Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endocrine and liver interaction: the role of endocrine pathways in NASH

Abstract

This article reviews evidence that causally links hormonal disorders with hepatobiliary disease, and gives particular focus to nonalcoholic steatohepatitis (NASH). The downstream mechanisms by which endocrine disturbances cause liver disease might be similar to those involved in the development of primary liver disease. Hypothyroidism, for example, might lead to NASH, cirrhosis and potentially liver cancer via the development of hyperlipidemia and obesity. Patients with growth hormone deficiency have a metabolic-syndrome-like phenotype that is also associated with the development of NASH. Polycystic ovary syndrome is a common endocrine disorder that is often associated with insulin resistance, the metabolic syndrome, altered levels of liver enzymes and the development of NASH. Recent findings support a role of dehydroepiandrosterone sulfate deficiency in the development of advanced NASH. In addition, adrenal failure is increasingly reported in patients with end stage liver disease and in patients who have received a liver transplant, which suggests a bidirectional relationship between liver and endocrine functions. Clinicians should, therefore, be aware of the potential role of endocrine disorders in patients with cryptogenic liver disease and of the effects of liver function on the endocrine system.

Key Points

  • A proportion of patients who have cryptogenic cirrhosis without identifiable etiology of liver disease are expected to have cirrhosis as a complication of nonalcoholic steatohepatitis (NASH)

  • Endocrine hormones control cell metabolism and the distribution of body fat; therefore, endocrine dysfunction might lead to metabolic liver disease in some patients who will eventually be diagnosed with cryptogenic cirrhosis

  • Hypothyroidism is associated with NASH, hepatocellular carcinoma and biliary stones, and dehydroepiandrosterone sulfate (DHEA-S) might have a role in fibrosing NASH

  • Growth hormone deficiency can cause a metabolic-syndrome-like phenotype, the metabolic derangements of which might induce the development of NASH

  • Polycystic ovary syndrome is associated with the development of nonalcoholic liver disease

  • Specific endocrine disorders might promote metabolic liver disease and, given that treatment is available for such endocrine disorders, endocrine etiologies should be ruled out in patients with cryptogenic cirrhosis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of hypothyroidism on hepatobiliary function.
Figure 2: Cholesterol and bile acid metabolism in hyperthyroid and hypothyroid patients.
Figure 3: Liver disease, including nonalcoholic steatohepatitis, might arise secondary to the metabolic effects of endocrine disturbances: hypothyroidism, GH deficiency, DHEAS deficiency and PCOS.

Similar content being viewed by others

References

  1. Browning, J. D. et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40, 1387–1395 (2004).

    PubMed  Google Scholar 

  2. Byron, D. & Minuk, G. Y. Clinical hepatology: profile of an urban, hospital-based practice. Hepatology 24, 813–815 (1996).

    CAS  PubMed  Google Scholar 

  3. Loria, P. et al. Should nonalcoholic fatty liver disease be renamed? Dig. Dis. 23, 72–82 (2005).

    PubMed  Google Scholar 

  4. Caldwell, S. H. & Crespo, D. M. The spectrum expanded: cryptogenic cirrhosis and the natural history of non-alcoholic fatty liver disease. J. Hepatol. 40, 578–584 (2004).

    PubMed  Google Scholar 

  5. Lonardo, A. et al. 'Endocrine NAFLD' a hormonocentric perspective of nonalcoholic fatty liver disease pathogenesis. J. Hepatol. 44, 1196–1207 (2006).

    CAS  PubMed  Google Scholar 

  6. Duntas, L. H. Thyroid disease and lipids. Thyroid 12, 287–293 (2002).

    CAS  PubMed  Google Scholar 

  7. Chidakel, A. et al. Peripheral metabolism of thyroid hormone and glucose homeostasis. Thyroid 15, 899–903 (2005).

    CAS  PubMed  Google Scholar 

  8. Harper, M. E. & Seifert, E. L. Thyroid hormone effects on mitochondrial energetics. Thyroid 18, 145–156 (2008).

    CAS  PubMed  Google Scholar 

  9. Hashimoto, K. et al. Cross-talk between thyroid hormone receptor and liver X receptor regulatory pathways is revealed in a thyroid hormone resistance mouse model. J. Biol. Chem. 281, 295–302 (2006).

    CAS  PubMed  Google Scholar 

  10. Thomas, C. et al. Bile acids and the membrane bile acid receptor TGR5—connecting nutrition and metabolism. Thyroid 18, 167–174 (2008).

    CAS  PubMed  Google Scholar 

  11. Hashimoto, K. et al. Mouse sterol response element binding protein-1c gene expression is negatively regulated by thyroid hormone. Endocrinology 147, 4292–4302 (2006).

    CAS  PubMed  Google Scholar 

  12. Malik, R. & Hodgson, H. The relationship between the thyroid gland and the liver. QJM 95, 559–569 (2002).

    CAS  PubMed  Google Scholar 

  13. Aydemir, S. et al. Effect of hyperthyroidism and propylthiouracil treatment on liver biochemical tests. Int. J. Clin. Pract. 59, 1304–1308 (2005).

    CAS  PubMed  Google Scholar 

  14. Hull, K. et al. Two cases of thyroid storm-associated cholestatic jaundice. Endocr. Pract. 13, 476–480 (2007).

    PubMed  Google Scholar 

  15. Soylu, A. et al. Intrahepatic cholestasis in subclinical and overt hyperthyroidism: two case reports. J. Med. Case Reports 2, 116 (2008).

    PubMed Central  Google Scholar 

  16. Upadhyay, G. et al. Severe hyperthyroidism induces mitochondria-mediated apoptosis in rat liver. Hepatology 39, 1120–1130 (2004).

    PubMed  Google Scholar 

  17. Carulli, N. et al. Review article: effect of bile salt pool composition on hepatic and biliary functions. Aliment Pharmacol. Ther. 14 (Suppl. 2), 14–18 (2000).

    CAS  PubMed  Google Scholar 

  18. Venditti, P. & Di Meo, S. Thyroid hormone-induced oxidative stress. Cell. Mol. Life Sci. 63, 414–434 (2006).

    CAS  PubMed  Google Scholar 

  19. Sokol, R. J. et al. “Let there be bile”—understanding hepatic injury in cholestasis. J. Pediatr. Gastroenterol. Nutr. 43 (Suppl. 1), S4–S9 (2006).

    PubMed  Google Scholar 

  20. Sola, J. et al. Liver changes in patients with hyperthyroidism. Liver 11, 193–197 (1991).

    CAS  PubMed  Google Scholar 

  21. Nakamura, H. et al. Comparison of methimazole and propylthiouracil in patients with hyperthyroidism caused by Graves' disease. J. Clin. Endocrinol. Metab. 92, 2157–2162 (2007).

    CAS  PubMed  Google Scholar 

  22. Woeber, K. A. Methimazole-induced hepatotoxicity. Endocr. Pract. 8, 222–224 (2002).

    PubMed  Google Scholar 

  23. Russo, M. W. et al. Liver transplantation for acute liver failure from drug-induced liver injury in the United States. Liver Transpl. 10, 1018–1023 (2004).

    PubMed  Google Scholar 

  24. Laukkarinen, J. et al. Increased prevalence of subclinical hypothyroidism in common bile duct stone patients. J. Clin. Endocrinol. Metab. 92, 4260–4264 (2007).

    CAS  PubMed  Google Scholar 

  25. Völzke, H. et al. Association between thyroid function and gallstone disease. World J. Gastroenterol. 11, 5530–5534 (2005).

    PubMed  PubMed Central  Google Scholar 

  26. Bellini, M. A. et al. Hypotonia of the gall bladder, of myxedematous origin. J. Clin. Endocrinol. Metab. 17, 133–142 (1957).

    CAS  PubMed  Google Scholar 

  27. Carulli, N. et al. Thyroid function and sterol metabolism in man. In The Endocrines and the Liver 195–204 (Eds Langer, M. et al.) London and New York: Academic Press (1982).

    Google Scholar 

  28. Ponz de Leon, M. et al. Influence of small-bowel transit time on dietary cholesterol absorption in human beings. N. Engl. J. Med. 307, 102–103 (1982).

    CAS  PubMed  Google Scholar 

  29. Laukkarinen, J. et al. Bile flow to the duodenum is reduced in hypothyreosis and enhanced in hyperthyreosis. Neurogastroenterol. Motil. 14, 183–188 (2002).

    CAS  PubMed  Google Scholar 

  30. Gälman, C. et al. Dramatically increased intestinal absorption of cholesterol following hypophysectomy is normalized by thyroid hormone. Gastroenterology 134, 1127–1136 (2008).

    PubMed  Google Scholar 

  31. Lauritano, E. C. et al. Association between hypothyroidism and small intestinal bacterial overgrowth. J. Clin. Endocrinol. Metab. 92, 4180–4184 (2007).

    CAS  PubMed  Google Scholar 

  32. Uzunlulu, M. et al. Prevalence of subclinical hypothyroidism in patients with metabolic syndrome. Endocr. J. 54, 71–76 (2007).

    CAS  PubMed  Google Scholar 

  33. Targher, G. et al. Association between serum TSH, free T4 and serum liver enzyme activities in a large cohort of unselected outpatients. Clin. Endocrinol. (Oxf.) 68, 481–484 (2008).

    CAS  Google Scholar 

  34. Liangpunsakul, S. & Chalasani, N. Is hypothyroidism a risk factor for nonalcoholic steatohepatitis? J. Clin. Gastroenterol. 37, 340–343 (2003).

    PubMed  Google Scholar 

  35. Reddy, A. et al. Hypothyroidism: a possible risk factor for liver cancer in patients with no known underlying cause of liver disease. Clin. Gastroenterol. Hepatol. 5, 118–123 (2007).

    PubMed  Google Scholar 

  36. Bruck, R. et al. Induced hypothyroidism accelerates the regression of liver fibrosis in rats. J. Gastroenterol. Hepatol. 22, 2189–2194 (2007).

    CAS  PubMed  Google Scholar 

  37. Chang, C. C. et al. Methimazole alleviates hepatic encephalopathy in bile-duct ligated cirrhotic rats. J. Chin. Med. Assoc. 69, 563–568 (2006).

    CAS  PubMed  Google Scholar 

  38. Oren, R. et al. The effects of hypothyroidism on liver status of cirrhotic patients. J. Clin. Gastroenterol. 31, 162–163 (2000).

    CAS  PubMed  Google Scholar 

  39. Ji, J. S. et al. Myxedema ascites: case report and literature review. J. Korean Med. Sci. 21, 761–764 (2006).

    PubMed  PubMed Central  Google Scholar 

  40. Duarte, D. R. et al. Myxedema ascites with elevated serum CA 125 concentration. Am. J. Med. Sci. 331, 103–104 (2006).

    PubMed  Google Scholar 

  41. Kanehara, H. et al. Myxedema ascites with an extremely elevated CA125 level: a case report. Endocr. J. 54, 601–604 (2007).

    CAS  PubMed  Google Scholar 

  42. Bittencourt, P. L. et al. Frequency of concurrent autoimmune disorders in patients with autoimmune hepatitis: effect of age, gender, and genetic background. J. Clin. Gastroenterol. 42, 300–305 (2008).

    PubMed  Google Scholar 

  43. Sakauchi, F. et al. Comparison of the clinical features of Japanese patients with primary biliary cirrhosis in 1999 and 2004: utilization of clinical data when patients applied to receive public financial aid. J. Epidemiol. 17, 210–214 (2007).

    PubMed  Google Scholar 

  44. Cindoruk, M. et al. The prevalence of autoimmune hepatitis in Hashimoto's thyroiditis in a Turkish population. Acta Gastroenterol. Belg. 65, 143–145 (2002).

    CAS  PubMed  Google Scholar 

  45. Amenduni, T. et al. Unusual association of Hashimoto's thyroiditis with autoimmune hepatitis. Thyroid 17, 1307–1308 (2007).

    CAS  PubMed  Google Scholar 

  46. Vogel, A. et al. Autoimmune regulator AIRE: evidence for genetic differences between autoimmune hepatitis and hepatitis as part of the autoimmune polyglandular syndrome type 1. Hepatology 33, 1047–1052 (2001).

    CAS  PubMed  Google Scholar 

  47. Oki, K. et al. A case of polyglandular autoimmune syndrome type III complicated with autoimmune hepatitis. Endocr. J. 53, 705–709 (2006).

    CAS  PubMed  Google Scholar 

  48. Antonelli, A. et al. Thyroid disorders in chronic hepatitis C virus infection. Thyroid 16, 563–572 (2006).

    PubMed  Google Scholar 

  49. Fernandez-Soto, L. et al. Increased risk of autoimmune thyroid disease in hepatitis C vs hepatitis B before, during, and after discontinuing interferon therapy. Arch. Intern. Med. 158, 1445–1448 (1998).

    CAS  PubMed  Google Scholar 

  50. Tomer, Y. et al. Interferon alpha treatment and thyroid dysfunction. Endocrinol. Metab. Clin. North Am. 36, 1051–1066 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ghilardi, G. et al. Hypothyroid myopathy as a complication of interferon alpha therapy for chronic hepatitis C virus infection. Br. J. Rheumatol. 37, 1349–1351 (1998).

    CAS  PubMed  Google Scholar 

  52. Deutsch, M. et al. Hashimoto encephalopathy with pegylated interferon alfa-2b and ribavirin. Ann. Pharmacother. 39, 1745–1748 (2005).

    PubMed  Google Scholar 

  53. Berardi, S. et al. High incidence of allograft dysfunction in liver transplanted patients treated with pegylated-interferon alpha-2b and ribavirin for hepatitis C recurrence: possible de novo autoimmune hepatitis? Gut 56, 237–242 (2007).

    CAS  PubMed  Google Scholar 

  54. Flohr, F. et al. Hypothyroidism in patients with hepatocellular carcinoma treated by transarterial chemoembolization. Hepatology 47, 2144 (2008).

    PubMed  Google Scholar 

  55. Tamaskar, I. et al. Thyroid function test abnormalities in patients with metastatic renal cell carcinoma treated with sorafenib. Ann. Oncol. 19, 265–268 (2008).

    CAS  PubMed  Google Scholar 

  56. Khovidhunkit, W. et al. Development of overt autoimmune hyperthyroidism in a patient therapeutically immunosuppressed after liver transplantation. Thyroid 10, 829–832 (2000).

    CAS  PubMed  Google Scholar 

  57. Kryczka, W. et al. Thyroid gland dysfunctions during antiviral therapy of chronic hepatitis C. Med. Sci. Monit. 7 (Suppl. 1), 221–225 (2001).

    PubMed  Google Scholar 

  58. Indolfi, G. et al. Thyroid function and antithyroid autoantibodies in untreated children with vertically acquired chronic hepatitis C virus infection. Clin. Endocrinol. (Oxf.) 68, 117–121 (2008).

    Google Scholar 

  59. Koh, L. K. et al. Interferon-alpha induced thyroid dysfunction: three clinical presentations and a review of the literature. Thyroid 7, 891–896 (1997).

    CAS  PubMed  Google Scholar 

  60. Rodríguez-Torres, M. et al. Thyroid dysfunction (TD) among chronic hepatitis C patients with mild and severe hepatic fibrosis. Ann. Hepatol. 7, 72–77 (2008).

    PubMed  Google Scholar 

  61. El-Serag, H. B. et al. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 134, 1752–1763 (2008).

    PubMed  Google Scholar 

  62. Brobeck, J. R. Mechanism of the development of obesity in animals with hypothalamic lesions. Physiol. Rev. 26, 541–559 (1946).

    CAS  PubMed  Google Scholar 

  63. Johannsson, G. & Bengtsson, B. A. Growth hormone and the metabolic syndrome. J. Endocrinol. Invest. 22, 41 (1999).

    CAS  PubMed  Google Scholar 

  64. Maison, P. et al. Evidence for distinct effects of GH and IGF-I in the metabolic syndrome. Diabet. Med. 24, 1012–1018 (2007).

    CAS  PubMed  Google Scholar 

  65. Svensson, J. et al. Malignant disease and cardiovascular morbidity in hypopituitary adults with or without growth hormone replacement therapy. J. Clin. Endocrinol. Metab. 89, 3306–3312 (2004).

    CAS  PubMed  Google Scholar 

  66. Sigurjónsdóttir, H. A. et al. GH effect on enzyme activity of 11β HSD in abdominal obesity is dependent on treatment duration. Eur. J. Endocrinol. 154, 69–74 (2006).

    PubMed  Google Scholar 

  67. Clodfelter, K. H. et al. Role of STAT5a in regulation of sex-specific gene expression in female but not male mouse liver revealed by microarray analysis. Physiol. Genomics 31, 63–74 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Takano, S. et al. Effect of growth hormone on fatty liver in panhypopituitarism. Arch. Dis. Child. 76, 537–538 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tai, T. S. et al. Metabolic effects of growth hormone therapy in an Alström syndrome patient. Horm. Res. 60, 297–301 (2003).

    CAS  PubMed  Google Scholar 

  70. Takahashi, Y. et al. Growth hormone reverses nonalcoholic steatohepatitis in a patient with adult growth hormone deficiency. Gastroenterology 132, 938–943 (2007).

    PubMed  Google Scholar 

  71. Nyunt, A. et al. Adult cirrhosis due to untreated congenital hypoituitarism. J. R. Soc. Med. 98, 316–317 (2005).

    PubMed  PubMed Central  Google Scholar 

  72. Lonardo, A. et al. Growth hormone plasma levels in nonalcoholic fatty liver disease. Am. J. Gastroenterol. 97, 1071–1072 (2002).

    PubMed  Google Scholar 

  73. Ichikawa, T. et al. Non-alcoholic steatohepatitis and hepatic steatosis in patients with adult onset growth hormone deficiency Gut. 52, 914 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Adams, L. A. et al. Nonalcoholic fatty liver disease among patients with hypothalamic and pituitary dysfunction. Hepatology 39, 909–914 (2004).

    PubMed  Google Scholar 

  75. Wang, H. T. et al. Expression of growth hormone receptor and its mRNA in hepatic cirrhosis. World J. Gastroenterol. 9, 765–770 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, S. et al. Protective effects of recombinant human growth hormone on cirrhotic rats. World J. Gastroenterol. 10, 2894–2897 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Theiss, A. L. et al. Growth hormone reduces the severity of fibrosis associated with chronic intestinal inflammation. Gastroenterology 129, 204–219 (2005).

    CAS  PubMed  Google Scholar 

  78. Castiella, A. et al. Hypertransaminasaemia and Addison's disease. Eur. J. Gastroenterol. Hepatol. 10, 891–892 (1998).

    CAS  PubMed  Google Scholar 

  79. Olsson, R. G. et al. Liver involvement in Addison's disease. Am. J. Gastroenterol. 85, 435–438 (1990).

    CAS  PubMed  Google Scholar 

  80. Boulton, R. et al. Subclinical Addison's disease: a cause of persistent abnormalities in transaminase values. Gastroenterology 109, 1321–1327 (1995).

    Google Scholar 

  81. Rizvi, A. A. & Kerrick, J. G. Liver involvement and abnormal iron variables in undiagnosed Addison's disease. Endocr. Pract. 7, 181–188 (2001).

    Google Scholar 

  82. Milionis, H. J. et al. Unexplained hypertransaminasemia: a clue to diagnosis of Addison's disease. Eur. J. Gastroenterol. Hepatol. 14, 1285–1286 (2002).

    PubMed  Google Scholar 

  83. Nerup, J. Addison's disease: a review of some clinical, pathological and immunological features. Dan. Med. Bull. 21, 201–217 (1974).

    CAS  PubMed  Google Scholar 

  84. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    CAS  Google Scholar 

  85. Charlton, M. et al. Low circulating levels of dehydroepiandrosterone in histologically advanced nonalcoholic fatty liver disease. Hepatology 47, 484–492 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Harry, R. et al. The clinical importance of adrenal insufficiency in acute hepatic dysfunction. Hepatology 36, 395–402 (2002).

    CAS  PubMed  Google Scholar 

  87. Tsai, M. H. et al. Adrenal insufficiency in patients with cirrhosis, severe sepsis and septic shock. Hepatology 43, 673–681 (2006).

    PubMed  Google Scholar 

  88. Fernandez, J. et al. Adrenal insufficiency in patients with cirrhosis and septic shock: effect of treatment with hydrocortisone on survival. Hepatology 44, 1288–1295 (2006).

    CAS  PubMed  Google Scholar 

  89. Marik, P. E. et al. The hepatoadrenal syndrome: a common yet unrecognized clinical condition. Crit. Care Med. 33, 1254–1259 (2005).

    PubMed  PubMed Central  Google Scholar 

  90. O'Beirne, J. et al. Adrenal insufficiency in liver disease. What is the evidence? J. Hepatol. 47, 418–423 (2007).

    CAS  PubMed  Google Scholar 

  91. Marik, P. E. Adrenal insufficiency: the link between low apolipoprotein A-1 levels and poor outcome in the critically ill? Crit. Care Med. 32, 1977–1978 (2004).

    PubMed  Google Scholar 

  92. Yaguchi, H. et al. Involvement of high density lipoprotein as substrate cholesterol for steroidogenesis by bovine adrenal fasciculo-reticularis cells. Life Sci. 62, 1387–1395 (1988).

    Google Scholar 

  93. Sckiyama, K. D. et al. Circulating proinflammatory cytokines (IL-1 β, TNF-α, and IL-6) and IL-1 receptor antagonist (IL-1Ra) in fulminant hepatic failure and acute hepatitis. Clin. Exp. Immunol. 98, 71–77 (1994).

    Google Scholar 

  94. Stahn, C. et al. Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol. Cell. Endocrinol. 275, 71–78 (2007).

    CAS  PubMed  Google Scholar 

  95. Schäche, H. et al. Selective glucocorticoid receptor agonists (SEGRAs): novel ligands with an improved therapeutic index. Mol. Cell. Endocrinol. 275, 109–117 (2007).

    Google Scholar 

  96. Jacobson, P. B. et al. Hepatic glucocorticoid receptor antagonism is sufficient to reduce elevated hepatic glucose output and improve glucose control in animal models of type 2 diabetes. J. Pharm. Exp. Ther. 314, 191–200 (2005).

    CAS  Google Scholar 

  97. Von Geldern, T. W. et al. Liver-selective glucocorticoid antagonists: a novel treatment for type 2 diabetes. J. Med. Chem. 47, 4213–4230 (2004).

    CAS  PubMed  Google Scholar 

  98. Rautiainen, H. et al. Budesonide combined with UDCA to improve liver histology in primary biliary cirrhosis: a three-year randomized trial. Hepatology 41, 747–752 (2005).

    CAS  PubMed  Google Scholar 

  99. Arenas, F. et al. Combination of ursodeoxycholic acid and glucocorticoids upregulates the AE2 alternate promoter in human liver cells. J. Clin. Invest. 118, 695–709 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fassnacht, M. et al. Beyond adrenal and ovarian androgen generation: increased peripheral 5 alpha-reductase activity in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88, 2760–2766 (2003).

    CAS  PubMed  Google Scholar 

  101. Setji, T. L. & Brown, A. J. Polycystic ovary syndrome: diagnosis and treatment. Am. J. Med. 120, 128–132 (2007).

    PubMed  Google Scholar 

  102. The Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 19, 41–47 (2004).

  103. Glueck, C. J. et al. Incidence and treatment of metabolic syndrome in newly referred women with confirmed polycystic ovarian syndrome. Metabolism 52, 908–915 (2003).

    CAS  PubMed  Google Scholar 

  104. Apridonidze, T. et al. Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 90, 1929–1935 (2005).

    CAS  PubMed  Google Scholar 

  105. Carmina, E. Need for liver evaluation in polycystic ovary syndrome. J. Hepatol. 47, 313–315 (2007).

    PubMed  Google Scholar 

  106. Ducluzeau, P. H. et al. Glucose-to-insulin ratio rather than sex hormone-binding globulin and adiponectin levels is the best predictor of insulin resistance in nonobese women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88, 3626–3631 (2003).

    CAS  PubMed  Google Scholar 

  107. Lewy, V. D. et al. Early metabolic abnormalities in adolescent girls with polycystic ovarian syndrome. J. Pediatr. 138, 38–44 (2001).

    CAS  PubMed  Google Scholar 

  108. Pirwany, I. R. et al. Lipids and lipoprotein subfractions in women with PCOS: relationship to metabolic and endocrine parameters. Clin. Endocrinol. (Oxf.) 54, 447–453 (2001).

    CAS  Google Scholar 

  109. Chen, M. J. et al. Low sex hormone-binding globulin is associated with low high-density lipoprotein cholesterol and metabolic syndrome in women with PCOS. Hum. Reprod. 21, 2266–2271 (2006).

    CAS  PubMed  Google Scholar 

  110. Schwimmer, J. B. et al. Abnormal aminotransferase activity in women with polycystic ovary syndrome. Fertil. Steril. 83, 494–497 (2005).

    CAS  PubMed  Google Scholar 

  111. Setji, T. L. et al. Nonalcoholic steatohepatitis and nonalcoholic fatty liver disease in young women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 91, 1741–1747 (2006).

    CAS  PubMed  Google Scholar 

  112. Cerda, C. et al. Nonalcoholic fatty liver disease in women with polycystic ovary syndrome. J. Hepatol. 47, 412–417 (2007).

    CAS  PubMed  Google Scholar 

  113. Gambarin-Gelwan, M. et al. Prevalence of nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Clin. Gastroenterol. Hepatol. 5, 496–501 (2007).

    PubMed  Google Scholar 

  114. Toso, C. et al. Hepatocellular adenoma and polycystic ovary syndrome. Liver Int. 23, 35–37 (2003).

    PubMed  Google Scholar 

  115. Brown, A. J. et al. Polycystic ovary syndrome and severe nonalcoholic steatohepatitis: beneficial effect of modest weight loss and exercise on liver biopsy findings. Endocr. Pract. 11, 319–324 (2005).

    PubMed  Google Scholar 

  116. Rautio, K. et al. Effects of metformin and ethinyl estradiol–cyproterone acetate on lipid levels in obese and nonobese women with polycystic ovary syndrome. Eur. J. Endocrinol. 152, 269–275 (2005).

    CAS  PubMed  Google Scholar 

  117. Luque-Ramírez, M. et al. Comparison of ethinyl-estradiol plus cyproterone acetate versus metformin effects on classic metabolic cardiovascular risk factors in women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 92, 2453–2461 (2007).

    PubMed  Google Scholar 

  118. Lemay, A. et al. Rosiglitazone and ethinyl estradiol/cyproterone acetate as single and combined treatment of overweight women with polycystic ovary syndrome and insulin resistance. Hum. Reprod. 21, 121–128 (2006).

    CAS  PubMed  Google Scholar 

  119. Morin-Papunen, L. et al. Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88, 4649–4654 (2003).

    CAS  PubMed  Google Scholar 

  120. Palomba, S. et al. Clomiphene citrate, metformin or both as first-step approach in treating anovulatory infertility in patients with polycystic ovary syndrome (PCOS): a systematic review of head-to-head randomized controlled studies and meta-analysis. Clin. Endocrinol. (Oxf.) [doi:10.1111/j.1365–22652008.03369.x] (2008).

  121. Dunaif, A. Drug insight: insulin-sensitizing drugs in the treatment of polycystic ovary syndrome—a reappraisal. Nat. Clin. Pract. Endocrinol. Metab. 4, 272–283 (2008).

    CAS  PubMed  Google Scholar 

  122. Goldenberg, N. & Glueck, C. Medical therapy in women with polycystic ovarian syndrome before and during pregnancy and lactation. Minerva Ginecol. 60, 63–75 (2008).

    CAS  PubMed  Google Scholar 

  123. Nawaz, F. H. et al. Does continuous use of metformin throughout pregnancy improve pregnancy outcomes in women with polycystic ovarian syndrome? J. Obstet. Gynaecol. Res. 34, 832–837 (2008).

    Google Scholar 

  124. Brettenthaler, N. et al. Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 89, 3835–3840 (2004).

    CAS  PubMed  Google Scholar 

  125. Dahabreh, I. J. & Economopoulos, K. Meta-analysis of rare events: an update and sensitivity analysis of cardiovascular events in randomized trials of rosiglitazone. Clin. Trials 5, 116–120 (2008).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Loria.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loria, P., Carulli, L., Bertolotti, M. et al. Endocrine and liver interaction: the role of endocrine pathways in NASH. Nat Rev Gastroenterol Hepatol 6, 236–247 (2009). https://doi.org/10.1038/nrgastro.2009.33

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2009.33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing