Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis and biomarkers of carcinogenesis in ulcerative colitis

Abstract

One of the most serious complications of ulcerative colitis is the development of colorectal cancer. Screening patients with ulcerative colitis by standard histological examination of random intestinal biopsy samples might be inefficient as a method of cancer surveillance. This Review focuses on the current understanding of the pathogenesis of ulcerative colitis-associated colorectal cancer and how this knowledge can be transferred into patient management to assist clinicians and pathologists in identifying patients with ulcerative colitis who have an increased risk of colorectal cancer. Inflammation-driven mechanisms of DNA damage, including the generation and effects of reactive oxygen species, microsatellite instability, telomere shortening and chromosomal instability, are reviewed, as are the molecular responses to genomic stress. We also discuss how these mechanisms can be translated into usable biomarkers. Although progress has been made in the understanding of inflammation-driven carcinogenesis, markers based on these findings possess insufficient sensitivity or specificity to be usable as reliable biomarkers for risk of colorectal cancer development in patients with ulcerative colitis. However, screening for mutations in p53 could be relevant in the surveillance of patients with ulcerative colitis. Several other new biomarkers, including senescence markers and α-methylacyl-CoA-racemase, might be future candidates for preneoplastic markers in ulcerative colitis.

Key Points

  • Pathogenesis of colorectal cancer in patients with ulcerative colitis is driven by inflammation-dependent mechanisms

  • The generation of reactive oxygen species in epithelial cells and the exposure of epithelial cell DNA to these molecules may be important for the development of colorectal cancer in ulcerative colitis

  • p53 mutations and chromosomal instability are the most promising biomarkers of premalignancy, and could be used in combination with histological evaluation to identify patients at high risk of developing colorectal cancer

  • Senescence and α-methylacyl-CoA-racemase are promising new candidates for preneoplastic biomarkers in ulcerative colitis

  • The clinical implications and reliability of biomarkers of premalignancy in ulcerative colitis remains to be established in prospective studies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms underlying carcinogenesis in ulcerative colitis. Ulcerative colitis is characterized by an increased number of immune cells in the mucosa.
Figure 2: Immunohistochemical staining of γ-H2A.x in a colonic biopsy sample from a patient with ulcerative colitis.

Similar content being viewed by others

References

  1. Winther, K. V., Jess, T., Langholz, E., Munkholm, P. & Binder, V. Survival and cause-specific mortality in ulcerative colitis: follow-up of a population-based cohort in Copenhagen County. Gastroenterology 125, 1576–1582 (2003).

    PubMed  Google Scholar 

  2. Baumgart, D. C. & Sandborn, W. J. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369, 1641–1657 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Eaden, J. A., Abrams, K. R. & Mayberry, J. F. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48, 526–535 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. National Cancer Institute. Surveillance Epidemiology and End Results (SEER) [online], (2010).

  5. Riddell, R. H. et al. Dysplasia in inflammatory bowel disease: standardized classification with provisional clinical applications. Hum. Pathol. 14, 931–968 (1983).

    CAS  PubMed  Google Scholar 

  6. Itzkowitz, S. H. & Yio, X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G7–G17 (2004).

    CAS  PubMed  Google Scholar 

  7. Rutter, M. et al. Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology 126, 451–459 (2004).

    PubMed  Google Scholar 

  8. Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cario, E. Toll-like receptors in inflammatory bowel diseases: a decade later. Inflamm. Bowel Dis. 16, 1583–1597 (2010).

    PubMed  Google Scholar 

  10. Ogier-Denis, E., Mkaddem, S. B. & Vandewalle, A. NOX enzymes and Toll-like receptor signaling. Semin. Immunopathol. 30, 291–300 (2008).

    CAS  PubMed  Google Scholar 

  11. Roessner, A., Kuester, D., Malfertheiner, P. & Schneider-Stock, R. Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathol. Res. Pract. 204, 511–524 (2008).

    CAS  PubMed  Google Scholar 

  12. Rosen, G. M., Pou, S., Ramos, C. L., Cohen, M. S. & Britigan, B. E. Free radicals and phagocytic cells. FASEB J. 9, 200–209 (1995).

    CAS  PubMed  Google Scholar 

  13. Jackson, A. L. & Loeb, L. A. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res. 477, 7–21 (2001).

    CAS  PubMed  Google Scholar 

  14. Grisham, M. B. Oxidants and free radicals in inflammatory bowel disease. Lancet 344, 859–861 (1994).

    CAS  PubMed  Google Scholar 

  15. Sawa, T. & Ohshima, H. Nitrative DNA damage in inflammation and its possible role in carcinogenesis. Nitric Oxide 14, 91–100 (2006).

    CAS  PubMed  Google Scholar 

  16. Caulfield, J. L., Wishnok, J. S. & Tannenbaum, S. R. Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides. J. Biol. Chem. 273, 12689–12695 (1998).

    CAS  PubMed  Google Scholar 

  17. Sawa, T., Akaike, T. & Maeda, H. Tyrosine nitration by peroxynitrite formed from nitric oxide and superoxide generated by xanthine oxidase. J. Biol. Chem. 275, 32467–32474 (2000).

    CAS  PubMed  Google Scholar 

  18. Kennedy, L. J., Moore, K. Jr, Caulfield, J. L., Tannenbaum, S. R. & Dedon, P. C. Quantitation of 8-oxoguanine and strand breaks produced by four oxidizing agents. Chem. Res. Toxicol. 10, 386–392 (1997).

    CAS  PubMed  Google Scholar 

  19. Salgo, M. G., Bermúdez, E., Squadrito, G. L. & Pryor, W. A. Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes [corrected]. Arch. Biochem. Biophys. 322, 500–505 (1995).

    CAS  PubMed  Google Scholar 

  20. Juedes, M. J. & Wogan, G. N. Peroxynitrite-induced mutation spectra of pSP189 following replication in bacteria and in human cells. Mutat. Res. 349, 51–61 (1996).

    PubMed  Google Scholar 

  21. Marnett, L. J. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 181–182, 219–222 (2002).

    CAS  PubMed  Google Scholar 

  22. Simmonds, N. J. et al. Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology 103, 186–196 (1992).

    CAS  PubMed  Google Scholar 

  23. Keshavarzian, A. et al. Excessive production of reactive oxygen metabolites by inflamed colon: analysis by chemiluminescence probe. Gastroenterology 103, 177–185 (1992).

    CAS  PubMed  Google Scholar 

  24. Kruidenier, L., Kuiper, I., Lamers, C. B. & Verspaget, H. W. Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants. J. Pathol. 201, 28–36 (2003).

    CAS  PubMed  Google Scholar 

  25. Andresen, L. et al. Activation of nuclear factor κB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut 54, 503–509 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Seidelin, J. B. & Nielsen, O. H. Continuous cytokine exposure of colonic epithelial cells induces DNA damage. Eur. J. Gastroenterol. Hepatol. 17, 363–369 (2005).

    CAS  PubMed  Google Scholar 

  27. Kimura, H. et al. Increased expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in colonic mucosa of patients with active ulcerative colitis. Gut 42, 180–187 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hussain, S. P., Hofseth, L. J. & Harris, C. C. Radical causes of cancer. Nat. Rev. Cancer 3, 276–285 (2003).

    CAS  PubMed  Google Scholar 

  29. Sánchez-Alcázar, J. A. et al. Tumor necrosis factor-α increases the steady-state reduction of cytochrome b of the mitochondrial respiratory chain in metabolically inhibited L929 cells. J. Biol. Chem. 275, 13353–13361 (2000).

    PubMed  Google Scholar 

  30. Schulze-Osthoff, K. et al. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317–5323 (1992).

    CAS  PubMed  Google Scholar 

  31. Yan, B. et al. Tumor necrosis factor-α is a potent endogenous mutagen that promotes cellular transformation. Cancer Res. 66, 11565–11570 (2006).

    CAS  PubMed  Google Scholar 

  32. Holmes, E. W., Yong, S. L., Eiznhamer, D. & Keshavarzian, A. Glutathione content of colonic mucosa: evidence for oxidative damage in active ulcerative colitis. Dig. Dis. Sci. 43, 1088–1095 (1998).

    CAS  PubMed  Google Scholar 

  33. Koutroubakis, I. E. et al. Decreased total and corrected antioxidant capacity in patients with inflammatory bowel disease. Dig. Dis. Sci. 49, 1433–1437 (2004).

    CAS  PubMed  Google Scholar 

  34. Wu, W. S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 25, 695–705 (2006).

    CAS  PubMed  Google Scholar 

  35. Svineng, G., Ravuri, C., Rikardsen, O., Huseby, N. E. & Winberg, J. O. The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect. Tissue Res. 49, 197–202 (2008).

    CAS  PubMed  Google Scholar 

  36. Itzkowitz, S. H., Present, D. H. & Crohn's and Colitis Foundation of America Colon Cancer in IBD Study Group. Consensus conference: colorectal cancer screening and surveillance in inflammatory bowel disease. Inflamm. Bowel Dis. 11, 314–321 (2005).

    PubMed  Google Scholar 

  37. Chambers, W. M., Warren, B. F., Jewell, D. P. & Mortensen, N. J. Cancer surveillance in ulcerative colitis. Br. J. Surg. 92, 928–936 (2005).

    CAS  PubMed  Google Scholar 

  38. Fujii, S., Katsumata, D. & Fujimori, T. Limits of diagnosis and molecular markers for early detection of ulcerative colitis-associated colorectal neoplasia. Digestion 77 (Suppl. 1), 2–12 (2008).

    CAS  PubMed  Google Scholar 

  39. Melville, D. M. et al. Observer study of the grading of dysplasia in ulcerative colitis: comparison with clinical outcome. Hum. Pathol. 20, 1008–1014 (1989).

    CAS  PubMed  Google Scholar 

  40. Collins, P. D., Mpofu, C., Watson, A. J. & Rhodes, J. M. Strategies for detecting colon cancer and/or dysplasia in patients with inflammatory bowel disease. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD000279. doi:10.1002/14651858.CD000279.pub3 (2006).

  41. Brentnall, T. A. et al. Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology 107, 369–378 (1994).

    CAS  PubMed  Google Scholar 

  42. Leedham, S. J. et al. Clonality, founder mutations, and field cancerization in human ulcerative colitis-associated neoplasia. Gastroenterology 136, 542–550 (2009).

    PubMed  Google Scholar 

  43. Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237 (1992).

    CAS  PubMed  Google Scholar 

  44. Holzmann, K. et al. Comparative analysis of histology, DNA content, p53 and Ki-ras mutations in colectomy specimens with long-standing ulcerative colitis. Int. J. Cancer 76, 1–6 (1998).

    CAS  PubMed  Google Scholar 

  45. Hussain, S. P. et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res. 60, 3333–3337 (2000).

    CAS  PubMed  Google Scholar 

  46. Lashner, B. A., Shapiro, B. D., Husain, A. & Goldblum, J. R. Evaluation of the usefulness of testing for p53 mutations in colorectal cancer surveillance for ulcerative colitis. Am. J. Gastroenterol. 94, 456–462 (1999).

    CAS  PubMed  Google Scholar 

  47. Ambs, S. et al. Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J. Natl Cancer Inst. 91, 86–88 (1999).

    CAS  PubMed  Google Scholar 

  48. Fujii, S., Fujimori, T. & Chiba, T. Usefulness of analysis of p53 alteration and observation of surface microstructure for diagnosis of ulcerative colitis-associated colorectal neoplasia. J. Exp. Clin. Cancer Res. 22, 107–115 (2003).

    CAS  PubMed  Google Scholar 

  49. Finlay, C. A. et al. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol. Cell Biol. 8, 531–539 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vousden, K. H. Activation of the p53 tumor suppressor protein. Biochim. Biophys. Acta 1602, 47–59 (2002).

    CAS  PubMed  Google Scholar 

  51. Brooks, C. L. & Gu, W. Dynamics in the p53–Mdm2 ubiquitination pathway. Cell Cycle 3, 895–899 (2004).

    CAS  PubMed  Google Scholar 

  52. Seril, D. N., Liao, J., Yang, G. Y. & Yang, C. S. Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis 24, 353–362 (2003).

    CAS  PubMed  Google Scholar 

  53. Willenbucher, R. F., Zelman, S. J., Ferrell, L. D., Moore, D. H. 2nd & Waldman, F. M. Chromosomal alterations in ulcerative colitis-related neoplastic progression. Gastroenterology 113, 791–801 (1997).

    CAS  PubMed  Google Scholar 

  54. Aust, D. E. et al. Chromosomal alterations in ulcerative colitis-related and sporadic colorectal cancers by comparative genomic hybridization. Hum. Pathol. 31, 109–114 (2000).

    CAS  PubMed  Google Scholar 

  55. Willenbucher, R. F. et al. Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am. J. Pathol. 154, 1825–1830 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, R. et al. DNA fingerprinting abnormalities can distinguish ulcerative colitis patients with dysplasia and cancer from those who are dysplasia/cancer-free. Am. J. Pathol. 162, 665–672 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rabinovitch, P. S. et al. Pancolonic chromosomal instability precedes dysplasia and cancer in ulcerative colitis. Cancer Res. 59, 5148–5153 (1999).

    CAS  PubMed  Google Scholar 

  58. Bronner, M. P. et al. Genomic biomarkers to improve ulcerative colitis neoplasia surveillance. Am. J. Pathol. 173, 1853–1860 (2008).

    PubMed  PubMed Central  Google Scholar 

  59. Jackson, S. P. Sensing and repairing DNA double-strand breaks. Carcinogenesis 23, 687–696 (2002).

    CAS  PubMed  Google Scholar 

  60. Karanjawala, Z. E., Murphy, N., Hinton, D. R., Hsieh, C. L. & Lieber, M. R. Oxygen metabolism causes chromosome breaks and is associated with the neuronal apoptosis observed in DNA double-strand break repair mutants. Curr. Biol. 12, 397–402 (2002).

    CAS  PubMed  Google Scholar 

  61. Dickey, J. S. et al. H2AX: functional roles and potential applications. Chromosoma 118, 683–692 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M. & Nussenzweig, A. H2AX: the histone guardian of the genome. DNA Repair (Amst.) 3, 959–967 (2004).

    CAS  Google Scholar 

  63. Vilenchik, M. M. & Knudson, A. G. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc. Natl Acad. Sci. USA 100, 12871–12876 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cahill, D., Connor, B. & Carney, J. P. Mechanisms of eukaryotic DNA double strand break repair. Front. Biosci. 11, 1958–1976 (2006).

    CAS  PubMed  Google Scholar 

  65. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nuciforo, P. G., Luise, C., Capra, M., Pelosi, G. & d'Adda di Fagagna, F. Complex engagement of DNA damage response pathways in human cancer and in lung tumor progression. Carcinogenesis 28, 2082–2088 (2007).

    CAS  PubMed  Google Scholar 

  67. Blanco, D. et al. Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16 and activation of the DNA damage response pathway. Neoplasia 9, 840–852 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tanaka, T. et al. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A 71, 648–661 (2007).

    PubMed  Google Scholar 

  69. Risques, R. A. et al. Ulcerative colitis-associated colorectal cancer arises in a field of short telomeres, senescence, and inflammation. Cancer Res. 71, 1669–1679 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Risques, R. A. et al. Ulcerative colitis is a disease of accelerated colon aging: evidence from telomere attrition and DNA damage. Gastroenterology 135, 410–418 (2008).

    CAS  PubMed  Google Scholar 

  71. O'Sullivan, J. N. et al. Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat. Genet. 32, 280–284 (2002).

    CAS  PubMed  Google Scholar 

  72. von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 27, 339–344 (2002).

    CAS  PubMed  Google Scholar 

  73. d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    CAS  PubMed  Google Scholar 

  74. Ben-Porath, I. & Weinberg, R. A. The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol. 37, 961–976 (2005).

    CAS  PubMed  Google Scholar 

  75. Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nat. Rev. Cancer 6, 472–476 (2006).

    CAS  PubMed  Google Scholar 

  76. Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    PubMed  PubMed Central  Google Scholar 

  77. Wang, D., Kreutzer, D. A. & Essigmann, J. M. Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat. Res. 400, 99–115 (1998).

    CAS  PubMed  Google Scholar 

  78. Valavanidis, A., Vlachogianni, T. & Fiotakis, C. 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 27, 120–139 (2009).

    CAS  PubMed  Google Scholar 

  79. Kamiya, H. et al. 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) in hot spots of the c-Ha-ras gene: effects of sequence contexts on mutation spectra. Carcinogenesis 16, 883–889 (1995).

    CAS  PubMed  Google Scholar 

  80. Klein, J. C. et al. Repair and replication of plasmids with site-specific 8-oxodG and 8-AAFdG residues in normal and repair-deficient human cells. Nucleic Acids Res. 20, 4437–4443 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. D'Incà, R. et al. Oxidative DNA damage in the mucosa of ulcerative colitis increases with disease duration and dysplasia. Inflamm. Bowel Dis. 10, 23–27 (2004).

    PubMed  Google Scholar 

  82. Gushima, M. et al. Altered expression of MUTYH and an increase in 8-hydroxydeoxyguanosine are early events in ulcerative colitis-associated carcinogenesis. J. Pathol. 219, 77–86 (2009).

    CAS  PubMed  Google Scholar 

  83. European Standards Committee on Oxidative DNA Damage (ESCODD). Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic. Biol. Med. 34, 1089–1099 (2003).

  84. ESCODD (European Standards Committee on Oxidative DNA Damage). Comparative analysis of baseline 8-oxo-7, 8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: an approach to consensus. Carcinogenesis 23, 2129–2133 (2002).

  85. Rodriguez, H., Jurado, J., Laval, J. & Dizdaroglu, M. Comparison of the levels of 8-hydroxyguanine in DNA as measured by gas chromatography mass spectrometry following hydrolysis of DNA by Escherichia coli Fpg protein or formic acid. Nucleic Acids Res. 28, E75 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Löfberg, R., Broström, O., Karlén, P., Ost, A. & Tribukait, B. DNA aneuploidy in ulcerative colitis: reproducibility, topographic distribution, and relation to dysplasia. Gastroenterology 102, 1149–1154 (1992).

    PubMed  Google Scholar 

  87. Rubin, C. E. et al. DNA aneuploidy in colonic biopsies predicts future development of dysplasia in ulcerative colitis. Gastroenterology 103, 1611–1620 (1992).

    CAS  PubMed  Google Scholar 

  88. Rutegård, J., Ahsgren, L., Stenling, R. & Roos, G. DNA content and mucosal dysplasia in ulcerative colitis. Flow cytometric analysis in patients with dysplastic or indefinite morphologic changes in the colorectal mucosa. Dis. Colon Rectum 32, 1055–1059 (1989).

    PubMed  Google Scholar 

  89. Befrits, R., Hammarberg, C., Rubio, C., Jaramillo, E. & Tribukait, B. DNA aneuploidy and histologic dysplasia in long-standing ulcerative colitis. A 10-year follow-up study. Dis. Colon Rectum 37, 313–319 (1994).

    CAS  PubMed  Google Scholar 

  90. Risques, R. A., Rabinovitch, P. S. & Brentnall, T. A. Cancer surveillance in inflammatory bowel disease: new molecular approaches. Curr. Opin. Gastroenterol. 22, 382–390 (2006).

    CAS  PubMed  Google Scholar 

  91. Stenling, R., Jonsson, B. O., Palmqvist, R. & Rutegård, J. N. DNA aneuploidy in ulcerative colitis and in colorectal carcinoma—a comparative study. Anal. Cell Pathol. 18, 69–72 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Thibodeau, S. N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    CAS  PubMed  Google Scholar 

  93. Rhyu, M. G., Park, W. S. & Meltzer, S. J. Microsatellite instability occurs frequently in human gastric carcinoma. Oncogene 9, 29–32 (1994).

    CAS  PubMed  Google Scholar 

  94. Fleisher, A. S. et al. Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res. 60, 4864–4868 (2000).

    CAS  PubMed  Google Scholar 

  95. Brentnall, T. A. et al. Microsatellite instability in nonneoplastic mucosa from patients with chronic ulcerative colitis. Cancer Res. 56, 1237–1240 (1996).

    CAS  PubMed  Google Scholar 

  96. Fujiwara, I., Yashiro, M., Kubo, N., Maeda, K. & Hirakawa, K. Ulcerative colitis-associated colorectal cancer is frequently associated with the microsatellite instability pathway. Dis. Colon Rectum 51, 1387–1394 (2008).

    PubMed  Google Scholar 

  97. Løvig, T., Andersen, S. N., Clausen, O. P. & Rognum, T. O. Microsatellite instability in long-standing ulcerative colitis. Scand. J. Gastroenterol. 42, 586–591 (2007).

    PubMed  Google Scholar 

  98. Tahara, T. et al. Clinical significance of microsatellite instability in the inflamed mucosa for the prediction of colonic neoplasms in patients with ulcerative colitis. J. Gastroenterol. Hepatol. 20, 710–715 (2005).

    CAS  PubMed  Google Scholar 

  99. Boland, C. R. et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58, 5248–5257 (1998).

    CAS  PubMed  Google Scholar 

  100. Ritz-Timme, S. & Collins, M. J. Racemization of aspartic acid in human proteins. Ageing Res. Rev. 1, 43–59 (2002).

    CAS  PubMed  Google Scholar 

  101. Went, P. T., Sauter, G., Oberholzer, M. & Bubendorf, L. Abundant expression of AMACR in many distinct tumour types. Pathology 38, 426–432 (2006).

    CAS  PubMed  Google Scholar 

  102. Tosoian, J. & Loeb, S. PSA and beyond: the past, present, and future of investigative biomarkers for prostate cancer. ScientificWorldJournal 10, 1919–1931 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Dorer, R. & Odze, R. D. AMACR immunostaining is useful in detecting dysplastic epithelium in Barrett's esophagus, ulcerative colitis, and Crohn's disease. Am. J. Surg. Pathol. 30, 871–877 (2006).

    PubMed  Google Scholar 

  104. Gerdes, J. et al. Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am. J. Pathol. 138, 867–873 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Andersen, S. N., Rognum, T. O., Bakka, A. & Clausen, O. P. Ki-67: a useful marker for the evaluation of dysplasia in ulcerative colitis. Mol. Pathol. 51, 327–332 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wong, N. A., Mayer, N. J., MacKell, S., Gilmour, H. M. & Harrison, D. J. Immunohistochemical assessment of Ki67 and p53 expression assists the diagnosis and grading of ulcerative colitis-related dysplasia. Histopathology 37, 108–114 (2000).

    CAS  PubMed  Google Scholar 

  107. Noffsinger, A. E., Miller, M. A., Cusi, M. V. & Fenoglio-Preiser, C. M. The pattern of cell proliferation in neoplastic and nonneoplastic lesions of ulcerative colitis. Cancer 78, 2307–2312 (1996).

    CAS  PubMed  Google Scholar 

  108. Bartsch, H. & Nair, J. Accumulation of lipid peroxidation-derived DNA lesions: potential lead markers for chemoprevention of inflammation-driven malignancies. Mutat. Res. 591, 34–44 (2005).

    CAS  PubMed  Google Scholar 

  109. Nair, J. et al. Increased etheno-DNA adducts in affected tissues of patients suffering from Crohn's disease, ulcerative colitis, and chronic pancreatitis. Antioxid. Redox Signal. 8, 1003–1010 (2006).

    CAS  PubMed  Google Scholar 

  110. van Staa, T. P., Card, T., Logan, R. F. & Leufkens, H. G. 5-Aminosalicylate use and colorectal cancer risk in inflammatory bowel disease: a large epidemiological study. Gut 54, 1573–1578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Velayos, F. S., Terdiman, J. P. & Walsh, J. M. Effect of 5-aminosalicylate use on colorectal cancer and dysplasia risk: a systematic review and metaanalysis of observational studies. Am. J. Gastroenterol. 100, 1345–1353 (2005).

    CAS  PubMed  Google Scholar 

  112. Clapper, M. L. et al. 5-aminosalicylic acid inhibits colitis-associated colorectal dysplasias in the mouse model of azoxymethane/dextran sulfate sodium-induced colitis. Inflamm. Bowel Dis. 14, 1341–1347 (2008).

    PubMed  Google Scholar 

  113. Ahnfelt-Rønne, I. et al. Clinical evidence supporting the radical scavenger mechanism of 5-aminosalicylic acid. Gastroenterology 98, 1162–1169 (1990).

    PubMed  Google Scholar 

  114. Nielsen, O. H. In vitro studies on the significance of arachidonate metabolism and other oxidative processes in the inflammatory response of human neutrophils and macrophages. With special reference to chronic inflammatory bowel disease. Scand. J. Gastroenterol. Suppl. 150, 1–21 (1988).

    CAS  PubMed  Google Scholar 

  115. Nielsen, O. H. & Munck, L. K. Drug insight: aminosalicylates for the treatment of IBD. Nat. Clin. Pract Gastroenterol. Hepatol. 4, 160–170 (2007).

    CAS  PubMed  Google Scholar 

  116. Yppolito, R. et al. On the antioxidant properties of therapeutic drugs: quenching of singlet molecular oxygen by aminosalicylic acids. Redox Rep. 7, 229–233 (2002).

    CAS  PubMed  Google Scholar 

  117. Simmonds, N. J., Millar, A. D., Blake, D. R. & Rampton, D. S. Antioxidant effects of aminosalicylates and potential new drugs for inflammatory bowel disease: assessment in cell-free systems and inflamed human colorectal biopsies. Aliment. Pharmacol. Ther. 13, 363–372 (1999).

    CAS  PubMed  Google Scholar 

  118. Luciani, M. G., Campregher, C., Fortune, J. M., Kunkel, T. A. & Gasche, C. 5-ASA affects cell cycle progression in colorectal cells by reversibly activating a replication checkpoint. Gastroenterology 132, 221–235 (2007).

    CAS  PubMed  Google Scholar 

  119. Stolfi, C. et al. Cyclooxygenase-2-dependent and -independent inhibition of proliferation of colon cancer cells by 5-aminosalicylic acid. Biochem. Pharmacol. 75, 668–676 (2008).

    CAS  PubMed  Google Scholar 

  120. Koelink, P. J. et al. 5-aminosalicylic acid interferes in the cell cycle of colorectal cancer cells and induces cell death modes. Inflamm. Bowel Dis. 16, 379–389 (2010).

    PubMed  Google Scholar 

  121. Speckmann, B. et al. Proinflammatory cytokines down-regulate intestinal selenoprotein P biosynthesis via NOS2 induction. Free Radic. Biol. Med. 49, 777–785 (2010).

    CAS  PubMed  Google Scholar 

  122. Linehan, J. D., Kolios, G., Valatas, V., Robertson, D. A. & Westwick, J. Immunomodulatory cytokines suppress epithelial nitric oxide production in inflammatory bowel disease by acting on mononuclear cells. Free Radic. Biol. Med. 39, 1560–1569 (2005).

    CAS  PubMed  Google Scholar 

  123. Potoka, D. A. et al. Inhibition of NF-κB by IκB prevents cytokine-induced NO production and promotes enterocyte apoptosis in vitro. Shock 14, 366–373 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Fonden til Lægevidenskabens Fremme (the A. P. Møller Foundation), the Family Erichsen Memorial Foundation, the Lundbeck Foundation, the Axel Muusfeldts Foundation, and the Aase and Ejnar Danielsen Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of preparation of the manuscript.

Corresponding author

Correspondence to Jakob Benedict Seidelin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorsteinsdottir, S., Gudjonsson, T., Nielsen, O. et al. Pathogenesis and biomarkers of carcinogenesis in ulcerative colitis. Nat Rev Gastroenterol Hepatol 8, 395–404 (2011). https://doi.org/10.1038/nrgastro.2011.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2011.96

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research