Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Histone lysine demethylases: emerging roles in development, physiology and disease

Abstract

The discovery of an increasing number of histone demethylases has highlighted the dynamic nature of the regulation of histone methylation, a key chromatin modification that is involved in eukaryotic genome and gene regulation. A flurry of recent studies has offered glimpses into the specific biological roles of these enzymes and their potential connections to human diseases. These advances have also catalysed a resurgence of interest in epigenetic regulators as potential therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic regulation of histone methylation.

Similar content being viewed by others

References

  1. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Margueron, R., Trojer, P. & Reinberg, D. The key to development: interpreting the histone code? Curr. Opin. Genet. Dev. 15, 163–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603–614 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Shi, Y. & Whetstine, J. R. Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell 25, 1–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Klose, R. J., Kallin, E. M. & Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nature Rev. Genet. 7, 715–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, M. G. et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 30 August 2007 (doi:10.1126/science.1149042).

    Article  CAS  PubMed  Google Scholar 

  8. Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 22 August 2007 (doi:10.1038/nature06145).

    Article  CAS  PubMed  Google Scholar 

  9. De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 5 September 2007 (doi:10.1016/j.cell.2007.08.019).

    Article  CAS  PubMed  Google Scholar 

  10. Lan, F. et al. A histone H3 lysine 27 demthylase regulates animal posterior development. Nature 12 September 2007 (epub ahead of print).

  11. Wang, J. et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446, 882–887 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Di Stefano, L., Ji, J. Y., Moon, N. S., Herr, A. & Dyson, N. Mutation of Drosophila Lsd1 disrupts H3-K4 methylation, resulting in tissue-specific defects during development. Curr. Biol. 17, 808–812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He, Y., Michaels, S. D. & Amasino, R. M. Regulation of flowering time by histone acetylation in Arabidopsis. Science 302, 1751–1754 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Eimer, S., Lakowski, B., Donhauser, R. & Baumeister, R. Loss of spr-5 bypasses the requirement for the C.elegans presenilin sel-12 by derepressing hop-1. EMBO J. 21, 5787–5796 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jarriault, S. & Greenwald, I. Suppressors of the egg-laying defective phenotype of sel-12 presenilin mutants implicate the CoREST co-repressor complex in LIN-12/Notch signalling in C. elegans. Genes Dev. 16, 2713–2728 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saleque, S., Kim, J., Rooke, H. M. & Orkin, S. H. Epigenetic regulation of haematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol. Cell 27, 562–572 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Bassets, I. et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 128, 505–518 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Godmann, M. et al. Dynamic regulation of histone H3 methylation at lysine 4 in mammalian spermatogenesis. Biol. Reprod. 18 July 2007 (doi:10.1095/biolreprod.107.062265).

    Article  CAS  PubMed  Google Scholar 

  19. Gildea, J. J., Lopez, R. & Shearn, A. A screen for new trithorax group genes identified little imaginal discs, the Drosophila melanogaster homologue of human retinoblastoma binding protein 2. Genetics 156, 645–663 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Secombe, J., Li, L., Carlos, L. & Eisenman, R. N. The Trithorax group protein LID is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev. 21, 537–551 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Czermin, B. et al. Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Trojer, P. & Reinberg, D. Histone lysine demethylases and their impact on epigenetics. Cell 125, 213–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Lan, F. et al. S. pombe LSD1 homologues regulate heterochromatin propagation and euchromatic gene transcription. Mol. Cell 26, 89–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Opel, M. et al. Genome-wide studies of histone demethylation catalysed by the fission yeast homologues of mammalian LSD1. PLoS ONE 2, e386 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gordon, M. et al. Genome-wide dynamics of SAPHIRE, an essential complex for gene activation and chromatin boundaries. Mol. Cell. Biol. 27, 4058–4069 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Rudolph, T. et al. Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homologue SU(VAR)3–3. Mol. Cell 26, 103–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Yamane, K. et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125, 483–495 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Wissmann, M. et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nature Cell Biol. 9, 347–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. A signature motif in transcriptinal co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Yamane, K. et al. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol. Cell 25, 801–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, J. W., Choi, H. S., Gyuris, J., Brent, R. & Moore, D. D. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol. Endocrinol. 9, 243–254 (1995).

    CAS  PubMed  Google Scholar 

  36. Schneider, R., Bannister, A. J. & Kouzarides, T. Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem. Sci. 27, 396–402 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Kahl, P. et al. Androgen receptor co-activators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res. 66, 11341–11347 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Scoumanne, A. & Chen, X. The lysine-specific demethylase 1 is required for cell proliferation in both p53-dependent and -independent manners. J. Biol. Chem. 282, 15471–15475 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Bradley, C. et al. Carcinogen-induced histone alteration in normal human mammary epithelial cells. Carcinogenesis 29 April 2007 (doi:10.1093/carcin/bgm100).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, M. G., Wynder, C., Schmidt, D. M., McCafferty, D. G. & Shiekhattar, R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem. Biol. 13, 563–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Huang, Y. et al. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc. Natl Acad. Sci. USA 104, 8023–8028 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu, P. J. et al. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically upregulated in breast cancer. J. Biol. Chem. 274, 15633–15645 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Barrett, A. et al. PLU-1 nuclear protein, which is upregulated in breast cancer, shows restricted expression in normal human adult tissues: a new cancer/testis antigen? Int. J. Cancer 101, 581–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, Z. Q. et al. Identification of a novel gene, GASC1, within an amplicon at 9p23–24 frequently detected in esophageal cancer cell lines. Cancer Res. 60, 4735–4739 (2000).

    CAS  PubMed  Google Scholar 

  46. Klose, R. J. et al. The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128, 889–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Christensen, J. et al. RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 128, 1063–1076 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Fattaey, A. R. et al. Characterization of the retinoblastoma binding proteins RBP1 and RBP2. Oncogene 8, 3149–3156 (1993).

    CAS  PubMed  Google Scholar 

  49. Cloos, P. A. et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Tsuneoka, M., Koda, Y., Soejima, M., Teye, K. & Kimura, H. A novel MYC target gene, Mina53, that is involved in cell proliferation. J. Biol. Chem. 277, 35450–35459 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Tsuneoka, M. et al. MINA53 as a potential prognostic factor for esophageal squamous cell carcinoma. Clin. Cancer Res. 10, 7347–7356 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Teye, K. et al. Increased expression of a MYC target gene MINA53 in human colon cancer. Am. J. Pathol. 164, 205–216 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suzuki, C. et al. Identification of MYC-associated protein with JmjC domain as a novel therapeutic target oncogene for lung cancer. Mol. Cancer Ther. 6, 542–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Suzuki, T., Minehata, K., Akagi, K., Jenkins, N. A. & Copeland, N. G. Tumour suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. Embo J. 25, 3422–3431 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Whetstine, J. R. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Jensen, L. R. et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am. J. Hum. Genet. 76, 227–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Tzschach, A. et al. Novel JARID1C/SMCX mutations in patients with X-linked mental retardation. Hum. Mutat. 27, 389 (2006).

    Article  PubMed  Google Scholar 

  58. Iwase, S. et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128, 1077–1088 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Tahiliani, M. et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature (2007).

  60. Abidi, F., Miano, M., Murray, J. & Schwartz, C. A novel mutation in the PHF8 gene is associated with X-linked mental retardation with cleft lip/cleft palate. Clin. Genet. 72, 19–22 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Laumonnier, F. et al. Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J. Med. Genet. 42, 780–786 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koivisto, A. M. et al. Screening of mutations in the PHF8 gene and identification of a novel mutation in a Finnish family with XLMR and cleft lip/cleft palate. Clin. Genet. 72, 145–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Fiala, J. C., Spacek, J. & Harris, K. M. Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res. Brain Res. Rev. 39, 29–54 (2002).

    Article  PubMed  Google Scholar 

  64. Ropers, H. H. & Hamel, B. C. X-linked mental retardation. Nature Rev. Genet. 6, 46–57 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks A. Shilatiford for helpful discussions, and acknowledges support from the US National Institutes of Health (grant numbers GM071004 and NCI118487).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet 8, 829–833 (2007). https://doi.org/10.1038/nrg2218

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing