Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Application of whole-organ tissue engineering in hepatology

Abstract

Initially hailed as the ultimate solution to organ failure, engineering of vascularized tissues such as the liver has stalled because of the need for a well-structured circulatory system that can maintain the cells seeded inside the construct. A new approach has evolved to overcome this obstacle. Whole-organ decellularization is a method that retains most of the native vascular structures of the organ, providing microcirculatory support and structure, which can be anastomosed with the recipient circulation. The technique was first applied to the heart and then adapted for the liver. Several studies have shown that cells can be eliminated, the extracellular matrix and vasculature are reasonably preserved and, after repopulation with hepatocytes, these grafts can perform hepatic functions in vitro and in vivo. Progress is rapidly being made as researchers are addressing several key challenges to whole-organ tissue engineering, such as ensuring correct cell distribution, nonparenchymal cell seeding, blood compatibility, immunological concerns, and the source of cells and matrices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of whole-liver engineering.

Similar content being viewed by others

References

  1. Punch, J. D., Hayes, D. H., LaPorte, F. B., McBride, V. & Seely, M. S. Organ donation and utilization in the United States, 1996–2005. Am. J. Transplant. 7, 1327–1338 (2007).

    Article  CAS  Google Scholar 

  2. Burg, T., Cass, C. A. P., Groff, R., Pepper, M. & Burg, K. J. L. Building off-the-shelf tissue-engineered composites. Philos. Transact. A: Math. Phys. Eng. Sci. 368, 1839–1862 (2010).

    Article  CAS  Google Scholar 

  3. Lysaght, M. J., Jaklenec, A. & Deweerd, E. Great expectations: private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Eng. Part A 14, 305–315 (2008).

    Article  Google Scholar 

  4. Fox, I. J. et al. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N. Engl. J. Med. 338, 1422–1426 (1998).

    Article  CAS  Google Scholar 

  5. Smets, F., Najimi, M. & Sokal, E. M. Cell transplantation in the treatment of liver diseases. Pediatr. Transplant. 12, 6–13 (2008).

    Article  CAS  Google Scholar 

  6. Mei, J. et al. Improved survival of fulminant liver failure by transplantation of microencapsulated cryopreserved porcine hepatocytes in mice. Cell Transplant. 18, 101–110 (2009).

    Article  Google Scholar 

  7. Navarro-Alvarez, N. et al. Intramuscular transplantation of engineered hepatic tissue constructs corrects acute and chronic liver failure in mice. J. Hepatol. 52, 211–219 (2010).

    Article  Google Scholar 

  8. Mooney, D. J. & Vandenburgh, H. Cell delivery mechanisms for tissue repair. Cell Stem Cell 2, 205–213 (2008).

    Article  CAS  Google Scholar 

  9. Chung, S. & King, M. W. Design concepts and strategies for tissue engineering scaffolds. Biotechnol. Appl. Biochem. 58, 423–438 (2011).

    Article  CAS  Google Scholar 

  10. Ohashi, K. et al. Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat. Med. 13, 880–885 (2007).

    Article  CAS  Google Scholar 

  11. Soto-Gutierrez, A. et al. Construction and transplantation of an engineered hepatic tissue using a polyaminourethane-coated nonwoven polytetrafluoroethylene fabric. Transplantation 83, 129–137 (2007).

    Article  CAS  Google Scholar 

  12. Kulig, K. M. & Vacanti, J. P. Hepatic tissue engineering. Transpl. Immunol. 12, 303–310 (2004).

    Article  CAS  Google Scholar 

  13. Carraro, A. et al. In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed. Microdevices 10, 795–805 (2008).

    Article  Google Scholar 

  14. Yokoyama, T. et al. In vivo engineering of metabolically active hepatic tissues in a neovascularized subcutaneous cavity. Am. J. Transplant. 6, 50–59 (2006).

    Article  CAS  Google Scholar 

  15. Kedem, A. et al. Vascular endothelial growth factor-releasing scaffolds enhance vascularization and engraftment of hepatocytes transplanted on liver lobes. Tissue Eng. 11, 715–722 (2005).

    Article  CAS  Google Scholar 

  16. Hou, Y. T., Ijima, H., Takei, T. & Kawakami, K. Growth factor/heparin-immobilized collagen gel system enhances viability of transplanted hepatocytes and induces angiogenesis. J. Biosci. Bioeng. 112, 265–272 (2011).

    Article  CAS  Google Scholar 

  17. Uyama, S., Kaufmann, P. M., Takeda, T. & Vacanti, J. P. Delivery of whole liver-equivalent hepatocyte mass using polymer devices and hepatotrophic stimulation. Transplantation 55, 932–935 (1993).

    Article  CAS  Google Scholar 

  18. Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).

    Article  CAS  Google Scholar 

  19. Badylak, S. F. The extracellular matrix as a biologic scaffold material. Biomaterials 28, 3587–3593 (2007).

    Article  CAS  Google Scholar 

  20. Badylak, S. F., Taylor, D. & Uygun, K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13, 27–53 (2011).

    Article  CAS  Google Scholar 

  21. Yoo, J. J., Meng, J., Oberpenning, F. & Atala, A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51, 221–225 (1998).

    Article  CAS  Google Scholar 

  22. Schechner, J. S. et al. Engraftment of a vascularized human skin equivalent. FASEB J. 17, 2250–2256 (2003).

    Article  CAS  Google Scholar 

  23. Macchiarini, P. et al. Clinical transplantation of a tissue-engineered airway. Lancet 372, 2023–2030 (2008).

    Article  Google Scholar 

  24. Ott, H. C. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat. Med. 14, 213–221 (2008).

    Article  CAS  Google Scholar 

  25. Uygun, B. E. et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16, 814–820 (2010).

    Article  CAS  Google Scholar 

  26. Bao, J. et al. Construction of a portal implantable functional tissue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats. Cell Transplant. 20, 753–766 (2011).

    Article  Google Scholar 

  27. Baptista, P. M. et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53, 604–617 (2011).

    Article  CAS  Google Scholar 

  28. Soto-Gutierrez, A. et al. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng. Part C Methods 17, 677–686 (2011).

    Article  CAS  Google Scholar 

  29. Zhou, P. et al. Decellularized liver matrix as a carrier for the transplantation of human fetal and primary hepatocytes in mice. Liver Transpl. 17, 418–427 (2011).

    Article  Google Scholar 

  30. Barakat, O. et al. Use of decellularized porcine liver for engineering humanized liver organ. J. Surg. Res. 173, e11–e25 (2012).

    Article  CAS  Google Scholar 

  31. Ott, H. C. et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16, 927–933 (2010).

    Article  CAS  Google Scholar 

  32. Petersen, T. H. et al. Tissue-engineered lungs for in vivo implantation. Science 329, 538–541 (2010).

    Article  CAS  Google Scholar 

  33. Price, A. P., England, K. A., Matson, A. M., Blazar, B. R. & Panoskaltsis-Mortari, A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng. Part A 16, 2581–2591 (2010).

    Article  CAS  Google Scholar 

  34. Song, J. J. & Ott, H. C. Organ engineering based on decellularized matrix scaffolds. Trends Mol. Med. 17, 424–432 (2011).

    Article  CAS  Google Scholar 

  35. Amenta, P. S. & Harrison, D. Expression and potential role of the extracellular matrix in hepatic ontogenesis: a review. Microsc. Res. Tech. 39, 372–386 (1997).

    Article  CAS  Google Scholar 

  36. Dunn, J. C., Tompkins, R. G. & Yarmush, M. L. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J. Cell Biol. 116, 1043–1053 (1992).

    Article  CAS  Google Scholar 

  37. Sellaro, T. L. et al. Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels. Tissue Eng. Part A 16, 1075–1082 (2010).

    Article  CAS  Google Scholar 

  38. Ishii, T. et al. Effects of extracellular matrixes and growth factors on the hepatic differentiation of human embryonic stem cells. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G313–G321 (2008).

    Article  CAS  Google Scholar 

  39. Kim, S. H., Turnbull, J. & Guimond, S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 139–151 (2011).

    Article  CAS  Google Scholar 

  40. Wang, Y. et al. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology 53, 293–305 (2011).

    Article  CAS  Google Scholar 

  41. Marongiu, F. et al. Hepatic differentiation of amniotic epithelial cells. Hepatology 53, 1719–1729 (2011).

    Article  CAS  Google Scholar 

  42. Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole-organ decellularization processes. Biomaterials 32, 3233–3243 (2011).

    Article  CAS  Google Scholar 

  43. Horbett, T. A., Ratner, B. D., Schakenraad, J. M. & Schoen, F. J. in Biomaterials Science: an Introduction to Materials in Medicine (eds Ratner, B. D., Hoffman, A. S., Schoen, F. J. & Lemons, J. E.) 147–164 (Academic Press, San Diego, CA, 1996).

    Google Scholar 

  44. Uygun, B. E. et al. Decellularization and recellularization of whole livers. J. Vis. Exp. e2394 (2011).

  45. Yagi, H. et al. Human-scale whole-organ. bioengineering for liver transplantation: a regenerative medicine approach. Cell Transplant (in press).

  46. Ohi, Y. et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol. 13, 541–549 (2011).

    Article  CAS  Google Scholar 

  47. Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010).

    Article  CAS  Google Scholar 

  48. Polo, J. M. et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat. Biotechnol. 28, 848–855 (2010).

    Article  CAS  Google Scholar 

  49. Kakinuma, S., Nakauchi, H. & Watanabe, M. Hepatic stem/progenitor cells and stem-cell transplantation for the treatment of liver disease. J. Gastroenterol. 44, 167–172 (2009).

    Article  Google Scholar 

  50. Izamis, M. L. et al. Better than fresh: simple ex vivo perfusion optimizes ischemic and fresh donor livers for transplantation and significantly enhanced hepatocyte yields. Hepatology 54, 688A–688A (2011).

    Google Scholar 

  51. Oertel, M. et al. Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver. Gastroenterology 134, 823–832 (2008).

    Article  CAS  Google Scholar 

  52. Galili, U. Induced anti-non gal antibodies in human xenograft recipients. Transplantation 93, 11–16 (2012).

    Article  CAS  Google Scholar 

  53. Daly, K. A. et al. Effect of the alphaGal epitope on the response to small intestinal submucosa extracellular matrix in a nonhuman primate model. Tissue Eng. Part A 15, 3877–3888 (2009).

    Article  CAS  Google Scholar 

  54. Xu, H. et al. A porcine-derived acellular dermal scaffold that supports soft tissue regeneration: removal of terminal galactose-alpha-(1,3)-galactose and retention of matrix structure. Tissue Eng. Part A 15, 1807–1819 (2009).

    Article  CAS  Google Scholar 

  55. Abt, P. L., Fisher, C. A. & Singhal, A. K. Donation after cardiac death in the US: history and use. J. Am. Coll. Surg. 203, 208–225 (2006).

    Article  Google Scholar 

  56. Tolboom, H. et al. Recovery of warm ischemic rat liver grafts by normothermic extracorporeal perfusion. Transplantation 87, 170–177 (2009).

    Article  Google Scholar 

  57. Coller, B. S., Beer, J. H., Scudder, L. E. & Steinberg, M. H. Collagen-platelet interactions: evidence for a direct interaction of collagen with platelet GPIa/IIa and an indirect interaction with platelet GPIIb/IIIa mediated by adhesive proteins. Blood 74, 182–192 (1989).

    CAS  PubMed  Google Scholar 

  58. Bao, J. et al. Construction of a portal implantable functional tissue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats. Cell Transplant. 20, 753–766 (2011).

    Article  Google Scholar 

  59. Delrivière, L. et al. Detailed modified technique for safer harvesting and preparation of liver graft in the rat. Microsurgery 17, 690–696 (1996).

    Article  Google Scholar 

  60. Delrivière, L. et al. Technical details for safer venous and biliary anastomoses for liver transplantation in the rat. Microsurgery 18, 12–18 (1998).

    Article  Google Scholar 

  61. Nahmias, Y., Berthiaume, F. & Yarmush, M. L. Integration of technologies for hepatic tissue engineering. Adv. Biochem. Eng. Biotechnol. 103, 309–329 (2007).

    PubMed  Google Scholar 

  62. Strauss, K. A. et al. Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-Najjar disease. Eur. J. Pediatr. 165, 306–319 (2006).

    Article  Google Scholar 

  63. van der Veere, C. N. et al. Current therapy for Crigler-Najjar syndrome type 1: report of a world registry. Hepatology 24, 311–315 (1996).

    Article  CAS  Google Scholar 

  64. Bernal, W., Auzinger, G., Dhawan, A. & Wendon, J. Acute liver failure. Lancet 376, 190–201 (2010).

    Article  Google Scholar 

  65. Bower, W. A., Johns, M., Margolis, H. S., Williams, I. T. & Bell, B. P. Population-based surveillance for acute liver failure. Am. J. Gastroenterol. 102, 2459–2463 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Funding from the National Institutes of Health (R01DK084053, R01DK096075R01, K99DK088962), National Science Foundation (CBET 0853569) and the Shriners Hospitals for Children are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Korkut Uygun.

Ethics declarations

Competing interests

B. E. Uygun, M. L. Yarmush and K. Uygun are patent applicants for Massachusetts General Hospital, Boston, MA, USA. The patent application relates to hepatic tissue engineering processes (application number WO2011002926).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uygun, B., Yarmush, M. & Uygun, K. Application of whole-organ tissue engineering in hepatology. Nat Rev Gastroenterol Hepatol 9, 738–744 (2012). https://doi.org/10.1038/nrgastro.2012.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.140

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research