anaemia type 2

An hereditary anaemia characterized by binucleate marrow erythroid precursors, ineffective erythropoiesis, and acidified-serum-sensitive red cells (a positive Ham test). Although it maps to 20q11.2, the genetic basis is unknown.

Polycystic kidney diease

A genetically heterogenous group of disorders that are characterized by multiple renals cysts, associated with liver cysts and cerebral aneurysms.

Hermansky–Pudlak syndrome

A genetically heterogeneous syndrome that combines albinism, a bleeding diathesis and lysosomal storage defects with characteristic pigmented reticuloendothelial cells.

Familial dilated cardiomyopathy

A spectrum of familial cardiomyopathies, a subset of which have been associated with mutations of the TTN gene.

Prodromal disease phase

A phase of a disease in which a specific early symptom prefigures the full development of a disease, or a symptom indicates that a disease attack is imminent.

Conditioned place preference test

A psychological test to determine whether the regular association of a particular stimulus with a particular location leads to an alteration in behaviour that favours the location, regardless of whether the stimulus is present.

Caging

An experimental approach that delivers reagents in an inactive 'caged' form that can later be activated by a chemical, physical or genetic 'uncaging' event.

Spinal muscular atrophy

A collection of syndromes caused by mutations in the SMN1 gene, characterized by spinal motor neuron degeneration causing muscle weakness and wasting.

Congenital sideroblastic anaemia

A congenital anaemia that is morphologically characterized by marrow red cell precursors with aggregates of non-haem iron around their nuclei, which is detectable by Prussian blue staining.The condition results from mutations in the gene encoding the haeme-synthesis enzyme δ-aminolevulinate synthetase.

Mosaic eye assay

A genetic assay based on the identification of different genetically determined pigmentation phenotypes in adjacent retinal pigment epithelium cells.

Coarctation of the aorta

A disorder, usually congenital, resulting from a constriction in the thoracic aorta, typically in the vicinity of the ductus arteriosus. Upper-limb hypertension is a clinical characteristic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieschke, G., Currie, P. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8, 353–367 (2007). https://doi.org/10.1038/nrg2091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing