Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Psychiatric genetics: progress amid controversy

Key Points

  • Most psychiatric disorders are highly heritable, yet few reproducible genetic risk factors have been identified by linkage analysis and candidate gene or genome-wide association studies.

  • Large genomic rearrangements have been found in a subset of patients with autism and schizophrenia, suggesting that recurrent and/or new mutations are involved in psychiatric disorders.

  • Several confirmed genetic risk factors of relevance to psychiatric disorders are with endophenotypes — that is, with quantitative phenotypes related to psychiatric disorders — rather than with diagnoses themselves.

  • The incorporation of environmental risk factors into analysis has helped to elucidate and identify some genetic risk factors. Longitudinal studies will be needed to identify gene-by-environment effects.

  • Psychiatric symptoms have a role in some Mendelian disorders that have known causes.

  • Unique families with rare syndromes have led to the identification of some common genetic risk variants.

  • The genetics of psychiatric disorders is complex and needs to be approached from several angles. It is therefore insufficient to focus only on linkage and association studies of clinical categories.

  • Increased sample size and meta-analyses of large existing studies might allow the identification of common risk variants of psychiatric disorders.

  • Future work will need to incorporate additional factors: alternative phenotypes; recurrent new mutations and rare, 'private' mutations that are not detectable by genome-wide association; the interaction of environment with genetic risk factors; and, by bioinformatic means, our growing knowledge of expression differences and biological pathways.

Abstract

Several psychiatric disorders — such as bipolar disorder, schizophrenia and autism — are highly heritable, yet identifying their genetic basis has been challenging, with most discoveries failing to be replicated. However, inroads have been made by the incorporation of intermediate traits (endophenotypes) and of environmental factors into genetic analyses, and through the identification of rare inherited variants and novel structural mutations. Current efforts aim to increase sample sizes by gathering larger samples for case–control studies or through meta-analyses of such studies. More attention on unique families, rare variants, and on incorporating environment and the emerging knowledge of biological function and pathways into genetic analysis is warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Psychiatric disorders overlap and might be extremes of personality traits.
Figure 2: Interacting genetic and environmental risk factors for depression.

Similar content being viewed by others

References

  1. Plomin, R., Owen, M. J. & McGuffin, P. The genetic basis of complex human behaviors. Science 264, 1733–1739 (1994). This paper reviews the evidence from family, twin and adoption studies for a genetic basis of behaviour and psychiatric disorders.

    Article  CAS  PubMed  Google Scholar 

  2. Slater, E. The inheritance of manic-depressive insanity. Proc. R. Soc. Med. 29, 39–48 (1936).

    Google Scholar 

  3. McGuffin, P. et al. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch. Gen. Psychiatry 60, 497–502 (2003).

    Article  PubMed  Google Scholar 

  4. Sullivan, P. F., Kendler, K. S. & Neale, M. C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60, 1187–1192 (2003).

    Article  PubMed  Google Scholar 

  5. Gupta, A. R. & State, M. W. Recent advances in the genetics of autism. Biol. Psychiatry 61, 429–437 (2007).

    Article  PubMed  Google Scholar 

  6. Kieseppa, T., Partonen, T., Haukka, J., Kaprio, J. & Lonnqvist, J. High concordance of bipolar I disorder in a nationwide sample of twins. Am. J. Psychiatry 161, 1814–1821 (2004).

    Article  PubMed  Google Scholar 

  7. Bespalova, I. N. & Buxbaum, J. D. Disease susceptibility genes for autism. Ann. Med. 35, 274–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Locatelli, I., Lichtenstein, P. & Yashin, A. I. The heritability of breast cancer: a Bayesian correlated frailty model applied to Swedish twins data. Twin Res. 7, 182–191 (2004).

    Article  PubMed  Google Scholar 

  9. Schildkraut, J. M., Risch, N. & Thompson, W. D. Evaluating genetic association among ovarian, breast, and endometrial cancer: evidence for a breast/ovarian cancer relationship. Am. J. Hum. Genet. 45, 521–529 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wirdefeldt, K., Gatz, M., Schalling, M. & Pedersen, N. L. No evidence for heritability of Parkinson disease in Swedish twins. Neurology 63, 305–311 (2004).

    Article  PubMed  Google Scholar 

  11. Chanock, S. J. et al. Replicating genotype–phenotype associations. Nature 447, 655–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Newton-Cheh, C. & Hirschhorn, J. N. Genetic association studies of complex traits: design and analysis issues. Mutat. Res. 573, 54–69 (2005). This is a review of design and analysis challenges in GWA studies.

    Article  CAS  PubMed  Google Scholar 

  13. Zollner, S. & Pritchard, J. K. Overcoming the winner's curse: estimating penetrance parameters from case–control data. Am. J. Hum. Genet. 80, 605–615 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Couzin, J. Science and commerce. Gene tests for psychiatric risk polarize researchers. Science 319, 274–277 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Egeland, J. A. et al. Bipolar affective disorders linked to DNA markers on chromosome 11. Nature 325, 783–787 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Kelsoe, J. R. et al. Re-evaluation of the linkage relationship between chromosome 11p loci and the gene for bipolar affective disorder in the Old Order Amish. Nature 342, 238–243 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Baron, M. et al. Genetic linkage between X-chromosome markers and bipolar affective illness. Nature 326, 289–292 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Gershon, E. S. Marker genotyping errors in old data on X-linkage in bipolar illness. Biol. Psychiatry 29, 721–729 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Lewis, C. M. et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am. J. Hum. Genet. 73, 34–48 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Segurado, R. et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: bipolar disorder. Am. J. Hum. Genet. 73, 49–62 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McQueen, M. B. et al. Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am. J. Hum. Genet. 77, 582–595 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lamb, J. A. et al. Analysis of IMGSAC autism susceptibility loci: evidence for sex limited and parent of origin specific effects. J. Med. Genet. 42, 132–137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barnby, G. & Monaco, A. P. Strategies for autism candidate gene analysis. Novartis Found. Symp. 251, 48–63; discussion 63–9, 109–11 & 281–297 (2003).

    CAS  PubMed  Google Scholar 

  24. Monaco, A. P. & Bailey, A. J. Autism. The search for susceptibility genes. Lancet 358, S3 (2001).

    Article  PubMed  Google Scholar 

  25. Yang, M. S. & Gill, M. A review of gene linkage, association and expression studies in autism and an assessment of convergent evidence. Int. J. Dev. Neurosci. 25, 69–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Hanna, G. L. et al. Genome-wide linkage analysis of families with obsessive-compulsive disorder ascertained through pediatric probands. Am. J. Med. Genet. 114, 541–552 (2002).

    Article  PubMed  Google Scholar 

  27. Willour, V. L. et al. Replication study supports evidence for linkage to 9p24 in obsessive-compulsive disorder. Am. J. Hum. Genet. 75, 508–513 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shugart, Y. Y. et al. Genomewide linkage scan for obsessive-compulsive disorder: evidence for susceptibility loci on chromosomes 3q, 7p, 1q, 15q, and 6q. Mol. Psychiatry 11, 763–770 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996). This is an opinion piece that rang in the era of association studies.

    Article  CAS  PubMed  Google Scholar 

  30. Ehrig, T., Bosron, W. F. & Li, T. K. Alcohol and aldehyde dehydrogenase. Alcohol Alcohol. 25, 105–116 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Faraone, S. V., Doyle, A. E., Mick, E. & Biederman, J. Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am. J. Psychiatry 158, 1052–1057 (2001). This paper is one of the earliest meta-analyses of association studies of a candidate gene — a C-terminal functional protein variant in the dopamine receptor gene — and its association with ADHD.

    Article  CAS  PubMed  Google Scholar 

  32. Lasky-Su, J. et al. Family-based association analysis of a statistically derived quantitative traits for ADHD reveal an association in DRD4 with inattentive symptoms in ADHD individuals. Am. J. Med. Genet. B Neuropsychiatr Genet. 147, 100–106 (2008).

    Article  CAS  Google Scholar 

  33. Ding, Y. C. et al. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc. Natl Acad. Sci. USA 99, 309–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Grady, D. L. et al. High prevalence of rare dopamine receptor D4 alleles in children diagnosed with attention-deficit hyperactivity disorder. Mol. Psychiatry 8, 536–545 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Edenberg, H. J. et al. Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am. J. Hum. Genet. 74, 705–714 (2004). This paper shows the association of several SNPs in GABRA2 with alcoholism — a finding that was later confirmed in references 36 and 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lappalainen, J. et al. Association between alcoholism and gamma-amino butyric acid alpha 2 receptor subtype in a Russian population. Alcohol Clin. Exp. Res. 29, 493–498 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Covault, J., Gelernter, J., Hesselbrock, V., Nellissery, M. & Kranzler, H. R. Allelic and haplotypic association of GABRA2 with alcohol dependence. Am. J. Med. Genet. B Neuropsychiatr. Genet. 129, 104–109 (2004).

    Article  Google Scholar 

  38. Chumakov, I. et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc. Natl Acad. Sci. USA 99, 13675–13680 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hattori, E. et al. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am. J. Hum. Genet. 72, 1131–1140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stefansson, H. et al. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet. 71, 877–892 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stefansson, H. et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am. J. Hum. Genet. 72, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Sanders, A. R. et al. No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am. J. Psychiatry 165, 497–506 (2008). The authors tested, in a large sample, the genes that had shown association with schizophrenia and that had also been most highly replicated in previous studies, but could not confirm association with any of them.

    Article  PubMed  Google Scholar 

  43. Munafo, M. R., Attwood, A. S. & Flint, J. Neuregulin 1 genotype and schizophrenia. Schizophr. Bull. 34, 9–12 (2008).

    Article  PubMed  Google Scholar 

  44. Arking, D. E. et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am. J. Hum. Genet. 82, 160–164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alarcon, M. et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am. J. Hum. Genet. 82, 150–159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bakkaloglu, B. et al. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am. J. Hum. Genet. 82, 165–173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wollstein, A. et al. Efficacy assessment of SNP sets for genome-wide disease association studies. Nucleic Acids Res. 35, e113 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Eberle, M. A. et al. Power to detect risk alleles using genome-wide tag SNP panels. PLoS Genet. 3, 1827–1837 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007). The WTCCC evaluated 2,000 cases each for 7 common disorders, including bipolar disorder, for GWA against a common panel of 3,000 controls. Only one SNP was found to be genome-wide significant for bipolar disorder.

  50. Baum, A. E. et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol. Psychiatry 13, 197–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Sklar, P. et al. Whole-genome association study of bipolar disorder. Mol. Psychiatry 13, 558–569 (2008). The authors identified several GWAs for bipolar disorder, although they did not confirm them in replication samples. After combining their data with those from the WTCCC, they identified association with SNPs in a novel gene, CACNA1C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sullivan, P. F. et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol. Psychiatry 13, 570–584 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lencz, T. et al. Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol. Psychiatry 12, 572–580 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Scott, L. J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007). This is a landmark paper that, together with two others, identified >10 common variants associated with type 2 diabetes, 3 of them confirming previous findings. Joint analysis with other groups, including the WTCCC, evaluated >38,000 samples, demonstrating that large sample sizes can overcome the challenges of small effect sizes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ross, C. A., Margolis, R. L., Reading, S. A., Pletnikov, M. & Coyle, J. T. Neurobiology of schizophrenia. Neuron 52, 139–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Pritchard, J. K., Stephens, M., Rosenberg, N. A. & Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet. 67, 170–181 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mitchell, A. A., Cutler, D. J. & Chakravarti, A. Undetected genotyping errors cause apparent overtransmission of common alleles in the transmission/disequilibrium test. Am. J. Hum. Genet. 72, 598–610 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sullivan, P. F. Spurious genetic associations. Biol. Psychiatry 61, 1121–1126 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Lopez-Leon, S. et al. Meta-analyses of genetic studies on major depressive disorder. Mol. Psychiatry 16 Oct 2007 (doi:10.1038/sj.mp.4002088). This paper presents a meta-analysis that identified six different SNPs that were reproducibly associated with major depressive disorder.

    Article  CAS  PubMed  Google Scholar 

  60. Lang, U. E., Puls, I., Muller, D. J., Strutz-Seebohm, N. & Gallinat, J. Molecular mechanisms of schizophrenia. Cell. Physiol. Biochem. 20, 687–702 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Hayden, E. P. & Nurnberger, J. I. Jr. Molecular genetics of bipolar disorder. Genes Brain Behav. 5, 85–95 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Craddock, N., O'Donovan, M. C. & Owen, M. J. Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr. Bull. 32, 9–16 (2006).

    Article  PubMed  Google Scholar 

  63. Straub, R. E. et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am. J. Hum. Genet. 71, 337–348 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Newell-Litwa, K., Seong, E., Burmeister, M. & Faundez, V. Neuronal and non-neuronal functions of the AP-3 sorting machinery. J. Cell Sci. 120, 531–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Li, W. et al. Hermansky–Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nature Genet. 35, 84–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Mutsuddi, M. et al. Analysis of high-resolution HapMap of DTNBP1 (dysbindin) suggests no consistency between reported common variant associations and schizophrenia. Am. J. Hum. Genet. 79, 903–909 (2006). This is a sobering paper that shows that several claimed replications of the findings of DTNBP1 association with schizophrenia (including those in reference 63) were in fact not with the same haplotypes in the gene. This demonstrates that much care is needed to untangle the LD patterns when different SNPs are used in different 'replication' studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shi, J., Badner, J. A., Gershon, E. S. & Liu, C. Allelic association of G72/G30 with schizophrenia and bipolar disorder: a comprehensive meta-analysis. Schizophr. Res. 98, 89–97 (2008).

    Article  PubMed  Google Scholar 

  68. Gershon, E. S., Liu, C. & Badner, J. A. Genome-wide association in bipolar. Mol. Psychiatry 13, 1–2 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Allison, D. B. Transmission-disequilibrium tests for quantitative traits. Am. J. Hum. Genet. 60, 676–690 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cassidy, S. B. & Morris, C. A. Behavioral phenotypes in genetic syndromes: genetic clues to human behavior. Adv. Pediatr. 49, 59–86 (2002).

    PubMed  Google Scholar 

  71. Stromland, K. et al. CHARGE association in Sweden: malformations and functional deficits. Am. J. Med. Genet. A 133, 331–339 (2005).

    Article  Google Scholar 

  72. Swift, M. & Swift, R. G. Psychiatric disorders and mutations at the Wolfram syndrome locus. Biol. Psychiatry 47, 787–793 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Swift, R. G., Polymeropoulos, M. H., Torres, R. & Swift, M. Predisposition of Wolfram syndrome heterozygotes to psychiatric illness. Mol. Psychiatry 3, 86–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Gothelf, D. Velocardiofacial syndrome. Child Adolesc Psychiatr. Clin. N. Am. 16, 677–693 (2007).

    Article  PubMed  Google Scholar 

  75. Karayiorgou, M. et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc. Natl Acad. Sci. USA 92, 7612–7616 (1995). This is the first demonstration that some subjects with the 22q deletion typical of a medical condition, VCFS or diGeorge syndrome, might only carry the diagnosis of schizophrenia. This demonstrates the importance of rare medical conditions and careful phenotyping — the subjects had subtle facial abnormalities typical of the 22q deletion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mowry, B. J. et al. Multicenter linkage study of schizophrenia loci on chromosome 22q. Mol. Psychiatry 9, 784–795 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Brunner, H. G., Nelen, M., Breakefield, X. O., Ropers, H. H. & van Oost, B. A. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262, 578–580 (1993). Using a unique large X-linked pedigree this paper shows that inactivation of MAOA leads to a syndrome of impulsive-aggressive behaviour.

    Article  CAS  PubMed  Google Scholar 

  78. Cases, O. et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268, 1763–1766 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. St. Clair, D. et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 336, 13–16 (1990). This paper reports the study of a large extended pedigree in which >20 members carry a balanced translocation and have many different psychiatric diagnoses. This demonstrates pleiotropy of some genetic risk factors and, together with the later cloning, the importance of such rare unique cases in gene identification.

    Article  CAS  PubMed  Google Scholar 

  80. Blackwood, D. H. et al. Schizophrenia and affective disorders — cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am. J. Hum. Genet. 69, 428–433 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Millar, J. K. et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9, 1415–1423 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Ekelund, J. et al. Chromosome 1 loci in Finnish schizophrenia families. Hum. Mol. Genet. 10, 1611–1617 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Hodgkinson, C. A. et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am. J. Hum. Genet. 75, 862–872 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kockelkorn, T. T. et al. Association study of polymorphisms in the 5′ upstream region of human DISC1 gene with schizophrenia. Neurosci. Lett. 368, 41–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Pickard, B. S. et al. The PDE4B gene confers sex-specific protection against schizophrenia. Psychiatr. Genet. 17, 129–133 (2007).

    Article  PubMed  Google Scholar 

  86. Millar, J. K. et al. Disrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness. J. Physiol. 584, 401–405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Millar, J. K. et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310, 1187–1191 (2005). After DISC1 was found to be associated with schizophrenia in previous work, the authors of this paper show that it interacts with another protein that might also be associated with schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  88. Li, C. et al. An essential role for DYF-11/MIP-T3 in assembling functional intraflagellar transport complexes. PLoS Genet. 4, e1000044 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brandon, N. J. Dissecting DISC1 function through protein–protein interactions. Biochem. Soc. Trans. 35, 1283–1286 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. McGue, M. & Bouchard, T. J. Jr. Genetic and environmental influences on human behavioral differences. Annu. Rev. Neurosci. 21, 1–24 (1998). This is a review of genetic and environmental factors on behaviour, based on the results of twin studies. This review not only discusses genetic aetiology, but also unique versus shared environmental effects on behaviour.

    Article  CAS  PubMed  Google Scholar 

  91. Davies, G., Welham, J., Chant, D., Torrey, E. F. & McGrath, J. A systematic review and meta-analysis of northern hemisphere season of birth studies in schizophrenia. Schizophr. Bull. 29, 587–593 (2003).

    Article  PubMed  Google Scholar 

  92. St. Clair, D. et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961 Jama 294, 557–562 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Kendler, K. S., Kessler, R. C., Neale, M. C., Heath, A. C. & Eaves, L. J. The prediction of major depression in women: toward an integrated etiologic model. Am. J. Psychiatry 150, 1139–1148 (1993). This papers shows that neuroticism and depression share about half the genetic variance.

    Article  CAS  PubMed  Google Scholar 

  94. Langley, K., Rice, F., van den Bree, M. B. & Thapar, A. Maternal smoking during pregnancy as an environmental risk factor for attention deficit hyperactivity disorder behaviour. A review. Minerva Pediatr. 57, 359–371 (2005).

    CAS  PubMed  Google Scholar 

  95. Kolevzon, A., Gross, R. & Reichenberg, A. Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch. Pediatr. Adolesc. Med. 161, 326–333 (2007).

    Article  PubMed  Google Scholar 

  96. Brimacombe, M., Ming, X. & Lamendola, M. Prenatal and birth complications in autism. Matern. Child Health J. 11, 73–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Croen, L. A., Najjar, D. V., Fireman, B. & Grether, J. K. Maternal and paternal age and risk of autism spectrum disorders. Arch. Pediatr. Adolesc. Med. 161, 334–340 (2007).

    Article  PubMed  Google Scholar 

  98. Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002). This is a landmark paper, the results of which have already used been in a court case. It used a >30 year ongoing longitudinal study to show that a genetic variant in MAOA interacts with childhood environmental factors in influencing impulsivity and violent behaviour.

    Article  CAS  PubMed  Google Scholar 

  99. Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (2003). In this paper, the same longitudinal study as that reported in reference 98 was used to demonstrate that risk for depression is increased by interaction between variation in the promoter of the serotonin transporter and stressful life events. Both references demonstrate the importance of longitudinal studies in assessing risk.

    Article  CAS  PubMed  Google Scholar 

  100. Vorstman, J. A. et al. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol. Psychiatry 11, 18–28 (2006).

    Article  CAS  Google Scholar 

  101. Yu, C. E. et al. Presence of large deletions in kindreds with autism. Am. J. Hum. Genet. 71, 100–115 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lauritsen, M. & Ewald, H. The genetics of autism. Acta Psychiatr. Scand. 103, 411–427 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Beaudet, A. L. Autism: highly heritable but not inherited. Nature Med. 13, 534–536 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007). This paper demonstrates that non-familial cases of autism have an increased number of novel large chromosomal deletions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Smith, M. et al. Molecular genetic delineation of 2q37.3 deletion in autism and osteodystrophy: report of a case and of new markers for deletion screening by PCR. Cytogenet. Cell Genet. 94, 15–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Ghaziuddin, M. & Burmeister, M. Deletion of chromosome 2q37 and autism: a distinct subtype? J. Autism Dev. Disord. 29, 259–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Weiss, L. A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008). Together with references 108 and 109, this paper shows that a significant fraction of autism (approximately 1%) is caused by a recurrent deletion on chromosome 16.

    Article  CAS  PubMed  Google Scholar 

  108. Kumar, R. A. et al. Recurrent 16p11.2 microdeletions in autism. Hum. Mol. Genet. 17, 628–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Eichler, E. E. & Zimmerman, A. W. A hot spot of genetic instability in autism. N. Engl. J. Med. 358, 737–739 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Walsh, T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539–543 (2008). This paper shows that rare structural variants are increased in cases compared with controls, suggesting that a subset of schizophrenia cases might be due to de novo mutations.

    Article  CAS  PubMed  Google Scholar 

  111. Bailey, J. A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Sharp, A. J. et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nature Genet. 38, 1038–1042 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Dixon, A. L. et al. A genome-wide association study of global gene expression. Nature Genet. 39, 1202–1207 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Manolio, T. A., Bailey-Wilson, J. E. & Collins, F. S. Genes, environment and the value of prospective cohort studies. Nature Rev. Genet. 7, 812–820 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Collins, F. S. & Manolio, T. A. Merging and emerging cohorts: necessary but not sufficient. Nature 445, 259 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Collins, F. S. The case for a US prospective cohort study of genes and environment. Nature 429, 475–457 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Niculescu, A. B. 3rd & Kelsoe, J. R. Convergent functional genomics: application to bipolar disorder. Ann. Med. 33, 263–271 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Li, J. & Burmeister, M. Genetical genomics: combining genetics with gene expression analysis. Hum. Mol. Genet. 14, R163–R169 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Myers, A. J. et al. A survey of genetic human cortical gene expression. Nature Genet. 39, 1494–1499 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003). This is a review of the endophenotype concept for psychiatry.

    Article  PubMed  Google Scholar 

  121. Heils, A. et al. Allelic variation of human serotonin transporter gene expression. J. Neurochem. 66, 2621–2624 (1996). This is the first publication to demonstrate a common polymorphism in the promoter of the serotonin transporter and its effect on expression — the association of this variant with behavioural traits has now >500 published associations.

    Article  CAS  PubMed  Google Scholar 

  122. Lesch, K. P. et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531 (1996). This is the first demonstration of an association between variation in the serotonin transporter and neuroticism and other behavioural traits.

    Article  CAS  PubMed  Google Scholar 

  123. Schinka, J. A., Busch, R. M. & Robichaux-Keene, N. A meta-analysis of the association between the serotonin transporter gene polymorphism (5-HTTLPR) and trait anxiety. Mol. Psychiatry 9, 197–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Sen, S., Burmeister, M. & Ghosh, D. Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. Am. J. Med. Genet. 127B, 85–89 (2004). The meta-analysis presented in this paper confirms the findings of reference 117 and explains previous non-replications as being due to small effect size (not replicating in small studies) and to the use of different measures of anxiety.

    Article  PubMed  Google Scholar 

  125. Willis-Owen, S. A. et al. The serotonin transporter length polymorphism, neuroticism, and depression: a comprehensive assessment of association. Biol. Psychiatry 58, 451–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Almasy, L. et al. Heritability of event-related brain potentials in families with a history of alcoholism. Am. J. Med. Genet. 88, 383–390 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Freedman, R. et al. The genetics of sensory gating deficits in schizophrenia. Curr. Psychiatry Rep. 5, 155–161 (2003).

    Article  PubMed  Google Scholar 

  128. Adams, C. E., Yonchek, J. C., Zheng, L., Collins, A. C. & Stevens, K. E. Altered hippocampal circuit function in C3H alpha7 null mutant heterozygous mice. Brain Res. 15, 138–145 (2007).

    Google Scholar 

  129. Martin, L. F. et al. Sensory gating and alpha-7 nicotinic receptor gene allelic variants in schizoaffective disorder, bipolar type. Am. J. Med. Genet. B Neuropsychiatr Genet. 144, 611–614 (2007).

    Article  CAS  Google Scholar 

  130. Olincy, A. et al. Proof-of-concept trial of an alpha 7 nicotinic agonist in schizophrenia. Arch. Gen. Psychiatry 63, 630–638 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Lachman, H. M. et al. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6, 243–250 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Egan, M. F. et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl Acad. Sci. USA 98, 6917–6922 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Meyer-Lindenberg, A. et al. Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nature Neurosci. 8, 594–596 (2005). Building on references 131 and 132, these authors put forward a neurobiological hypothesis explaining the action of the catechol-O-methyltransferase (COMT) val–met variant in the brain.

    Article  CAS  PubMed  Google Scholar 

  134. Munafo, M. R., Bowes, L., Clark, T. G. & Flint, J. Lack of association of the COMT (Val158/108 Met) gene and schizophrenia: a meta-analysis of case–control studies. Mol. Psychiatry 10, 765–770 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Hariri, A. R. et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 297, 400–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Munafo, M. R., Brown, S. M. & Hariri, A. R. Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol. Psychiatry 63, 852–857 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Lise, M. F. & El-Husseini, A. The neuroligin and neurexin families: from structure to function at the synapse. Cell. Mol. Life Sci. 63, 1833–1849 (2006). This paper reviews the biological pathways of neuroligin and neurexin proteins, which were implicated in autism by several studies.

    Article  CAS  PubMed  Google Scholar 

  138. Comoletti, D. et al. The Arg451Cys-neuroligin 3 mutation associated with autism reveals a defect in protein processing. J. Neurosci. 24, 4889–4893 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genet. 34, 27–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Chocholska, S., Rossier, E., Barbi, G. & Kehrer-Sawatzki, H. Molecular cytogenetic analysis of a familial interstitial deletion Xp22.2–22.3 with a highly variable phenotype in female carriers. Am. J. Med. Genet. A 140, 604–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Szatmari, P. et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genet. 39, 319–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Feng, J. et al. High frequency of neurexin 1 beta signal peptide structural variants in patients with autism. Neurosci. Lett. 409, 10–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Ylisaukko-oja, T. et al. Analysis of four neuroligin genes as candidates for autism. Eur. J. Hum. Genet. 13, 1285–1292 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Harrison, P. J. & Weinberger, D. R. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry 10, 40–68 (2005). This paper reviews the glutaminergic hypothesis of schizophrenia, which is based on some of the previous genetic findings.

    Article  CAS  PubMed  Google Scholar 

  145. Chetcuti, A., Adams, L. J., Mitchell, P. B. & Schofield, P. R. Microarray gene expression profiling of mouse brain mRNA in a model of lithium treatment. Psychiatr. Genet. 18, 64–72 (2008).

    Article  PubMed  Google Scholar 

  146. Seelan, R. S., Khalyfa, A., Lakshmanan, J., Casanova, M. F. & Parthasarathy, R. N. Deciphering the lithium transcriptome: microarray profiling of lithium-modulated gene expression in human neuronal cells. Neuroscience 151, 1184–1197 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Alda, M., Grof, P., Rouleau, G. A., Turecki, G. & Young, L. T. Investigating responders to lithium prophylaxis as a strategy for mapping susceptibility genes for bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1038–1045 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Jope, R. S. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol. Sci. 24, 441–443 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Levinson, D. F. The genetics of depression: a review. Biol. Psychiatry 60, 84–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Evans, S. J. et al. Dysregulation of the fibroblast growth factor system in major depression. Proc. Natl Acad. Sci. USA 101, 15506–15511 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lopez, J. F., Akil, H. & Watson, S. J. Neural circuits mediating stress. Biol. Psychiatry 46, 1461–1471 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Seong, E., Seasholtz, A. F. & Burmeister, M. Mouse models for psychiatric disorders. Trends Genet. 18, 643–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Chen, Z. Y. et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314, 140–143 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Saunders, E. H., Scott, L. J., McInnis, M. G. & Burmeister, M. Familiality and diagnostic patterns of subphenotypes in the National Institutes of Mental Health bipolar sample. Am. J. Med. Genet. B Neuropsychiatr Genet. 147, 18–26 (2008).

    Article  Google Scholar 

  155. Zec, R. F. Neuropsychology of schizophrenia according to Kraepelin: disorders of volition and executive functioning. Eur. Arch. Psychiatry Clin. Neurosci. 245, 216–223 (1995).

    Article  CAS  PubMed  Google Scholar 

  156. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Version IV (DSM-IV) (American Psychiatric, 1994).

  157. World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. WHO [online], (1992).

  158. Nurnberger, J. I. Jr. et al. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch. Gen. Psychiatry 51, 849–864 (1994). The Diagnostic Interview for Genetic Studies (DIGS), described in this paper, has become the main instrument worldwide to assess subjects for psychiatric genetic studies.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Li, M. Boehnke, S. Sen and M. Meisler for comments on the manuscript. Funding of our work in psychiatric disorders is provided by the Nancy Pritzker Psychiatric Disorders Fund, the Heinz Prechter Bipolar Disorders fund, NARSAD, and the National Institutes of Health (MH070775, MH070793).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margit Burmeister.

Supplementary information

Supplementary information S1 (table)

Psychiatric disorders: Symptoms, Diagnosis and Epidemiology (PDF 139 kb)

Supplementary information S2 (table)

Genetic associations with psychiatric disorders with selected references (PDF 296 kb)

Related links

Related links

DATABASES

OMIM

Alzheimer disease

Angelman syndrome

attention deficit-hyperactivity disorder

autism

bipolar disorder

CHARGE syndrome

Huntington disease

Parkinson disease

schizophrenia

velocardiofacial syndrome

Brunner syndrome

Wolfram syndrome

FURTHER INFORMATION

Autism Genetic Research Exchange

Depression Center, University of Michigan

National Institute of Mental Health

National Institute of Mental Health (NIMH) genetics initiative study

Glossary

Heritability

The proportion of phenotypic variation that is explained by genetic variation.

Locus heterogeneity

When variation in different genes affects the same phenotype; it is also known as genetic heterogeneity. This should be contrasted with allelic heterogeneity, in which multiple variants in the same gene affect the same disease.

Penetrance

The probability of observing a specific phenotype for individuals carrying a particular genotype. If this probability is smaller than 1 for all genotypes of a variant then the variant has incomplete penetrance.

Odds ratio

A measure of effect size. Defined as the ratio of the odds of a disease being observed in one group of genotypes and the odds of a disease being observed in another group.

Linkage study

A family-based method to search for a chromosomal location of a gene by demonstrating co-segregation of the disease with genetic markers of known chromosomal location.

Association study

Genetic study looking for association between a disease and a genetic locus using either a case–control design or a family-based design.

Winner's curse

Upward bias of estimates of effect sizes on data sets that have previously passed through a screening procedure for a significant test statistic.

Candidate gene

A gene that might be involved in a particular disease. A biological candidate gene might be involved in the neurotransmitter system that is implicated by the psychoactive drugs used to treat a disorder (for example, serotonin system genes for depression), whereas a positional candidate gene is any gene that maps within a chromosomal region that is implicated by linkage.

Endophenotype

Heritable phenotype that is associated with a disease but that can be measured independently of disease status.

Phenomenology

Clinically descriptive, experiential and subjective dimensions of psychopathology.

Positional cloning

Method for identifying the location of a risk variant within a candidate region. Overlapping clones covering the candidate region are typed, and segments that co-segregate perfectly with the disease are identified. These clones are the most likely location of the risk variant.

Meta-analysis

Analysis combining the evidence of multiple data sets.

Non-parametric linkage analysis

Compares the observed segregation of marker alleles in affected and unaffected individuals with the expected segregation under the rules of Mendelian genetics. Deviation from the expected segregation is an indication of linkage.

Rank

Position of one result in a set of results ordered by their test statistic. If no true signal exists in the data, each rank is equally likely. Thus, studies can be combined by comparing the rank of genetic segments across studies.

Multiple testing

Usually, several genomic positions or phenotypes are tested for association or linkage in genetic mapping, and all of these tests have a probability of generating a false positive equal to α — a preset level of significance. Thus, the probability that at least one test generates a false positive is higher than α.

Haplotype

A combination of closely linked alleles that are inherited together as a unit. When the phase is unknown, then the haplotypes in an individual are unknown and need to be estimated.

Pseudo-autosomal

Regions on the sex chromosomes that are homologous between the X chromosome and the Y chromosome.

Type I error

Falsely rejecting the null hypothesis. In genetic studies this is usually equivalent to erroneously attributing a genetic effect when there is no genetic effect.

Case–control

Genetic study comparing genotype frequencies, allele frequencies or haplotype frequencies between a cohort carrying a disease and a control group. Significant differences between the groups might indicate LD between the screened genetic variant and a risk variant. The control group might be either screened to ensure it does not contain cases of the disease or it might be a random population sample.

Linkage disequilibrium

(LD). Preferential association of one allele of one locus with a particular allele of another locus. In the simplest case, a rare disease mutation might be in LD with alleles on nearby loci because the mutation arose only once, on a founder chromosome that carried specific alleles. Those loci close to the mutation have not been separated from the mutation during evolution. Therefore, alleles that were present in the founder chromosome are overrepresented in patients.

Allelic heterogeneity

When multiple variants in the same gene affect the same disease. This should be contrasted with genetic or locus heterogeneity, when variation in different genes affects the same phenotype.

Variance component analysis

Analysis in which the total variance is separated into the contribution from different components, such as genetic, environmental or interaction factors.

Functional magnetic resonance imaging

(fMRI). The subject is given a task (for example, recalling a sad event, remembering numbers or looking at pictures) and a measure (the blood oxygen-level dependent (BOLD) response) is taken. This measure is correlated with how much blood is used by nerve cells.

Longitudinal measurements

Repeated measurements of the same trait at multiple time points.

Rapid cycling bipolar disorder

A type of bipolar disorder in which the patient experiences four or more episodes of mania and/or depression per year.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burmeister, M., McInnis, M. & Zöllner, S. Psychiatric genetics: progress amid controversy. Nat Rev Genet 9, 527–540 (2008). https://doi.org/10.1038/nrg2381

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing