Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of osteoporosis from genome-wide association studies: advances and challenges

A Corrigendum to this article was published on 07 August 2012

This article has been updated

Key Points

  • Osteoporosis is a common disease that is characterized by an increased propensity to fracture owing to decreased bone mass and bone quality. Clinically, osteoporosis is diagnosed when a patient presents with a fracture that has resulted from minimal trauma; however, osteoporosis is commonly diagnosed, for the purposes of preventive therapy, through measurement of bone mineral density (BMD).

  • Genome-wide association studies (GWASs) have been performed for BMD using various strategies, such as multi-ethnic studies, using extreme phenotypes and large-scale meta-analyses. Although the loci identified in these studies have been repeated between studies, the effect sizes are small, explaining the lack of amenability of the genetics of osteoporosis to genetic-linkage studies.

  • GWASs for fracture have also been carried out: fracture has a lower heritability than BMD and decreases with age. The findings from GWASs are in their preliminary stages, and the genetics of fracture risk is still poorly understood, although higher-powered studies and those targeting the most heritable age range of fractures will result in further understanding.

  • Highlighting proteins on shared pathways by GWASs for BMD and fracture have furthered insights into the pathophysiology of osteoporosis. Pathways highlighted include the WNT pathway, the RANK–RANKL–OPG pathway and genes that are involved in enochodral ossification.

  • Genes highlighted by GWASs include known drug targets for therapies effective for treatment of osteoporosis. Furthermore, the GWAS hits at present have little demonstrated use in predicting who will experience fractures.

  • Future highly powered GWASs will elucidate further variants that will be informative for osteoporosis physiology and treatment.

Abstract

Osteoporosis is among the most common and costly diseases and is increasing in prevalence owing to the ageing of our global population. Clinically defined largely through bone mineral density, osteoporosis and osteoporotic fractures have reasonably high heritabilities, prompting much effort to identify the genetic determinants of this disease. Genome-wide association studies have recently provided rapid insights into the allelic architecture of this condition, identifying 62 genome-wide-significant loci. Here, we review how these new loci provide an opportunity to explore how the genetics of osteoporosis can elucidate its pathophysiology, provide drug targets and allow for prediction of future fracture risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified depiction of members of the canonical WNT signalling pathway identified through genome-wide association studies for bone mineral density.
Figure 2: Simplified depictions of members of the RANK–RANKL–OPG signalling pathway identified through genome-wide association studies for bone mineral density.
Figure 3: Simplified depiction of members of the endochondral ossification pathway identified through genome-wide association studies for bone mineral density.

Similar content being viewed by others

Change history

  • 07 August 2012

    In table 2 of the above article, the P value for locus 7q31.31 should have been 7.3 × 10−9. Two citations to table 2 in the sections ‘GWASs for fracture’ and ‘Insights into pathophysiology’ were incorrectly cited as table 1. In the section ‘GWASs for fracture’, two reference citations were incorrectly cited as 32: they should have been 74 and 31, respectively. The blurb for reference 31 should have read 'Together with reference 32'. The authors and editors apologize for these errors.

References

  1. Kanis, J. A. Diagnosis of osteoporosis. Osteoporos. Int. 7 (Suppl. 3), S108–S116 (1997).

    Article  PubMed  Google Scholar 

  2. Burge, R. et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 22, 465–475 (2007).

    Article  PubMed  Google Scholar 

  3. Kanis, J. A., Johnell, O., Oden, A., Johansson, H. & McCloskey, E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 19, 385–397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Slemenda, C. W. et al. The genetics of proximal femur geometry, distribution of bone mass and bone mineral density. Osteoporos. Int. 6, 178–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, D. M., Nance, W. E., Kang, K. W., Christian, J. C. & Johnston, C. C. Jr. Genetic factors in determining bone mass. J. Clin. Invest. 52, 2800–2808 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arden, N. K., Baker, J., Hogg, C., Baan, K. & Spector, T. D. The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J. Bone Miner. Res. 11, 530–534 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Marshall, D., Johnell, O. & Wedel, H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312, 1254–1259 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jergas, M. & Gluer, C. C. Assessment of fracture risk by bone density measurements. Semin. Nucl. Med. 27, 261–275 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Andrew, T., Antioniades, L., Scurrah, K. J., Macgregor, A. J. & Spector, T. D. Risk of wrist fracture in women is heritable and is influenced by genes that are largely independent of those influencing BMD. J. Bone Miner. Res. 20, 67–74 (2005).

    Article  PubMed  Google Scholar 

  10. Michaelsson, K., Melhus, H., Ferm, H., Ahlbom, A. & Pedersen, N. L. Genetic liability to fractures in the elderly. Arch. Intern. Med. 165, 1825–1830 (2005).

    Article  PubMed  Google Scholar 

  11. Kaufman, J. M. et al. Genome-wide linkage screen of bone mineral density (BMD) in European pedigrees ascertained through a male relative with low BMD values: evidence for quantitative trait loci on 17q21-23, 11q12-13, 13q12-14, and 22q11. J. Clin. Endocrinol. Metab. 93, 3755–3762 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hsu, Y. H. et al. Variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are associated with bone mineral density at different skeletal sites in men. Hum. Genet. 118, 568–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Peacock, M. et al. Bone mineral density variation in men is influenced by sex-specific and non sex-specific quantitative trait loci. Bone 45, 443–448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiao, P. et al. Genomic regions identified for BMD in a large sample including epistatic interactions and gender-specific effects. J. Bone Miner. Res. 21, 1536–1544 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Ioannidis, J. P. et al. Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J. Bone Miner. Res. 22, 173–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Ralston, S. H. & Uitterlinden, A. G. Genetics of osteoporosis. Endocr. Rev. 31, 629–662 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Richards, J. B. et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann. Intern. Med. 151, 528–537 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferrari, S. L. et al. Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am. J. Hum. Genet. 74, 866–875 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Meurs, J. B. et al. Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA 299, 1277–1290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Richards, J. B. et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371, 1505–1512 (2008). Together with reference 21, these papers were the first GWASs for osteoporosis, and they made it clear that there were no common genetic variants of large effect for osteoporosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Styrkarsdottir, U. et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 358, 2355–2365 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Styrkarsdottir, U. et al. New sequence variants associated with bone mineral density. Nature Genet. 41, 15–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Timpson, N. J. et al. Common variants in the region around Osterix are associated with bone mineral density and growth in childhood. Hum. Mol. Genet. 18, 1510–1517 (2009). This is the only GWAS for BMD that has been conducted in children.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiong, D. H. et al. Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am. J. Hum. Genet. 84, 388–398 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rivadeneira, F. et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nature Genet. 41, 1199–1206 (2009). This is the first large-scale consortium-style GWAS for osteoporosis. This paper identified many clinically relevant drug targets for osteoporosis and substantially expanded the number of loci associated with BMD.

    Article  CAS  PubMed  Google Scholar 

  26. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nature Genet. 44, 491–501 (2012). This is the largest global effort to describe the genetic determinants of BMD and fracture. Using BMD loci, this paper was also the first to assess the contribution of BMD GWAS loci to fracture in a large sample size.

    Article  CAS  PubMed  Google Scholar 

  27. Morris, A. P. Transethnic meta-analysis of genomewide association studies. Genet. Epidemiol. 35, 809–822 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dastani, Z. et al. Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet. 8, e1002607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duncan, E. L. et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 7, e1001372 (2011). This is an important paper demonstrating the relative use of selecting extremes of a phenotypic continuum to identify common genetic variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsu, Y. H. et al. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility loci for osteoporosis-related traits. PLoS Genet. 6, e1000977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng, H. et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength and osteoporotic fracture risk. PLoS Genet. 5 Jul 2012 (doi: 10.1371/journal.pgen.1002745). Together with reference 32, this paper showed that forearm and total body BMD had allelic architectures that appeared to be less polygenic than lumbar spine and femoral neck sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Medina-Gomez, C. et al. Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet. 5 Jul 2012 (doi: 10.1371/journal.pgen.1002718).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era—concepts and misconceptions. Nature Rev. Genet. 9, 255–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Guo, Y. et al. Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLoS Genet. 6, e1000806 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Duncan, E. L. & Brown, M. A. Clinical review 2: genetic determinants of bone density and fracture risk—state of the art and future directions. J. Clin. Endocrinol. Metabolism 95, 2576–2587 (2010).

    Article  CAS  Google Scholar 

  38. Angers, S. & Moon, R. T. Proximal events in Wnt signal transduction. Nature Rev. Mol. Cell Biol. 10, 468–477 (2009).

    Article  CAS  Google Scholar 

  39. Kearns, A. E., Khosla, S. & Kostenuik, P. J. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev. 29, 155–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Komori, T. Signaling networks in RUNX2-dependent bone development. J. Cell. Biochem. 112, 750–755 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Kubota, T., Michigami, T. & Ozono, K. Wnt signaling in bone metabolism. J. Bone Miner. Metabolism 27, 265–271 (2009).

    Article  CAS  Google Scholar 

  42. Guo, J. et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell. Metabolism 11, 161–171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Akiyama, H. et al. Interactions between Sox9 and β-catenin control chondrocyte differentiation. Genes Dev. 18, 1072–1087 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gong, Y. et al. Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13. Am. J. Hum. Genet. 59, 146–151 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Wesenbeeck, L. et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am. J. Hum. Genet. 72, 763–771 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10, 537–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Leupin, O. et al. Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J. Bone Miner. Res. 22, 1957–1967 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Estrach, S., Ambler, C. A., Lo Celso, C., Hozumi, K. & Watt, F. M. Jagged 1 is a β-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 133, 4427–4438 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genet. 16, 243–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Engin, F. et al. Dimorphic effects of Notch signaling in bone homeostasis. Nature Med. 14, 299–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nature Med. 17, 1235–1241 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Fuller, K., Wong, B., Fox, S., Choi, Y. & Chambers, T. J. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J. Exp. Med. 188, 997–1001 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Mizuno, A. et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun. 247, 610–615 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Li, Y. et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109, 3839–3848 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Sobacchi, C. et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nature Genet. 39, 960–962 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Guerrini, M. M. et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am. J. Hum. Genet. 83, 64–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Whyte, M. P. et al. Osteoprotegerin deficiency and juvenile Paget's disease. N. Engl. J. Med. 347, 175–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Albagha, O. M. et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget's disease of bone. Nature Genet. 42, 520–524 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Karsenty, G., Kronenberg, H. M. & Settembre, C. Genetic control of bone formation. Annu. Rev. Cell Dev. Biol. 25, 629–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Amizuka, N. et al. Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development. Dev. Biol. 175, 166–176 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Smits, P., Dy, P., Mitra, S. & Lefebvre, V. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. J. Cell Biol. 164, 747–758 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Lee, B. et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nature Genet. 16, 307–310 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Canalis, E. Update in new anabolic therapies for osteoporosis. J. Clin. Endocrinol. Metab. 95, 1496–1504 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lewiecki, E. M. Sclerostin: a novel target for intervention in the treatment of osteoporosis. Discovery Med. 12, 263–273 (2011).

    Google Scholar 

  68. Gauthier, J. Y. et al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg. Med. Chem. Lett. 18, 923–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. McClellan, J. & King, M. C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Leslie, W. D. et al. Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration. J. Bone Miner. Res. 25, 2350–2358 (2010).

    Article  PubMed  Google Scholar 

  71. Pepe, M. S., Gu, J. W. & Morris, D. E. The potential of genes and other markers to inform about risk. Cancer Epidemiol. Biomarkers Prev. 19, 655–665 (2010).

    Article  CAS  Google Scholar 

  72. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nature Genet. 43, 519–525 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Ladouceur, M., Dastani, Z., Aulchenko, Y. S., Greenwood, C. M. & Richards, J. B. The empirical power of rare variant association methods: results from Sanger sequencing in 1,998 individuals. PLoS Genet. 8, e1002496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ladouceur, M., Leslie, W. D., Dastani, Z., Goltzman, D. & Richards, J. B. An efficient paradigm for genetic epidemiology cohort creation. PLoS ONE 5, e14045 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bell, J. T. & Spector, T. D. A twin approach to unraveling epigenetics. Trends Genet. 27, 116–125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Talens, R. P. et al. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J. 24, 3135–3144 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Suhre, K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Kim, K. A. et al. R-spondin family members regulate the Wnt pathway by a common mechanism. Mol. Biol. Cell 19, 2588–2596 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Josse, R. G. Bone biology and the role of RANK/RANKL/OPG pathway. HealthPlexus [online], (2008).

    Google Scholar 

  80. Mackie, E. J., Tatarczuch, L. & Mirams, M. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J. Endocrinol. 211, 109–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Kung, A. W. et al. Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am. J. Hum. Genet. 86, 229–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Koller, D. L. et al. Genome-wide association study of bone mineral density in premenopausal European-American women and replication in African-American women. J. Clin. Endocrinol. Metabolism 95, 1802–1809 (2010).

    Article  CAS  Google Scholar 

  83. Ettinger, B. et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) investigators. JAMA 282, 637–645 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Neer, R. M. et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Greenspan, S. L. et al. Effect of recombinant human parathyroid hormone (1-84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann. Internal Med. 146, 326–339 (2007).

    Article  Google Scholar 

  86. Liberman, U. A. et al. Effect of oral alendronate on bone mineral. Density and the incidence of fractures in postmenopausal osteoporosis. New Engl. J. Med. 333, 1437–1444 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Canadian Institutes of Health Research, the Lady Davis Institute for Medical Research, Ministère de Développement économique, de l'Innovation et de l'Exportation du Québec, the Arthritis Research Campaign, the Wellcome Trust, Guy's & St. Thomas' NHS Foundation Trust and the King's College London Biomedical Centre. We would like to acknowledge the contributions of F. Rivadeneira, C. Greenwood and C. Polychronakos for their input on this Review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brent Richards.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

J. Brent Richards' homepage

GEFOS

TwinsUK

UK10K

Glossary

deCODE genetics

An Icelandic company that specializes in the identification of genetic risk factors for disease.

Osteoporosis-pseudoglioma syndrome

An autosomal recessive disorder conferring juvenile osteoporosis and juvenile-onset blindness that is caused by mutations in lipoprotein-receptor-related protein 5 (LRP5).

Osteopetrosis

A syndrome of high bone mass caused by an imbalance in the constant remodelling of bone, which favours bone formation, or mutations leading to increased bone formation, such as activating mutations in low-density lipoprotein receptor-related protein 5 (LRP5).

Paget's disease

Focalized bone lesions characterized by enhanced bone remodelling and resultant overgrowth of bone, leading to an increased risk of fracture.

Cleidocranial dysplasia

An autosomal dominant condition characterized by defective differentiation of osteoblasts, resulting in impaired bone formation, short stature and abnormal teeth owing to mutations of runt-related transcription factor 2 (RUNX2), which encodes core-binding factor alpha 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, J., Zheng, HF. & Spector, T. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet 13, 576–588 (2012). https://doi.org/10.1038/nrg3228

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3228

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research