Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Candidate-gene approaches for studying complex genetic traits: practical considerations

Abstract

Association studies with candidate genes have been widely used for the study of complex diseases. However, this approach has been criticized because of non-replication of results and limits on its ability to include all possible causative genes and polymorphisms. These challenges have led to pessimism about the candidate-gene approach and about the genetic analysis of complex diseases in general. We believe that these criticisms can be usefully countered with an appeal to the principles of epidemiological investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haplotypes and linkage disequilibrium in single-nucleotide-polymorphism selection.

Similar content being viewed by others

References

  1. Risch, N. J. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  Google Scholar 

  2. Potter, J. D. At the interfaces of epidemiology, genetics and genomics. Nature Rev. Genet. 2, 142–147 (2001).

    Article  CAS  Google Scholar 

  3. Khoury, M. J., Beaty, T. & Cohen, B. H. Fundamentals of Genetic Epidemiology (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  4. Hennekens, C. H. & Buring, J. E. Epidemiology in Medicine (Little, Brown & Co., Boston, Massachusetts, 1987).

    Google Scholar 

  5. Hulley, S. B. et al. Designing Clinical Research: an Epidemiologic Approach (Lippincott, Williams & Wilkins, Baltimore, Maryland, 2001).

    Google Scholar 

  6. Hugot, J.-P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  Google Scholar 

  7. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  Google Scholar 

  8. Ioannidis, J. P. A. et al. Replication validity of genetic association studies. Nature Genet. 29, 306–309 (2001).

    Article  CAS  Google Scholar 

  9. Noble, E. P. The D2 dopamine receptor gene: a review of association studies in alcoholism and phenotypes. Alcohol 16, 33–45 (1998).

    Article  CAS  Google Scholar 

  10. Palmer, L. J. & Cookson, W. O. Genomic approaches to understanding asthma. Genome Res. 10, 1280–1287 (2000).

    Article  CAS  Google Scholar 

  11. Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nature Rev. Genet. 2, 91–99 (2001).

    Article  CAS  Google Scholar 

  12. Tu, I. P. & Whittemore, A. S. Power of association and linkage tests when the disease alleles are unobserved. Am. J. Hum. Genet. 64, 641–649 (1999).

    Article  CAS  Google Scholar 

  13. Lindpaintner, K. et al. A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N. Engl. J. Med. 332, 706–711 (1995).

    Article  CAS  Google Scholar 

  14. O'Donnell, C. J. et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation 97, 1766–1772 (1998).

    Article  CAS  Google Scholar 

  15. Ensrud, K. E. et al. Vitamin D receptor gene polymorphisms and the risk of fractures in older women. For the Study of Osteoporotic Fractures Research Group. J. Bone Miner. Res. 14, 1637–1645 (1999).

    Article  CAS  Google Scholar 

  16. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  17. The International SNP Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

  18. Syvänen, A. Accessing genetic variation: genotyping single-nucleotide polymorphisms. Nature Rev. Genet. 2, 930–942 (2001).

    Article  Google Scholar 

  19. Ng, P. C. & Henikoff, S. Accounting for human polymorphisms predicted to affect protein function. Genome Res. 12, 436–446 (2002).

    Article  CAS  Google Scholar 

  20. Sunyaev, S. et al. Prediction of deleterious human alleles. Hum. Mol. Genet. 10, 591–597 (2001).

    Article  CAS  Google Scholar 

  21. Chasman, D. & Adams, R. M. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation. J. Mol. Biol. 307, 683–706 (2001).

    Article  CAS  Google Scholar 

  22. Terwilliger, J. D. & Goring, H. H. Gene mapping in the 20th and 21st centuries: statistical methods, data analysis, and experimental design. Hum. Biol. 72, 63–132 (2000).

    CAS  PubMed  Google Scholar 

  23. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  24. Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236–244 (2000).

    Article  CAS  Google Scholar 

  25. Welsh, J. B. et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc. Natl Acad. Sci. USA 98, 1176–1181 (2001).

    Article  CAS  Google Scholar 

  26. Long, A. D. & Langley, C. H. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res. 9, 720–731 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cavalli-Sforza, L. L. & Bodmer, B. The Genetics of Human Populations (W. H. Freeman, San Francisco, California, 1971).

    Google Scholar 

  28. Nickerson, D. A. et al. Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. Genome Res. 10, 1531–1545 (2000).

    Article  Google Scholar 

  29. Kwok, P.-Y. et al. Increasing the information content of STS-based genome maps: identifying polymorphisms in mapped STSs. Genomics 31, 123–136 (1996).

    Article  CAS  Google Scholar 

  30. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    Article  CAS  Google Scholar 

  31. Halushka, M. D. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood pressure homeostasis. Nature Genet. 22, 239–247 (1999).

    Article  CAS  Google Scholar 

  32. Marth, G. T. et al. A general approach to single nucleotide polymorphism discovery. Nature Genet. 23, 452–456 (1999).

    Article  CAS  Google Scholar 

  33. Taillon-Miller, P., Gu, Z., Li, Q., Hillier, L. & Kwok, P. Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms. Genome Res. 8, 748–754 (1998).

    Article  CAS  Google Scholar 

  34. Drysdale, C. M. et al. Complex promoter and coding region β2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl Acad. Sci. USA 97, 10483–10488 (2000).

    Article  CAS  Google Scholar 

  35. Myers, R. M., Tilly, K. & Maniatis, T. Fine structure genetic analysis of a β-globin promoter. Science 232, 613–618 (1986).

    Article  CAS  Google Scholar 

  36. Liu, H. et al. Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc. Natl Acad. Sci. USA 96, 4581–4585 (1999).

    Article  CAS  Google Scholar 

  37. Theuns, J. et al. Genetic variability in the regulatory region of presenillin 1 associated with risk for Alzheimer's disease and variable expression. Hum. Mol. Genet. 200, 325–331 (2000).

    Article  Google Scholar 

  38. Cartegni, L., Chew, S. L. & Krainer, A. R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature Rev. Genet. 3, 285–298 (2002).

    Article  CAS  Google Scholar 

  39. Risch, N. J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).

    Article  CAS  Google Scholar 

  40. Buyse, I. M. et al. Diagnostic testing for Rett syndrome by DHPLC and direct sequencing analysis of the MECP2 gene: identification of several novel mutations and polymorphisms. Am. J. Hum. Genet. 67, 1428–1436 (2000).

    Article  CAS  Google Scholar 

  41. Couch, F. J. & Weber, B. L. Mutations and polymorphisms in the familial early-onset breast cancer (BRCA1) gene. Breast Cancer Information Core. Hum. Mutat. 8, 8–18 (1996).

    Article  CAS  Google Scholar 

  42. Stephens, J. C. et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 293, 489–493 (2001).

    Article  CAS  Google Scholar 

  43. Lalouel, J. M. & Rohrwasser, A. Power and replication in case–control studies. Am. J. Hypertens. 15, 201–205 (2002).

    Article  Google Scholar 

  44. Lewontin, R. C. On measures of gametic disequilibrium. Genetics 120, 849–852 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Subrahmanyan, L. et al. Sequence variation and linkage disequilibrium in the human T-cell receptor β (TCRB) locus. Am. J. Hum. Genet. 69, 381–395 (2001).

    Article  CAS  Google Scholar 

  46. Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001).

    Article  CAS  Google Scholar 

  47. Goddard, K. A. B. et al. Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. Am. J. Hum. Genet. 66, 216–234 (2000).

    Article  CAS  Google Scholar 

  48. Ardlie, K. G., Kruglyak, L. & Seielstad, M. Patterns of linkage disequilibrium in the human genome. Nature Rev. Genet. 3, 299–309 (2002).

    Article  CAS  Google Scholar 

  49. Long, J. C., Williams, R. C. & Urbanek, M. An E-M algorithm and testing strategy for multiple-locus haplotypes. Am. J. Hum. Genet. 56, 799–810 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao, J. H., Curtis, D. & Sham, P. C. Model-free analysis and permutation tests for allelic association. Hum. Hered. 50, 133–139 (1999).

    Article  Google Scholar 

  51. Altshuler, D., Daly, M. & Kruglyak, L. Guilt by association. Nature Genet. 26, 135–137 (2000).

    Article  CAS  Google Scholar 

  52. Kwok, P.-Y. Genetic association by whole-genome analysis? Science 294, 1669–1670 (2001).

    Article  CAS  Google Scholar 

  53. Rothman, K. J. & Greenland, S. Modern Epidemiology, 2nd edn (Lippincott Raven, Philadelphia, 1998).

    Google Scholar 

  54. Marth, G. et al. Single-nucleotide polymorphisms in the public domain: how useful are they? Nature Genet. 27, 371–372 (2001).

    Article  CAS  Google Scholar 

  55. Sherry, S. T., Ward, M. & Sirotkin, K. Use of molecular variation in the NCBI dbSNP database. Hum. Mutat. 15, 68–75 (2000).

    Article  CAS  Google Scholar 

  56. Pruitt, K. D. & Maglott, D. R. RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res. 29, 137–140 (2001).

    Article  CAS  Google Scholar 

  57. Brookes, A. J. et al. HGBASE: a database of SNPs and other variations in and around human genes. Nucleic Acids Res. 28, 356–360 (2000).

    Article  CAS  Google Scholar 

  58. Krawczak, M. & Cooper, D. N. The Human Gene Mutation Database. Trends Genet. 13, 121–122 (1997).

    Article  CAS  Google Scholar 

  59. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  60. Grantham, R. Amino acid difference formula to help explain protein evolution. Science 185, 862–864 (1974).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Myers laboratory and the Stanford Human Genome Center for their support. H.K.T., N.J.R. and R.M.M are supported by the National Institutes of Health and the Reynolds Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Myers.

Related links

Related links

DATABASES

CancerNet

breast cancer

LocusLink

BRCA1

MECP2

OMIM

Crohn disease

Rett syndrome

FURTHER INFORMATION

Allele Frequency Project

Celera

Genaissance

HGVbase (and SNP-related databases)

Human Gene Mutation Database

HGMD locus-specific mutation databases

Glossary

CONFOUNDING

The distortion of a measure of association, because of the association of other non-intermediate factors with both the variable of interest and the outcome of interest.

HAPLOTYPE

A combination of alleles at different sites on a single chromosome.

HERITABILITY

The proportion of the phenotypic variance due to genetic variance.

LINKAGE DISEQUILIBRIUM

A population association among alleles at two or more loci. It is a measure of co-segregation of alleles in a population.

MISCLASSIFICATION

Errors in the classification of individuals by phenotype, exposures or genotype that can lead to errors in results. The probability of misclassification can be the same across all groups in a study (non-differential) or vary among groups (differential).

RECALL BIAS

Bias in results due to systematic differences in the accuracy or completeness of recall of past exposures or family history.

RELATIVE RISK

The ratio of the risk of the phenotype among individuals with a particular exposure, genotype or haplotype to the risk among those without that exposure, genotype or haplotype.

SELECTION BIAS

A bias in results due to systematic differences between those who are selected for study and those who are not selected.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabor, H., Risch, N. & Myers, R. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3, 391–397 (2002). https://doi.org/10.1038/nrg796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg796

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing