Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of the gut microbiota in nutrition and health

Abstract

The microbial communities that colonize different regions of the human gut influence many aspects of health. In the healthy state, they contribute nutrients and energy to the host via the fermentation of nondigestible dietary components in the large intestine, and a balance is maintained with the host's metabolism and immune system. Negative consequences, however, can include acting as sources of inflammation and infection, involvement in gastrointestinal diseases, and possible contributions to diabetes mellitus and obesity. Major progress has been made in defining some of the dominant members of the microbial community in the healthy large intestine, and in identifying their roles in gut metabolism. Furthermore, it has become clear that diet can have a major influence on microbial community composition both in the short and long term, which should open up new possibilities for health manipulation via diet. Achieving better definition of those dominant commensal bacteria, community profiles and system characteristics that produce stable gut communities beneficial to health is important. The extent of interindividual variation in microbiota composition within the population has also become apparent, and probably influences individual responses to drug administration and dietary manipulation. This Review considers the complex interplay between the gut microbiota, diet and health.

Key Points

  • Molecular surveys have revealed remarkable diversity within the human gut microbiota, but certain dominant species are detected in faecal samples from most healthy adults

  • Dietary intake, especially of nondigestible carbohydrates, alters the species composition of the gut microbiota both in the short term and in the long term

  • Interindividual variation in colonic microbiota composition influences responses to dietary manipulation

  • The gut microbiota potentially influences the host's energy balance through multiple mechanisms, including supplying energy from nondigestible dietary components and influences on gut transit, energy intake and energy expenditure

  • Whether variation in gut microbiota composition is a major factor that influences obesity and metabolic disease in humans is not yet clear

  • The latest research has suggested new candidate organisms among the healthy gut microbiota that might be beneficial to gut health and new strategies for correcting dysbiosis associated with certain disease states

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of gut microbial communities on health.
Figure 2: Microbial microenvironments within the large intestine.
Figure 3: Influence of diet upon dominant human colonic bacteria determined by 16S rRNA gene sequencing.
Figure 4: Functional and phylogenetic groups of gut bacteria involved in the metabolism of short-chain fatty acids.
Figure 5: Contribution of ingested carbohydrates to dietary energy supply to the host.

Similar content being viewed by others

References

  1. Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Hooper, L. V. & MacPherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blaser, M. J. & Kirschner, D. The equilibria that allow bacterial persistence in human hosts. Nature 449, 843–849 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Booijink, C. C. G. M. et al. High temporal and inter-individual variation detected in the human ileal microbiota. Environ. Microbiol. 12, 3213–3227 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Zoetendal, E. G. et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 6, 1415–1426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hartman, A. L. et al. Human gut microbiome adopts an alternative state following small bowel transplantation. Proc. Natl Acad. Sci. USA 106, 17187–17192 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang, M., Ahrné, S., Jeppsson, B. & Molin, G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol. Ecol. 54, 219–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Eckburg, P. B. et al. Microbiology: diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tap, J. et al. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 11, 2574–2584 (2009).

    Article  PubMed  Google Scholar 

  13. Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Suau, A. et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65, 4799–4807 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hold, G. L., Pryde, S. E., Russell, V. J., Furrie, E. & Flint, H. J. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol. Ecol. 39, 33–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moore, W. E. C. & Moore, L. H. Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 61, 3202–3207 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA 108, 6252–6257 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Louis, P., Young, P., Holtrop, G. & Flint, H. J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Kurokawa, K. et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 14, 169–181 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    CAS  PubMed  Google Scholar 

  25. Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl Acad. Sci. USA 108, 4586–4591 (2011).

    Article  PubMed  Google Scholar 

  26. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huse, S. M., Ye, Y., Zhou, Y. & Fodor, A. A. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7, e34242 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Franks, A. H. et al. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 64, 3336–3345 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zoetendal, E. G., Akkermans, A. D. L. & De Vos, W. M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64, 3854–3859 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roberfroid, M. et al. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 104, S1–S63 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Davis, L. M. G., Martínez, I., Walter, J., Goin, C. & Hutkins, R. W. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS ONE 6, e252000 (2011).

    Article  Google Scholar 

  34. Ramirez-Farias, C. et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 101, 541–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Eggesbø, M. et al. Development of gut microbiota in infants not exposed to medical interventions. APMIS 119, 17–35 (2011).

    Article  PubMed  Google Scholar 

  36. Karlsson, C. L. J., Molin, G., Cilio, C. M. & Ahrné, S. The pioneer gut microbiota in human neonates vaginally born at term-A pilot study. Pediatr. Res. 70, 282–286 (2011).

    Article  PubMed  Google Scholar 

  37. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Biasucci, G. et al. Mode of delivery affects the bacterial community in the newborn gut. Early Hum. Dev. 86 (Suppl. 1), 13–15 (2010).

    Article  PubMed  Google Scholar 

  39. Huurre, A. et al. Mode of delivery—effects on gut microbiota and humoral immunity. Neonatology 93, 236–240 (2008).

    Article  PubMed  Google Scholar 

  40. Fallani, M. et al. Intestinal microbiota of 6-week-old infants across Europe: Geographic influence beyond delivery mode, breast-feeding, and antibiotics. J. Pediatr. Gastroenterol. Nutr. 51, 77–84 (2010).

    Article  PubMed  Google Scholar 

  41. Klaassens, E. S. et al. Mixed-species genomic microarray analysis of fecal samples reveals differential transcriptional responses of bifidobacteria in breast- and formula-fed infants. Appl. Environ. Microbiol. 75, 2668–2676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harmsen, H. J. M. et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30, 61–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Roger, L. C. & McCartney, A. L. Longitudinal investigation of the faecal microbiota of healthy full-term infants using fluorescence in situ hybridization and denaturing gradient gel electrophoresis. Microbiology 156, 3317–3328 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sim, K. et al. Improved detection of bifidobacteria with optimised 16S rRNA-gene based pyrosequencing. PLoS ONE 7, e32543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grzes´kowiak, Ł. et al. Distinct gut microbiota in South Eastern African and Northern European infants. J. Pediatr. Gastroenterol. Nutr. 54, 812–816 (2012).

    Article  Google Scholar 

  47. Solís, G., de los Reyes-Gavilan, C. G., Fernández, N., Margolles, A. & Gueimonde, M. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 16, 307–310 (2010).

    Article  PubMed  Google Scholar 

  48. Martín, R. et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microbiol. 75, 965–969 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Perez, P. F. et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119, e724–e732 (2007).

    Article  PubMed  Google Scholar 

  50. Magne, F. et al. Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences of 16S rRNA genes and PCR-temporal temperature gradient gel electrophoresis profiles. FEMS Microbiol. Ecol. 57, 128–138 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Favier, C. F., Vaughan, E. E., De Vos, W. M. & Akkermans, A. D. L. Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68, 219–226 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fallani, M. et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 157, 1385–1392 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Martin, R. et al. Early life: gut microbiota and immune development in infancy. Benef. Microbes 1, 367–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Penders, J. et al. Gut microbiota composition and development of atopic manifestations in infancy: The KOALA birth cohort study. Gut 56, 661–667 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Kalliomäki, M. Pandemic of atopic diseases—a lack of microbial exposure in early infancy? Med. Chem. Rev. Online 2, 299–302 (2005).

    Article  Google Scholar 

  56. O'Toole, P. W. & Claesson, M. J. Gut microbiota: Changes throughout the lifespan from infancy to elderly. Int. Dairy J. 20, 281–291 (2010).

    Article  CAS  Google Scholar 

  57. Woodmansey, E. J. Intestinal bacteria and ageing. J. Appl. Microbiol. 102, 1178–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Flint, H. J., Duncan, S. H., Scott, K. P. & Louis, P. Interactions and competition within the microbial community of the human colon: links between diet and health: Minireview. Environ. Microbiol. 9, 1101–1111 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Allison, M. J., Dawson, K. A., Mayberry, W. R. & Foss, J. G. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 141, 1–7 (1985).

    Article  CAS  PubMed  Google Scholar 

  60. Walker, A. W., Duncan, S. H., McWilliam Leitch, E. C., Child, M. W. & Flint, H. J. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol. 71, 3692–3700 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Louis, P., Scott, K. P., Duncan, S. H. & Flint, H. J. Understanding the effects of diet on bacterial metabolism in the large intestine. J. Appl. Microbiol. 102, 1197–1208 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Van Wey, A. S. et al. Bacterial biofilms associated with food particles in the human large bowel. Mol. Nutr. Food Res. 55, 969–978 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Leitch, E. C. M., Walker, A. W., Duncan, S. H., Holtrop, G. & Flint, H. J. Selective colonization of insoluble substrates by human faecal bacteria. Environ. Microbiol. 9, 667–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Walker, A. W. et al. The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ. Microbiol. 10, 3275–3283 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: The Bacteroidetes sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes http://dx.doi.org/10.4161/gmic.19897.

  69. van Passel, M. W. J. et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6, e16876 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Derrien, M. et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front. Microbiol. 2, 166 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pomare, E. W., Branch, W. J. & Cummings, J. H. Carbohydrate fermentation in the human colon and its relation to acetate concentrations in venous blood. J. Clin. Invest. 75, 1448–1454 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sleeth, M. L., Thompson, E. L., Ford, H. E., Zac-Varghese, S. E. K. & Frost, G. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr. Res. Rev. 23, 135–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Hamer, H. M. et al. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Gassull, M. A. Review article: the intestinal lumen as a therapeutic target in inflammatory bowel disease. Aliment. Pharmacol. Ther. 24, 90–95 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Lewis, S. J. & Heaton, K. W. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut 41, 245–251 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Scheppach, W. Effects of short chain fatty acids on gut morphology and function. Gut 35, S35–S38 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao, Z. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Louis, P. & Flint, H. J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294, 1–8 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Aminov, R. I. et al. Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl. Environ. Microbiol. 72, 6371–6376 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Scott, K. P. et al. Substrate-driven gene expression in Roseburia inulinivorans: Importance of inducible enzymes in the utilization of inulin and starch. Proc. Natl Acad. Sci. USA 108, 4672–4679 (2011).

    Article  PubMed  Google Scholar 

  81. Ramsay, A. G., Scott, K. P., Martin, J. C., Rincon, M. T. & Flint, H. J. Cell-associated α-amylases of butyrate-producing Firmicute bacteria from the human colon. Microbiology 152, 3281–3290 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Lopez-Siles, M. et al. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl. Environ. Microbiol. 78, 420–428 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Khan, M. T. et al. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J. 6, 1578–1585 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Duncan, S. H. et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 73, 1073–1078 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Brinkworth, G. D., Noakes, M., Clifton, P. M. & Bird, A. R. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br. J. Nutr. 101, 1493–1502 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Russell, W. R. et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 93, 1062–1072 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. El Oufir, L. et al. Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans. Gut 38, 870–877 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McOrist, A. L. et al. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J. Nutr. 141, 883–889 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Duncan, S. H., Louis, P., Thomson, J. M. & Flint, H. J. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 11, 2112–2122 (2009).

    Article  PubMed  Google Scholar 

  90. Duncan, S. H., Louis, P. & Flint, H. J. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl. Environ. Microbiol. 70, 5810–5817 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Belenguer, A. et al. Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl. Environ. Microbiol. 73, 6526–6533 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morrison, D. J. et al. Butyrate production from oligofructose fermentation by the human faecal flora: What is the contribution of extracellular acetate and lactate? Br. J. Nutr. 96, 570–577 (2006).

    CAS  PubMed  Google Scholar 

  93. Bourriaud, C. et al. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J. Appl. Microbiol. 99, 201–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Belenguer, A. et al. Rates of production and utilization of lactate by microbial communities from the human colon. FEMS Microbiol. Ecol. 77, 107–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Vernia, P. et al. Fecal lactate and ulcerative colitis. Gastroenterology 95, 1564–1568 (1988).

    Article  CAS  PubMed  Google Scholar 

  96. Macfarlane, G. T. & Gibson, G. R. in Gastrointestinal Microbiology Vol. I (eds Mackie, R. I. & White, B. A.) 269–318 (Chapman and Hall, London, 1997).

    Book  Google Scholar 

  97. Scott, K. P., Martin, J. C., Campbell, G., Mayer, C. & Flint, H. J. Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. J. Bacteriol. 188, 4340–4349 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Smith, E. A. & Macfarlane, G. T. Enumeration of amino acid fermenting bacteria in the human large intestine: Effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol. Ecol. 25, 355–368 (1998).

    Article  CAS  Google Scholar 

  99. Gill, C. I. R. & Rowland, I. R. Diet and cancer: Assessing the risk. Br. J. Nutr. 88, S73–S87 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Macfarlane, S. & Macfarlane, G. T. Short-chain fatty acids. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62, 67–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Attene-Ramos, M. S., Wagner, E. D., Plewa, M. J. & Gaskins, H. R. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res. 4, 9–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Medani, M. et al. Emerging role of hydrogen sulfide in colonic physiology and pathophysiology. Inflamm. Bowel Dis. 17, 1620–1625 (2011).

    Article  PubMed  Google Scholar 

  103. Sahakian, A. B., Jee, S. R. & Pimentel, M. Methane and the gastrointestinal tract. Dig. Dis. Sci. 55, 2135–2143 (2010).

    Article  PubMed  Google Scholar 

  104. Rey, F. E. et al. Dissecting the in vivo metabolic potential of two human gut acetogens. J. Biol. Chem. 285, 22082–22090 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nava, G. M., Carbonero, F., Croix, J. A., Greenberg, E. & Gaskins, H. R. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J. 6, 57–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Marquet, P., Duncan, S. H., Chassard, C., Bernalier-Donadille, A. & Flint, H. J. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol. Lett. 299, 128–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Possemiers, S., Bolca, S., Verstraete, W. & Heyerick, A. The intestinal microbiome: a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia 82, 53–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. McIntosh, F. M. et al. Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ. Microbiol. 14, 1876–1887 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Gloux, K. et al. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc. Natl Acad. Sci. USA 108, 4539–4546 (2011).

    Article  PubMed  Google Scholar 

  110. Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  112. Blaut, M. & Klaus, S. Intestinal microbiota and obesity. Handb. Exp. Pharmacol. 209, 251–273 (2012).

    Article  CAS  Google Scholar 

  113. Flint, H. J. Obesity and the gut microbiota. J. Clin. Gastroenterol. 45, S128–S132 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Roberfroid, M. B. Caloric value of inulin and oligofructose. J. Nutr. 129, 1436S–1437S (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Parnell, J. A. & Reimer, R. A. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. Br. J. Nutr. 107, 601–613 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2010).

    Article  PubMed  Google Scholar 

  117. Duncan, S. H. et al. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 32, 1720–1724 (2008).

    Article  CAS  Google Scholar 

  118. Jumpertz, R. et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 94, 58–65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ravussin, Y. et al. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity 20, 738–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fleissner, C. K. et al. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr. 104, 919–929 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Hildebrandt, M. A. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137, 1716–1724e2 (2009).

    CAS  PubMed  Google Scholar 

  124. Murphy, E. F. et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59, 1635–1642 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Willing, B. et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm. Bowel Dis. 15, 653–660 (2009).

    Article  PubMed  Google Scholar 

  129. Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183–1189 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Manichanh, C., Borruel, N., Casellas, F. & Guarner, F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. http://doi.dx.org/nrgastro.2012.152.

  131. Jia, W. et al. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn's disease? FEMS Microbiol. Lett. 310, 138–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Mukhopadhya, I., Hansen, R., El-Omar, E. M. & Hold, G. L. IBD—what role do proteobacteria play? Nat. Rev. Gastroenterol. Hepatol. 9, 219–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Rajilicć-Stojanovicć1, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792–1801 (2011).

    Article  CAS  Google Scholar 

  134. Chassard, C. et al. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment. Pharmacol. Ther. 35, 828–838 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Simrén, M. et al. Intestinal microbiota in functional bowel disorders: a Rome Foundation working team report. Gut http://dx.doi.org/10.1136/gutjnl-2012-30267.

  136. Boleij, A. & Tjalsma, H. Gut bacteria in health and disease: A survey on the interface between intestinal microbiology and colorectal cancer. Biol. Rev. 87, 701–730 (2012).

    Article  PubMed  Google Scholar 

  137. Wang, T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Stecher, B. et al. Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J. K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156, 3216–3223 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Khoruts, A., Dicksved, J., Jansson, J. K. & Sadowsky, M. J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastroenterol. 44, 354–360 (2010).

    PubMed  Google Scholar 

  141. Guo, B., Harstall, C., Louie, T., Veldhuyzen Van Zanten, S. & Dieleman, L. A. Systematic review: faecal transplantation for the treatment of Clostridium difficile-associated disease. Aliment. Pharmacol. Ther. 35, 865–875 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Mattila, E. et al. Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology 142, 490–496 (2012).

    Article  PubMed  Google Scholar 

  143. Borody, T. J. & Khoruts, A. Fecal microbiota transplantation and emerging applications. Nat. Rev. Gastroenterol. Hepatol. 9, 88–96 (2012).

    Article  CAS  Google Scholar 

  144. Swidsinski, A., Loening-Baucke, V., Verstraelen, H., Osowska, S. & Doerffel, Y. Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology 135, 568–579e2 (2008).

    Article  PubMed  Google Scholar 

  145. Baughn, A. D. & Malamy, M. H. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427, 441–444 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Jones, B. V., Begley, M., Hill, C., Gahan, C. G. M. & Marchesi, J. R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl Acad. Sci. USA 105, 13580–13585 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Islam, K. B. M. S. et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141, 1773–1781 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Gagen, E. J. et al. Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach. Appl. Environ. Microbiol. 76, 7785–7795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Scanlan, P. D., Shanahan, F. & Marchesi, J. R. Culture-independent analysis of desulfovibrios in the human distal colon of healthy, colorectal cancer and polypectomized individuals. FEMS Microbiol. Ecol. 69, 213–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Mihajlovski, A., Doré, J., Levenez, F., Alric, M. & Brugère, J. F. Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity. Environ. Microbiol. Rep. 2, 272–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Hayashi, H. et al. Direct cloning of genes encoding novel xylanases from the human gut. Can. J. Microbiol. 51, 251–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Tasse, L. et al. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res. 20, 1605–1612 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Verberkmoes, N. C. et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 3, 179–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Martínez, I., Kim, J., Duffy, P. R., Schlegel, V. L. & Walter, J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS ONE 5, e15046 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Abell, G. C. J., Cooke, C. M., Bennett, C. N., Conlon, M. A. & McOrist, A. L. Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol. Ecol. 66, 505–515 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Costabile, A. et al. A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br. J. Nutr. 104, 1007–1017 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Kleessen, B. et al. Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br. J. Nutr. 98, 540–549 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Fernando, W. M. et al. Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in healthy adults. Benef. Microbes 1, 197–207 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors receive support from the Scottish Government Rural and Environment Science and Analysis Service.

Author information

Authors and Affiliations

Authors

Contributions

H. J. Flint researched data and content for the article. H. J. Flint and P. Louis reviewed and/or edited the manuscript before submission. All authors contributed to writing the article.

Corresponding author

Correspondence to Harry J. Flint.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flint, H., Scott, K., Louis, P. et al. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9, 577–589 (2012). https://doi.org/10.1038/nrgastro.2012.156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing