Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms, diagnosis and management of hepatic encephalopathy

Abstract

Hepatic encephalopathy (HE) is a serious neuropsychiatric complication of both acute and chronic liver disease. Symptoms of HE can include confusion, disorientation and poor coordination. A general consensus exists that the synergistic effects of excess ammonia and inflammation cause astrocyte swelling and cerebral edema; however, the precise molecular mechanisms that lead to these morphological changes in the brain are unclear. Cerebral edema occurs to some degree in all patients with HE, regardless of its grade, and could underlie the pathogenesis of this disorder. The different grades of HE can be diagnosed by a number of investigations, including neuropsychometric tests (such as the psychometric hepatic encephalopathy score), brain imaging and clinical scales (such as the West Haven criteria). HE is best managed by excluding other possible causes of encephalopathy alongside identifying and the precipitating cause, and confirming the diagnosis by a positive response to empiric treatment. Empiric therapy for HE is largely based on the principle of reducing the production and absorption of ammonia in the gut through administration of pharmacological agents such as rifaximin and lactulose, which are approved by the FDA for the treatment of HE.

Key Points

  • Hepatic encephalopathy (HE) is a serious neuropsychiatric complication of acute and chronic liver disease

  • Inflammation and raised levels of ammonia in the blood (owing to diminished clearance of ammonia by the liver) underlie the pathogenesis of HE

  • Some degree of cerebral edema is observed in all grades of HE

  • The occurrence of any neuropsychiatric manifestation in patients with liver disease should be treated as HE unless proven otherwise

  • An acute episode of HE is managed by a tripartite strategy: ruling out other causes of encephalopathy, identifying the precipitating cause and initiating empiric therapy

  • Rifaximin and lactulose are the only two medications approved by FDA for long-term treatment of HE

  • Work-up for liver transplantation must be initiated as early as possible

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of hepatic encephalopathy (HE) proposed by the Working Party at the 1998 World Congress of Gastroenterology, Vienna, Austria.
Figure 2: Management of patients with hepatic encephalopathy (HE).

Similar content being viewed by others

References

  1. Ferenci, P. et al. Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 35, 716–721 (2002).

    Article  PubMed  Google Scholar 

  2. Shawcross, D. L., Wright, G., Olde Damink, S. W. & Jalan, R. Role of ammonia and inflammation in minimal hepatic encephalopathy. Metab. Brain Dis. 22, 125–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Shawcross, D. L., Davies, N. A., Williams, R. & Jalan, R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J. Hepatol. 40, 247–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Norenberg, M. D., Jayakumar, A. R., Rama Rao, K. V. & Panickar, K. S. New concepts in the mechanism of ammonia-induced astrocyte swelling. Metab. Brain Dis. 22, 219–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Schliess, F., Görg, B. & Häussinger, D. Pathogenetic interplay between osmotic and oxidative stress: the hepatic encephalopathy paradigm. Biol. Chem. 387, 1363–1370 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Ahboucha, S. & Butterworth, R. F. The neurosteroid system: an emerging therapeutic target for hepatic encephalopathy. Metab. Brain Dis. 22, 291–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Qadri, A. M., Ogunwale, B. O. & Mullen, K. D. Can we ignore minimal hepatic encephalopathy any longer? Hepatology 45, 547–548 (2007).

    Article  PubMed  Google Scholar 

  8. Talwalkar, J. A. & Kamath, P. S. Influence of recent advances in medical management on clinical outcomes of cirrhosis. Mayo Clin. Proc. 80, 1501–1508 (2005).

    Article  PubMed  Google Scholar 

  9. Poordad, F. F. Review article: the burden of hepatic encephalopathy. Aliment. Pharmacol. Ther. 25 (Suppl. 1), 3–9 (2007).

    Article  PubMed  Google Scholar 

  10. Groeneweg, M. et al. Subclinical hepatic encephalopathy impairs daily functioning. Hepatology 28, 45–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Prasad, S. et al. Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology 45, 549–559 (2007).

    Article  PubMed  Google Scholar 

  12. Bajaj, J. S. et al. Navigation skill impairment: Another dimension of the driving difficulties in minimal hepatic encephalopathy. Hepatology 47, 596–604 (2008).

    Article  PubMed  Google Scholar 

  13. Bajaj, J. S., Saeian, K., Hafeezullah, M., Hoffmann, R. G. & Hammeke, T. A. Patients with minimal hepatic encephalopathy have poor insight into their driving skills. Clin. Gastroenterol. Hepatol. 6, 1135–1139 (2008).

    Article  PubMed  Google Scholar 

  14. Bajaj, J. S. et al. The effect of fatigue on driving skills in patients with hepatic encephalopathy. Am. J. Gastroenterol. 104, 898–905 (2009).

    Article  PubMed  Google Scholar 

  15. Kircheis, G. et al. Hepatic encephalopathy and fitness to drive. Gastroenterology 137, 1706–1715.e9 (2009).

    Article  PubMed  Google Scholar 

  16. Bajaj, J. S. et al. Minimal hepatic encephalopathy is associated with motor vehicle crashes: the reality beyond the driving test. Hepatology 50, 1175–1183 (2009).

    Article  PubMed  Google Scholar 

  17. Bustamante, J. et al. Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J. Hepatol. 30, 890–895 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Zieve, L. Pathogenesis of hepatic encephalopathy. Metab. Brain Dis. 2, 147–165 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Cooper, A. J. & Plum, F. Biochemistry and physiology of brain ammonia. Physiol. Rev. 67, 440–519 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Ytrebø, L. M. et al. Interorgan ammonia, glutamate, and glutamine trafficking in pigs with acute liver failure. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G373–G381 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. Olde Damink, S. W., Jalan, R. & Dejong, C. H. Interorgan ammonia trafficking in liver disease. Metab. Brain Dis. 24, 169–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Hahn, M., Massen, O., Nencki, M. & Pavlov, I. Die Eck'sche fistel zwischen der unteren hohlvene under pfortader und ihre folgen fur den organismus [German]. Arch. Exp. Pathol. Pharm. 32, 161–210 (1893).

    Article  Google Scholar 

  23. Shawcross, D. L., Olde Damink, S. W., Butterworth, R. F. & Jalan, R. Ammonia and hepatic encephalopathy: the more things change, the more they remain the same. Metab. Brain Dis. 20, 169–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Phillips, G., Schwartz, R., Gabuzda, G. & Davidson, C. The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. N. Engl. J. Med. 247, 239–246 (1952).

    Article  CAS  PubMed  Google Scholar 

  25. Lockwood, A. H., Yap, E. W. & Wong, W. H. Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy. J. Cereb. Blood Flow Metab. 11, 337–341 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Thomas, J. W., Banner, C., Whitman, J., Mullen, K. D. & Freese, E. Changes in glutamate-cycle enzyme mRNA levels in a rat model of hepatic encephalopathy. Metab. Brain Dis. 3, 81–90 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Häussinger, D., Kircheis, G., Fischer, R., Schiliess, F. & vom Dahl, S. Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J. Hepatol. 32, 1035–1038 (2000).

    Article  PubMed  Google Scholar 

  28. Cooper, A. J., McDonald, J. M., Gelbard, A. S., Gledhill, R. F. & Duffy, T. E. The metabolic fate of 13N-labeled ammonia in rat brain. J. Biol. Chem. 254, 4982–4992 (1979).

    Article  CAS  PubMed  Google Scholar 

  29. Häussinger, D. & Schliess, F. Pathogenetic mechanisms of hepatic encephalopathy. Gut 57, 1156–1165 (2008).

    Article  PubMed  CAS  Google Scholar 

  30. Tanigami, H. et al. Effect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonemia in rats. Neuroscience 131, 437–449 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Rose, C., Kresse, W. & Kettenmann, H. Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. J. Biol. Chem. 280, 20937–20944 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Rose, C. Effect of ammonia on astrocytic glutamate uptake/release mechanisms. J. Neurochem. 97 (Suppl. 1), 11–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Hertz, L., Murthy, C. R., Lai, J. C., Fitzpatrick, S. M. & Cooper, A. J. Some metabolic effects of ammonia on astrocytes and neurons in primary cultures. Neurochem. Pathol. 6, 97–129 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Córdoba, J., Sanpedro, F., Alonso, J. & Rovira, A. 1H magnetic resonance in the study of hepatic encephalopathy in humans. Metab. Brain Dis. 17, 415–429 (2002).

    Article  PubMed  Google Scholar 

  35. Häussinger, D. Low grade cerebral edema and the pathogenesis of hepatic encephalopathy in cirrhosis. Hepatology 43, 1187–1190 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. Rovira, A., Alonso, J. & Córdoba, J. MR imaging findings in hepatic encephalopathy. AJNR Am. J. Neuroradiol. 29, 1612–1621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shawcross, D. L. et al. Low myo-inositol and high glutamine levels in brain are associated with neuropsychological deterioration after induced hyperammonemia. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G503–G509 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Butterworth, R. F. Pathophysiology of hepatic encephalopathy: The concept of synergism. Hepatol. Res. 38, S116–S121 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Gregorios, J. B., Mozes, L. W. & Norenberg, M. D. Morphologic effects of ammonia on primary astrocyte cultures. II. Electron microscopic studies. J. Neuropathol. Exp. Neurol. 44, 404–414 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. Norenberg, M. D. The role of astrocytes in hepatic encephalopathy. Neurochem. Pathol. 6, 13–33 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Shawcross, D. & Jalan, R. The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation. Cell. Mol. Life Sci. 62, 2295–2304 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Häussinger, D. & Schliess, F. Astrocyte swelling and protein tyrosine nitration in hepatic encephalopathy. Neurochem. Int. 47, 64–70 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. Moldawer, L. L. et al. Cachectin/tumor necrosis factor-α alters red blood cell kinetics and induces anemia in vivo. FASEB J. 3, 1637–1643 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. de Vries, H. E. et al. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J. Neuroimmunol. 64, 37–43 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Didier, N. et al. Secretion of interleukin-1β by astrocytes mediates endothelin-1 and tumour necrosis factor-α effects on human brain microvascular endothelial cell permeability. J. Neurochem. 86, 246–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Duchini, A. Effects of tumor necrosis factor-α and interleukin-6 on fluid-phase permeability and ammonia diffusion in CNS-derived endothelial cells. J. Investig. Med. 44, 474–482 (1996).

    CAS  PubMed  Google Scholar 

  47. Cagnin, A., Taylor-Robinson, S. D., Forton, D. M. & Banati, R. B. In vivo imaging of cerebral “peripheral benzodiazepine binding sites” in patients with hepatic encephalopathy. Gut 55, 547–553 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ahboucha, S. & Butterworth, R. F. The neurosteroid system: implication in the pathophysiology of hepatic encephalopathy. Neurochem. Int. 52, 575–587 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Baulieu, E. E. Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23, 963–987 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Papadopoulos, V. et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci. 27, 402–409 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Papadopoulos, V., Lecanu, L., Brown, R. C., Han, Z. & Yao, Z. X. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience 138, 749–756 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Desjardins, P. & Butterworth, R. F. The “peripheral-type” benzodiazepine (omega 3) receptor in hyperammonemic disorders. Neurochem. Int. 41, 109–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Bélanger, M., Desjardins, P., Chatauret, N., Rose, C. & Butterworth, R. F. Mild hypothermia prevents brain edema and attenuates up-regulation of the astrocytic benzodiazepine receptor in experimental acute liver failure. J. Hepatol. 42, 694–699 (2005).

    Article  PubMed  CAS  Google Scholar 

  54. Ahboucha, S., Coyne, L., Hirakawa, R., Butterworth, R. F. & Halliwell, R. F. An interaction between benzodiazepines and neuroactive steroids at GABAA receptors in cultured hippocampal neurons. Neurochem. Int. 48, 703–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Murthy, C. R., Rama Rao, K. V., Bai, G. & Norenberg, M. D. Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J. Neurosci. Res. 66, 282–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Hermenegildo, C., Monfort, P. & Felipo, V. Activation of N-methyl-D-aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology 31, 709–715 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Hilgier, W., Anderzhanova, E., Oja, S. S., Saransaari, P. & Albrecht, J. Taurine reduces ammonia- and N-methyl-D-aspartate-induced accumulation of cyclic GMP and hydroxyl radicals in microdialysates of the rat striatum. Eur. J. Pharmacol. 468, 21–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Reinehr, R. et al. Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 55, 758–771 (2007).

    Article  PubMed  Google Scholar 

  59. Albrecht, J. & Norenberg, M. D. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44, 788–794 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Schliess, F. et al. Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J. 16, 739–741 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Mullen, K. D. & Jones, E. A. Natural benzodiazepines and hepatic encephalopathy. Semin. Liver Dis. 16, 255–264 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Mullen, K. D., Cole, M. & Foley, J. M. Neurological deficits in “awake” cirrhotic patients on hepatic encephalopathy treatment: missed metabolic or metal disorder? Gastroenterology 111, 256–257 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Rose, C. et al. Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver dysfunction. Gastroenterology 117, 640–644 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Naegele, T. et al. MR imaging and 1H spectroscopy of brain metabolites in hepatic encephalopathy: time-course of renormalization after liver transplantation. Radiology 216, 683–691 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Aggarwal, A. et al. Reversible Parkinsonism and T1W pallidal hyperintensities in acute liver failure. Mov. Disord. 21, 1986–1990 (2006).

    Article  PubMed  Google Scholar 

  66. Krieger, D. et al. Manganese and chronic hepatic encephalopathy. Lancet 346, 270–274 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Tsuji, H. et al. A case of liver cirrhosis associated with chronic subdural hematoma and hepatic encephalopathy [Japanese]. Fukuoka Igaku Zasshi. 82, 528–532 (1991).

    CAS  PubMed  Google Scholar 

  68. Foreman, M. G., Mannino, D. M. & Moss, M. Cirrhosis as a risk factor for sepsis and death: analysis of the National Hospital Discharge Survey. Chest 124, 1016–1020 (2003).

    Article  PubMed  Google Scholar 

  69. Conn, H. O. et al. Comparison of lactulose and neomycin in the treatment of chronic portal-systemic encephalopathy. A double blind controlled trial. Gastroenterology 72, 573–583 (1977).

    Article  CAS  PubMed  Google Scholar 

  70. Bajaj, J. S., Wade, J. B. & Sanyal, A. J. Spectrum of neurocognitive impairment in cirrhosis: Implications for the assessment of hepatic encephalopathy. Hepatology 50, 2014–2021 (2009).

    Article  PubMed  Google Scholar 

  71. Parsons-Smith, B. G., Summerskill, W. H., Dawson, A. M. & Sherlock, S. The electroencephalograph in liver disease. Lancet 273, 867–871 (1957).

    Article  CAS  PubMed  Google Scholar 

  72. Jennett, B., Teasdale, G., Braakman, R., Minderhoud, J. & Knill-Jones, R. Predicting outcome in individual patients after severe head injury. Lancet 15, 1031–1034 (1976).

    Article  Google Scholar 

  73. Montagnese, S., Amodio, P. & Morgan, M. Y. Methods for diagnosing hepatic encephalopathy in patients with cirrhosis: a multidimensional approach. Metab. Brain Dis. 19, 281–312 (2004).

    Article  PubMed  Google Scholar 

  74. Amodio, P., Montagnese, S., Gatta, A. & Morgan, M. Y. Characteristics of minimal hepatic encephalopathy. Metab. Brain Dis. 19, 253–267 (2004).

    Article  PubMed  Google Scholar 

  75. Hassanein, T. I., Hilsabeck, R. C. & Perry, W. Introduction to the Hepatic Encephalopathy Scoring Algorithm (HESA). Dig. Dis. Sci. 53, 529–538 (2008).

    Article  PubMed  Google Scholar 

  76. Weissenborn, K. et al. Neuropsychological characterization of hepatic encephalopathy. J. Hepatol. 34, 768–773 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Randolph, C. et al. Neuropsychological assessment of hepatic encephalopathy: ISHEN practice guidelines. Liver Int. 29, 629–635 (2009).

    Article  PubMed  Google Scholar 

  78. RED Hepatic Encephalopathy [Spanish]. Spanish normative data for hepatic encephalopathy [online], (2010).

  79. Meyer, T., Eshelman, A. & Abouljoud, M. Neuropsychological changes in a large sample of liver transplant candidates. Transplant. Proc. 38, 3559–3560 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Sorrell, J. H., Zolnikov, B. J., Sharma, A. & Jinnai, I. Cognitive impairment in people diagnosed with end-stage liver disease evaluated for liver transplantation. Psychiatry Clin. Neurosci. 60, 174–181 (2006).

    Article  PubMed  Google Scholar 

  81. Bajaj, J. S. et al. Inhibitory control test is a simple method to diagnose minimal hepatic encephalopathy and predict development of overt hepatic encephalopathy. Am. J. Gastroenterol. 102, 754–760 (2007).

    Article  PubMed  Google Scholar 

  82. Bajaj, J. S. et al. Inhibitory control test for the diagnosis of minimal hepatic encephalopathy. Gastroenterology 135, 1591–1600 (2008).

    Article  PubMed  Google Scholar 

  83. Mardini, H., Saxby, B. K. & Record, C. O. Computerized psychometric testing in minimal encephalopathy and modulation by nitrogen challenge and liver transplant. Gastroenterology 135, 1582–1590 (2008).

    Article  PubMed  Google Scholar 

  84. Kircheis, G., Wettstein, M., Timmermann, L., Schnitzler, A. & Häussinger, D. Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 35, 357–366 (2002).

    Article  PubMed  Google Scholar 

  85. Kircheis, G. et al. Diagnostic and prognostic values of critical flicker frequency determination as new diagnostic tool for objective HE evaluation in patients undergoing TIPS implantation. Eur. J. Gastroenterol. Hepatol. 21, 1383–1394 (2009).

    Article  PubMed  Google Scholar 

  86. Amodio, P. et al. Electroencephalographic analysis for the assessment of hepatic encephalopathy: comparison of non-parametric and parametric spectral estimation techniques. Neurophysiol. Clin. 39, 107–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Ong, J. P. et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am. J. Med. 114, 188–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Morgan, M. Y., Alonso, M. & Stanger, L. C. Lactitol and lactulose for the treatment of subclinical hepatic encephalopathy in cirrhotic patients. A randomised, cross-over study. J. Hepatol. 8, 208–217 (1989).

    Article  CAS  PubMed  Google Scholar 

  89. Morgan, M. Y. & Hawley, K. E. Lactitol vs. lactulose in the treatment of acute hepatic encephalopathy in cirrhotic patients: a double-blind, randomized trial. Hepatology 7, 1278–1284 (1987).

    Article  CAS  PubMed  Google Scholar 

  90. Morgan, M. Y., Hawley, K. E. & Stambuk, D. Lactitol versus lactulose in the treatment of chronic hepatic encephalopathy. A double-blind, randomised, cross-over study. J. Hepatol. 4, 236–244 (1987).

    Article  CAS  PubMed  Google Scholar 

  91. van Leeuwen, P. A., van Berlo, C. L. & Soeters, P. B. New mode of action for lactulose. Lancet 1, 55–56 (1988).

    Article  CAS  PubMed  Google Scholar 

  92. Bajaj, J. S. Management options for minimal hepatic encephalopathy. Expert Rev. Gastroenterol. Hepatol. 2, 785–790 (2008).

    Article  PubMed  Google Scholar 

  93. Mullen, K. D., Amodio, P & Morgan, M. Y. Therapeutic studies in hepatic encephalopathy. Metab. Brain Dis. 22, 407–423 (2007).

    Article  PubMed  Google Scholar 

  94. Bass, N. M. et al. Rifaximin treatment in hepatic encephalopathy. N. Engl. J. Med. 362, 1071–1081 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Plauth, M. et al. ESPEN Guidelines on Enteral Nutrition: Liver disease. Clin. Nutr. 25, 285–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Mullen, K. D. & Dasarathy, S. Protein restriction in hepatic encephalopathy: necessary evil or illogical dogma? J. Hepatol. 41, 147–148 (2004).

    Article  PubMed  Google Scholar 

  97. Muto, Y. et al. Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis. Clin. Gastroenterol. Hepatol. 3, 705–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Als-Nielsen, B., Koretz, R. L., Kjaergard, L. L. & Gluud, C. Branched-chain amino acids for hepatic encephalopathy. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD001939. doi:10.1002/14651858.CD001939 (2003).

  99. Amodio, P. et al. Vegetarian diets in hepatic encephalopathy: facts or fantasies? Dig. Liver Dis. 33, 492–500 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Bajaj, J. S. Review article: the modern management of hepatic encephalopathy. Aliment. Pharmacol. Ther. 31, 537–547 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Stewart, C. A., Malinchoc, M., Kim, W. R. & Kamath, P. S. Hepatic encephalopathy as a predictor of survival in patients with end-stage liver disease. Liver Transpl. 13, 1366–1371 (2007).

    Article  PubMed  Google Scholar 

  102. Fanelli, F. et al. Management of refractory hepatic encephalopathy after insertion of TIPS: long-term results of shunt reduction with hourglass-shaped balloon-expandable stent-graft. AJR Am. J. Roentgenol. 193, 1696–1702 (2009).

    Article  PubMed  Google Scholar 

  103. Montoliu, C. et al. Activation of soluble guanylate cyclase by nitric oxide in lymphocytes correlates with minimal hepatic encephalopathy in cirrhotic patients. J. Mol. Med. 85, 237–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Albrecht, J. Cyclic GMP in blood and minimal hepatic encephalopathy: fine-tuning of the diagnosis. J. Mol. Med. 85, 203–205 (2007).

    Article  PubMed  Google Scholar 

  105. Marchesini, G., Fabbri, A., Bianchi, G., Brizi, M. & Zoli, M. Zinc supplementation and amino acid-nitrogen metabolism in patients with advanced cirrhosis. Hepatology 23, 1084–1092 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Bresci, G., Parisi, G. & Banti, S. Management of hepatic encephalopathy with oral zinc supplementation: a long-term treatment. Eur. J. Med. 2, 414–416 (1993).

    CAS  PubMed  Google Scholar 

  107. Morgan, M. Y., Jakobovits, A. W., James, I. M. & Sherlock, S. Successful use of bromocriptine in the treatment of chronic hepatic encephalopathy. Gastroenterology 78, 663–670 (1980).

    Article  CAS  PubMed  Google Scholar 

  108. Sushma, S. et al. Sodium benzoate in the treatment of acute hepatic encephalopathy: a double-blind randomized trial. Hepatology 16, 138–144 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Kircheis, G. et al. Therapeutic efficacy of L-ornithine-L-aspartate infusions in patients with cirrhosis and hepatic encephalopathy: results of a placebo-controlled, double-blind study. Hepatology 25, 1351–1360 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Kircheis, G., Wettstein, M., Dahl, S. & Häussinger, D. Clinical efficacy of L-ornithine-L-aspartate in the management of hepatic encephalopathy. Metab. Brain Dis. 17, 453–462 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Désirée Lie, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

R. Prakash and K. D. Mullen contributed equally to researching data for the article, to substantial discussion of the content, to writing the article, and to reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Kevin D. Mullen.

Ethics declarations

Competing interests

K. D. Mullen is a consultant for Ocera Therapeutics and a consultant and speaker for Salix Pharmaceuticals (he has received honoria, but not for this manuscript). R. Prakash declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, R., Mullen, K. Mechanisms, diagnosis and management of hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 7, 515–525 (2010). https://doi.org/10.1038/nrgastro.2010.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing