Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Identification and consequences of miRNA–target interactions — beyond repression of gene expression

A Corrigendum to this article was published on 16 September 2014

This article has been updated

Key Points

  • Experimental approaches such as genetic screening, mRNA expression profiling, and Argonaute crosslinking and immunoprecipitation aim to identify microRNA (miRNA) targets and/or individual binding sites within them. Computational analyses of the resultant high-throughput data reveal the miRNA targets with high accuracy and resolution.

  • Factors that define functional miRNA interaction sites include miRNA 'seed' complementarity, structural accessibility, and sequence and positional biases. These factors support modulatory interactions with RNA-binding proteins.

  • miRNA seed families and clusters of co-expressed miRNAs are prevalent and may contribute to regulation of individual pathways across tissues and developmental stages.

  • 'Non-canonical' miRNA-binding sites seem to be prevalent, and their functionality should be further investigated.

  • Outcomes of miRNA–target interactions include repression and increased precision of target gene expression, as well as induction of correlations in the expression levels of different targets.

  • Computational modelling of miRNA–target interactions has provided insights into their consequences on target expression.

Abstract

Comparative genomics analyses and high-throughput experimental studies indicate that a microRNA (miRNA) binds to hundreds of sites across the transcriptome. Although the knockout of components of the miRNA biogenesis pathway has profound phenotypic consequences, most predicted miRNA targets undergo small changes at the mRNA and protein levels when the expression of the miRNA is perturbed. Alternatively, miRNAs can establish thresholds in and increase the coherence of the expression of their target genes, as well as reduce the cell-to-cell variability in target gene expression. Here, we review the recent progress in identifying miRNA targets and the emerging paradigms of how miRNAs shape the dynamics of target gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods for miRNA target identification.
Figure 2: Examples of 'non-canonical' miRNA–target interactions.
Figure 3: Consequences of miRNA–target interactions.
Figure 4: Crosstalk between miRNA targets.

Similar content being viewed by others

Change history

  • 16 September 2014

    In Box 3 of this article, equation 3 was given incorrectly. The article has been corrected online. The authors apologize for this error.

References

  1. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    CAS  PubMed  Google Scholar 

  2. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  PubMed  Google Scholar 

  3. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    CAS  PubMed  Google Scholar 

  4. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    CAS  PubMed  Google Scholar 

  5. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Rev. Genet. 12, 99–110 (2011).

    CAS  PubMed  Google Scholar 

  6. Ha, I., Wightman, B. & Ruvkun, G. A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev. 10, 3041–3050 (1996).

    CAS  PubMed  Google Scholar 

  7. Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA–target recognition. PLoS Biol. 3, e85 (2005).

    PubMed  PubMed Central  Google Scholar 

  8. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Khorshid, M., Hausser, J., Zavolan, M. & van Nimwegen, E. A biophysical miRNA–mRNA interaction model infers canonical and noncanonical targets. Nature Methods 10, 253–255 (2013).

    CAS  PubMed  Google Scholar 

  10. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    CAS  PubMed  Google Scholar 

  11. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS  PubMed  Google Scholar 

  12. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    CAS  PubMed  Google Scholar 

  13. Gaidatzis, D., van Nimwegen, E., Hausser, J. & Zavolan, M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8, 69 (2007).

    PubMed  PubMed Central  Google Scholar 

  14. Krek, A. et al. Combinatorial microRNA target predictions. Nature Genet. 37, 495–500 (2005).

    CAS  PubMed  Google Scholar 

  15. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014).

    CAS  PubMed  Google Scholar 

  18. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460, 479–486 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chi, S. W., Hannon, G. J. & Darnell, R. B. An alternative mode of microRNA target recognition. Nature Struct. Mol. Biol. 19, 321–327 (2012). This study identifies a prevalent type of non-canonical miRNA-binding sites — namely, the pivot sites.

    CAS  Google Scholar 

  21. Loeb, G. B. et al. Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol. Cell 48, 760–770 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11, R90 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yi, R., Poy, M. N., Stoffel, M. & Fuchs, E. A skin microRNA promotes differentiation by repressing 'stemness'. Nature 452, 225–229 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008).

    CAS  PubMed  Google Scholar 

  27. Cheung, T. H. et al. Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482, 524–528 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Muljo, S. A. et al. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202, 261–269 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Koralov, S. B. et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132, 860–874 (2008).

    CAS  PubMed  Google Scholar 

  30. Chen, J. F. et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc. Natl Acad. Sci. USA 105, 2111–2116 (2008).

    CAS  PubMed  Google Scholar 

  31. Poy, M. N. et al. miR-375 maintains normal pancreatic α- and β-cell mass. Proc. Natl Acad. Sci. USA 106, 5813–5818 (2009).

    CAS  PubMed  Google Scholar 

  32. Levine, E., Zhang, Z., Kuhlman, T. & Hwa, T. Quantitative characteristics of gene regulation by small RNA. PLoS Biol. 5, e229 (2007). This paper introduces the threshold-linear response of small RNA targets to their transcriptional induction.

    PubMed  PubMed Central  Google Scholar 

  33. Mukherji, S. et al. MicroRNAs can generate thresholds in target gene expression. Nature Genet. 43, 854–859 (2011). This paper shows the threshold-linear response with a miRNA target reporter construct in mammalian cells.

    CAS  PubMed  Google Scholar 

  34. Osella, M., Bosia, C., Cora, D. & Caselle, M. The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput. Biol. 7, e1001101 (2011). This study computationally explores the consequences of a gene being regulated only at the transcriptional level or by both a transcription factor and a miRNA that collectively form a FFL.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21, 1160–1167 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wee, L. M., Flores-Jasso, C. F., Salomon, W. E. & Zamore, P. D. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151, 1055–1067 (2012). This study assesses the importance of different miRNA positions for the interaction with an RNA target in the context of miRISC and provides a substantial number of measurements of rate constants of miRNA–target interaction.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pasquinelli, A. E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Rev. Genet. 13, 271–282 (2012).

    CAS  PubMed  Google Scholar 

  39. Thomson, D. W., Bracken, C. P. & Goodall, G. J. Experimental strategies for microRNA target identification. Nucleic Acids Res. 39, 6845–6853 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hipfner, D. R., Weigmann, K. & Cohen, S. M. The bantam gene regulates Drosophila growth. Genetics 161, 1527–1537 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    CAS  PubMed  Google Scholar 

  43. Miska, E. A. et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 3, e215 (2007).

    PubMed  PubMed Central  Google Scholar 

  44. Park, C. Y. et al. A resource for the conditional ablation of microRNAs in the mouse. Cell Rep. 1, 385–391 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Linsley, P. S. et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell. Biol. 27, 2240–2252 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    CAS  PubMed  Google Scholar 

  47. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hausser, J. et al. Timescales and bottlenecks in miRNA-dependent gene regulation. Mol. Syst. Biol. 9, 711 (2013). This study integrates a range of data sets to estimate kinetic parameters for miRNA-dependent target regulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Karginov, F. V. et al. A biochemical approach to identifying microRNA targets. Proc. Natl Acad. Sci. USA 104, 19291–19296 (2007).

    CAS  PubMed  Google Scholar 

  51. Zhang, L. et al. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol. Cell 28, 598–613 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Meier, J. et al. Genome-wide identification of translationally inhibited and degraded miR-155 targets using RNA-interacting protein-IP. RNA Biol. 10, 1018–1029 (2013).

    PubMed  Google Scholar 

  53. Zisoulis, D. G. et al. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nature Struct. Mol. Biol. 17, 173–179 (2010).

    CAS  Google Scholar 

  54. Kishore, S. et al. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nature Methods 8, 559–564 (2011).

    CAS  PubMed  Google Scholar 

  55. Hausser, J., Syed, A. P., Bilen, B. & Zavolan, M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res. 23, 604–615 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, C. & Darnell, R. B. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nature Biotech. 29, 607–614 (2011).

    CAS  Google Scholar 

  57. Konig, J. et al. iCLIP — transcriptome-wide mapping of protein–RNA interactions with individual nucleotide resolution. J. Vis. Exp. 50, e2638 (2011).

    Google Scholar 

  58. Broughton, J. P. & Pasquinelli, A. E. Identifying Argonaute binding sites in Caenorhabditis elegans using iCLIP. Methods 63, 119–125 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Smith, K. C. Photochemical addition of amino acids to 14C-uracil. Biochem. Biophys. Res. Commun. 34, 354–357 (1969).

    CAS  PubMed  Google Scholar 

  60. Shetlar, M. D., Carbone, J., Steady, E. & Hom, K. Photochemical addition of amino acids and peptides to polyuridylic acid. Photochem. Photobiol. 39, 141–144 (1984).

    CAS  PubMed  Google Scholar 

  61. Hockensmith, J. W., Kubasek, W. L., Vorachek, W. R. & von Hippel, P. H. Laser cross-linking of nucleic acids to proteins. Methodology and first applications to the phage T4 DNA replication system. J. Biol. Chem. 261, 3512–3518 (1986).

    CAS  PubMed  Google Scholar 

  62. Lai, E. C. MicroRNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genet. 30, 363–364 (2002).

    CAS  PubMed  Google Scholar 

  63. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Parker, J. S., Parizotto, E. A., Wang, M., Roe, S. M. & Barford, D. Enhancement of the seed–target recognition step in RNA silencing by a PIWI/MID domain protein. Mol. Cell 33, 204–214 (2009). This paper evaluates the influence of a PIWI/MID domain on the strength of interaction between a small RNA and a target, which reveals that the organization of the small RNA seed sequence by AGO reduces the entropy penalty for the interaction with the target.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    CAS  PubMed  Google Scholar 

  68. Alexiou, P., Maragkakis, M., Papadopoulos, G. L., Reczko, M. & Hatzigeorgiou, A. G. Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25, 3049–3055 (2009).

    CAS  PubMed  Google Scholar 

  69. Hausser, J., Landthaler, M., Jaskiewicz, L., Gaidatzis, D. & Zavolan, M. Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C–miRNA complexes and the degradation of miRNA targets. Genome Res. 19, 2009–2020 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jackson, A. L. et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, Y. K. et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 37, 1672–1681 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).

    CAS  PubMed  Google Scholar 

  74. Benetti, R. et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nature Struct. Mol. Biol. 15, 268–279 (2008).

    CAS  Google Scholar 

  75. Sinkkonen, L. et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nature Struct. Mol. Biol. 15, 259–267 (2008).

    CAS  Google Scholar 

  76. Wang, Q. et al. miR-17–92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc. Natl Acad. Sci. USA 105, 2889–2894 (2008).

    CAS  PubMed  Google Scholar 

  77. Houbaviy, H. B., Dennis, L., Jaenisch, R. & Sharp, P. A. Characterization of a highly variable eutherian microRNA gene. RNA 11, 1245–1257 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Houbaviy, H. B., Murray, M. F. & Sharp, P. A. Embryonic stem cell-specific microRNAs. Dev. Cell 5, 351–358 (2003).

    CAS  PubMed  Google Scholar 

  79. Chen, P. Y. et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev. 19, 1288–1293 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Giraldez, A. J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838 (2005).

    CAS  PubMed  Google Scholar 

  81. Tang, G. Q. & Maxwell, E. S. Xenopus microRNA genes are predominantly located within introns and are differentially expressed in adult frog tissues via post-transcriptional regulation. Genome Res. 18, 104–112 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Altuvia, Y. et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33, 2697–2706 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003).

    CAS  PubMed  Google Scholar 

  84. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Suh, M. R. et al. Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270, 488–498 (2004).

    CAS  PubMed  Google Scholar 

  86. Bentwich, I. et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genet. 37, 766–770 (2005).

    CAS  PubMed  Google Scholar 

  87. Mohammed, J., Flynt, A. S., Siepel, A. & Lai, E. C. The impact of age, biogenesis, and genomic clustering on Drosophila microRNA evolution. RNA 19, 1295–1308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lal, A. et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol. Cell 35, 610–625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Shin, C. et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789–802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Majoros, W. H. & Ohler, U. Spatial preferences of microRNA targets in 3′ untranslated regions. BMC Genomics 8, 152 (2007).

    PubMed  PubMed Central  Google Scholar 

  91. Meijer, H. A. et al. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 340, 82–85 (2013).

    CAS  PubMed  Google Scholar 

  92. Gu, S., Jin, L., Zhang, F., Sarnow, P. & Kay, M. A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nature Struct. Mol. Biol. 16, 144–150 (2009).

    CAS  Google Scholar 

  93. Fang, Z. & Rajewsky, N. The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS ONE 6, e18067 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Reczko, M., Maragkakis, M., Alexiou, P., Grosse, I. & Hatzigeorgiou, A. G. Functional microRNA targets in protein coding sequences. Bioinformatics 28, 771–776 (2012).

    CAS  PubMed  Google Scholar 

  95. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nature Genet. 39, 1278–1284 (2007).

    CAS  PubMed  Google Scholar 

  96. Tafer, H. et al. The impact of target site accessibility on the design of effective siRNAs. Nature Biotech. 26, 578–583 (2008).

    CAS  Google Scholar 

  97. Nielsen, C. B. et al. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13, 1894–1910 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Jacobsen, A., Wen, J., Marks, D. S. & Krogh, A. Signatures of RNA binding proteins globally coupled to effective microRNA target sites. Genome Res. 20, 1010–1019 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).

    CAS  PubMed  Google Scholar 

  100. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006).

    CAS  PubMed  Google Scholar 

  101. Kedde, M. et al. A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nature Cell Biol. 12, 1014–1020 (2010).

    CAS  PubMed  Google Scholar 

  102. Li, J. et al. Identifying mRNA sequence elements for target recognition by human Argonaute proteins. Genome Res. 24, 775–785 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Vlachos, I. S. & Hatzigeorgiou, A. G. Online resources for miRNA analysis. Clin. Biochem. 46, 879–900 (2013).

    CAS  PubMed  Google Scholar 

  104. Song, J. L. et al. Select microRNAs are essential for early development in the sea urchin. Dev. Biol. 362, 104–113 (2012).

    CAS  PubMed  Google Scholar 

  105. Ohrt, T. et al. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res. 36, 6439–6449 (2008). The data obtained in this study enable the estimation of the rates of AGO loading and unloading with small RNAs.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    PubMed  Google Scholar 

  107. Nam, J. W. et al. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol. Cell 53, 1031–1043 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Enright, A. J. et al. MicroRNA targets in Drosophila. Genome Biol. 5, R1 (2003).

    PubMed  PubMed Central  Google Scholar 

  109. Shalgi, R., Lieber, D., Oren, M. & Pilpel, Y. Global and local architecture of the mammalian microRNA–transcription factor regulatory network. PLoS Comput. Biol. 3, e131 (2007).

    PubMed  PubMed Central  Google Scholar 

  110. Hornstein, E. & Shomron, N. Canalization of development by microRNAs. Nature Genet 38, S20–S24 (2006).

    CAS  PubMed  Google Scholar 

  111. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Re, A., Cora, D., Taverna, D. & Caselle, M. Genome-wide survey of microRNA–transcription factor feed-forward regulatory circuits in human. Mol. Biosyst 5, 854–867 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Arvey, A., Larsson, E., Sander, C., Leslie, C. S. & Marks, D. S. Target mRNA abundance dilutes microRNA and siRNA activity. Mol. Syst. Biol. 6, 363 (2010).

    PubMed  PubMed Central  Google Scholar 

  114. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods 4, 721–726 (2007).

    CAS  PubMed  Google Scholar 

  115. Cazalla, D., Yario, T. & Steitz, J. A. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328, 1563–1566 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Marcinowski, L. et al. Degradation of cellular miR-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog. 8, e1002510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, Y. et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 25, 69–80 (2013). This is a study of crosstalk between a lncRNA and mRNA targets of miRNAs, in which the abundance of the involved molecular species have been measured.

    CAS  PubMed  Google Scholar 

  118. Kallen, A. N. et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 52, 101–112 (2013).

    CAS  PubMed  Google Scholar 

  119. Chang, J. et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 1, 106–113 (2004).

    CAS  PubMed  Google Scholar 

  120. Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766–776 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    CAS  PubMed  Google Scholar 

  122. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    CAS  PubMed  Google Scholar 

  123. Bosia, C., Pagnani, A. & Zecchina, R. Modelling competing endogenous RNA networks. PLoS ONE 8, e66609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Figliuzzi, M., Marinari, E. & De Martino, A. MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys. J. 104, 1203–1213 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Buchler, N. E. & Louis, M. Molecular titration and ultrasensitivity in regulatory networks. J. Mol. Biol. 384, 1106–1119 (2008).

    CAS  PubMed  Google Scholar 

  126. Larsson, E., Sander, C. & Marks, D. mRNA turnover rate limits siRNA and microRNA efficacy. Mol. Syst. Biol. 6, 433 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim, H. H. et al. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 23, 1743–1748 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Erhard, F. et al. Widespread context-dependency of microRNA-mediated regulation. Genome Res. 24, 906–919 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Majoros, W. H. et al. MicroRNA target site identification by integrating sequence and binding information. Nature Methods 10, 630–633 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Erhard, F., Dolken, L., Jaskiewicz, L. & Zimmer, R. PARma: identification of microRNA target sites in AGO-PAR-CLIP data. Genome Biol. 14, R79 (2013).

    PubMed  PubMed Central  Google Scholar 

  131. Grun, D., Wang, Y. L., Langenberger, D. & Gunsalus, K. C. & Rajewsky, N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol. 1, e13 (2005).

    PubMed  PubMed Central  Google Scholar 

  132. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Franceschini, A. et al. STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).

    CAS  PubMed  Google Scholar 

  134. Wang, D. et al. Quantitative functions of Argonaute proteins in mammalian development. Genes Dev. 26, 693–704 (2012).

    PubMed  PubMed Central  Google Scholar 

  135. Stalder, L. et al. The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J. 32, 1115–1127 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Djuranovic, S., Nahvi, A. & Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336, 237–240 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Bethune, J., Artus-Revel, C. G. & Filipowicz, W. Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep. 13, 716–723 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. Pemberton-Ross for help with the figure in Box 2 and members of M.Z.'s laboratory for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Zavolan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Argonaute

(AGO). A protein that, together with a microRNA (miRNA), forms a minimal miRNA-induced silencing complex (miRISC). Although the number of AGO proteins varies across species, four paralogues (which are thought to have overlapping activities) are known in humans and mice.

miRNA-induced silencing complex

(miRISC). A ribonucleoprotein complex that includes Argonaute (AGO), a microRNA (miRNA) and additional proteins such as Dicer and trinucleotide repeat-containing gene 6A protein (TNRC6A). The miRNA in this complex guides the AGO protein to targets.

CRISPR–Cas

(Clustered regularly interspaced short palindromic repeat–CRISPR-associated). A system that mediates the RNA-based immune defence of bacteria and archea to viruses and plasmids. It is composed of a genomic CRISPR array (which contains virus- or plasmid- complementary sequences that are interspersed with repeat elements) and a Cas protein (which carries the endonuclease activity).

Stable isotope labelling by amino acids in cell culture

(SILAC). A mass spectrometry-based experimental technique that is used to compare protein abundance in different experimental conditions. Cells of one sample are grown in a medium containing amino acids labelled with light isotopes, and cells of another sample are grown in medium with heavy-isotope-labelled amino acids. The samples are then mixed, and changes in protein abundance are determined from the ratio between the signal from the light and heavy isotopes.

Ribosome profiling

An experimental method to quantify the translation efficiency of individual mRNAs. Sucrose gradients are used to separate mRNAs that are actively translated and that are therefore associated with multiple ribosomes. Quantification can be done either at the level of the whole transcript (as in polysome profiling) or of the precise regions in the mRNA that are bound by ribosomes, which are protected from nuclease digestion (as in ribosome profiling or footprinting).

Crosslinking and immunoprecipitation

(CLIP). An experimental method to map the binding sites of RNA-binding proteins across the transcriptome. Proteins are crosslinked to RNA using ultraviolet light, and an antibody is used to specifically isolate the RNA-binding protein of interest together with its RNA interaction partners, which are subjected to sequencing.

Photoactivatable ribonucleoside-enhanced CLIP

(PAR-CLIP). A variant of CLIP in which photoreactive ribonucleoside analogues such as 4-thiouridine are incorporated into RNAs before crosslinking with ultraviolet A light (the wavelength of which is 365 nm).

High-throughput sequencing of RNAs isolated by CLIP

(HITS-CLIP). A variant of CLIP in which the crosslinking is achieved using ultraviolet C light (the wavelength of which is 254 nm).

Individual-nucleotide resolution CLIP

(iCLIP). A variant of CLIP that, in contrast to the other methods that rely on the reverse transcriptase to polymerize beyond the crosslinked nucleotides, aims to sequence the cDNAs at which the reverse transcriptase stopped at the crosslinked nucleotides, thereby achieving individual-nucleotide resolution in the mapping of sites of RNA-binding proteins.

Crosslinking, immunoprecipitation and sequencing of hybrids

(CLASH). An experimental method to isolate RNAs that interact by hybridization in a ribonucleoprotein complex. The complex is immunoprecipitated with a specific antibody, the RNA is partially fragmented, interacting RNAs are ligated and the resulting chimeric products are sequenced.

Long non-coding RNA

(lncRNA). An RNA molecule that is generally longer than structural RNAs (such as tRNAs, small nuclear RNAs and small nucleolar RNAs) and that does not encode proteins. Further subcategories are distinguished depending on the type of genomic regions from which they derive. One example is the long intergenic non-coding RNAs (lincRNAs) that are transcribed from genomic regions between protein-coding gene loci.

Circular RNAs

(circRNAs). Very stable RNAs with circular structures that result from the ligation of the 3′ ends to the 5′ ends, for example, of exons. The circRNA CDR1 antisense RNA (CDR1as) has recently been found to function as a miRNA 'sponge'.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hausser, J., Zavolan, M. Identification and consequences of miRNA–target interactions — beyond repression of gene expression. Nat Rev Genet 15, 599–612 (2014). https://doi.org/10.1038/nrg3765

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing